4. ΚΙΝΗΜΑΤΙΚΗ ΤΟΥ ΡΕΥΣΤΟΥ
|
|
- Πανδώρα Ζαΐμης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 4. ΚΙΝΗΜΑΤΙΚΗ ΤΟΥ ΡΕΥΣΤΟΥ «Κινηµατική» της κίνησης Ταχύτητα,επιτάχυνση του ρευστού Περιγραφή και οπτικοποίηση της κίνησής του «υναµική» της κίνησης Ανάλυση των δυνάµεων που παράγουν κίνηση 4.1 ΤΟ ΠΕ ΙΟ ΤΑΧΥΤΗΤΑΣ Υπόθεση «συνέχειας» Το ρευστό αποτελείται από σωµατίδια που αλληλεπιδρούν µεταξύ τους και µε το περιβάλλον και κάθε σωµατίδιο περιέχει πολλά µόρια
2 Περιγραφή της ροής µε βάση την κίνηση των σωµατιδίων και οχι την κίνηση των ανεξάρτητων µορίων V = u(x,y,z,t)i + v(x,y,z,t)j + w(x,y,z,t)k ιάνυσµαθέσηςr(t) Α dra VA = dt V = V(x,y,z,t) V = V = u + v + w ( ) 1/2
3
4 Eulerian και Lagrangian περιγραφή της ροής Eulerian Η κίνηση του ρευστού προσδιορίζεται µε την περιγραφή των αναγκαίων χαρακτηριστικών (ιδιοτήτων), όπως πίεση,πυκνότητα,ταχύτητα, κ.λ.π.,σαν χωρικές και χρονικές συναρτήσεις Lagrangian Ακολουθεί ανεξάρτητα σωµατίδια του ρευστού κατά την κίνησή τους και προσδιορίζει πως τα χαρακτηριστικά του σωµατιδίου µεταβάλλονται µε το χρόνο
5 ιαφορά µεταξύ Eulerian και Lagrangian Eulerian ( x,y,z,t) T = T Η θερµοκρασία σε συγκεκριµένο σηµείο 0 Lagrangian T = T A (t) Η χρήση της µιας ή της άλλης µεθόδου εξαρτάται από την εφαρµογή
6 Γενικά V = 1-,2-,3-διάστατη ροή V(x,y,z,t) Αρκετές φορές απλοποιήσεις είναι αναγκαίες Τρισδιάστατη ροή ιδιάσταση ροή Μονοδιάστατη ροή Μόνιµη ροή Μη-µόνιµη ροή Στρωτή ροή Μόνιµη και µη-µόνιµη ροή V = 0 t V 0 t Μη περιοδική,περιοδική, εντελώς τυχαία Τυρβώδης ροή
7
8
9 Ροϊκές γραµµές-streaklines-pathlines Ροϊκές Γραµµές : η ταχύτητα εφαπτοµενική σε µια ροϊκή γραµµή v Κλίση της ροϊκής γραµµής: dy = dx Αν το πεδίο της ταχύτητας είναι γνωστό σαν συνάρτηση του x και y η παραπάνω εξίσωση µπορεί να ολοκληρωθεί για να µας δώσει την Εξίσωση των ροϊκών γραµµών. Παράδειγµα Να προσδιορισθούν οι ροϊκές γραµµές που δίνονται από την σχέση u= V = 0 ( ) V /l x 0 ( V / l)( x i yj) Κατά µήκος µιας ροϊκής γραµµής xy=c σταθερά u ( 0 ) ( ) dy v V/ly y v = ( V 0 /l) y = = = dx u V / l x x 0 dy / y = dx / x ln y = ln x +σταθερά
10
11 Streaklines-Γραµµές εκποµπής Αποτελείται από τα σωµατίδια της ροής που περνούν από ένα κοινό σηµείο Pathlines-Τροχιές Ηγραµµή που σχηµατίζεται από την κίνηση ενός σωµατιδίου από ένα σηµείο σε κάποιο άλλο
12
13 4.2 ΤΟ ΠΕ ΙΟ ΕΠΙΤΑΧΥΝΣΗΣ α=α(x,y,z,t) Eulerian α=α(t) Lagrangian F = mα ΗΥλική Παράγωγος
14 V = VA( r A,t) = VA( x A(t),y A(t),z A(t),t) dva α A(t) = = dt V V V V = + u + v + w t x y z u u u u α x = + u + v + w t x y z v v v v α y = + u + v + w t x y z w w w w α z = + u + v + w t x y z DV α= Dt D(**) (**) (**) (**) (**) = + u + v + w Dt t x y z Τοπική παράγωγος Επιτάχυνση µεταφοράς dv dt : Τοπική επιτάχυνση
15
16 4.3 ΣΥΣΤΗΜΑ ΚΑΙ ΟΓΚΟΣ ΕΛΕΓΧΟΥ Εφαρµογή των βασικών νόµων (διατήρηση µάζας, κίνησης, θερµοδυναµικής) µε βάση την προσέγγιση του συστήµατος ή του όγκου ελέγχου. Σύστηµα-Lagrangian: Συλλογή ύλης που κινείται,ρέει και αλληλεπιδρά µε το περιβάλλον-περιέχει την ίδια µάζα. Όγκος Ελέγχου-Eulerian: Όγκος στο χώρο µέσω του οποίου έχουµε ροή (ανεξάρτητα της µάζας). Προσδιορισµός των δυνάµεων που δρουν στον όγκο ελέγχου και ανάλυση της ροής- ιάγραµµα ελεύθερου σώµατος.
17 *Σταθερός,*Κινούµενος,*Μετασχηµατιζόµενος Όγκος Ελέγχου
18 4.4 ΘΕΩΡΗΜΑ ΜΕΤΑΦΟΡΑΣ ΤΟΥ REYNOLDS Περιγραφή των νόµων κίνησης µε βάση τις έννοιες του συστήµατος και του όγκου ελέγχου. Β=παράµετρος ρευστού (extensive property) b=παράµετρος ανά µονάδα µάζας (intensive property) B=mb m=µάζα του ρευστού που εξετάζουµε Π.χ. Αν B = B συσ ( δb = bρδ ) db dt mv 2 συσ 2 = lim b = i d = bi συσ V 2 ( ρ δ ) i 2 ρbd dt i = συσ ρbd Χρονική Μεταβολή της ιδιότητας Β του συστήµατος
19 d ρbd db O.E. O.E. = dt dt Χρονική Μεταβολή του Β στον όγκο ελέγχου Παρόµοια Μαθηµατική Έκφραση αλλά διαφορετική φυσική ερµηνεία
20 ΠΑΡΑ ΕΙΓΜΑ B= m b= 1 d ρd dbσυσ dmσυσ συσ Εποµ ένως = = dt dt dt d ρd dbοε.. dmοε.. ΟΕ.. και = = dt dt dt
21 Το θεώρηµα µεταφοράς σε µονοδιάστατη ροή Στο χρόνο t B (t) = B (t) συσ O.E. Στοχρόνο t+ t B (t+δ t) = B (t+δt) B (t+δ t) + B (t+δt) συσ O.E. Ι ΙΙ δ Bσυσ B συσ(t +δt) B συσ(t) B O.E. (t +δt) B I(t +δt) B II(t +δt) = = δt δt δt δ Bσυσ B O.E. (t+δt) B O.E. (t) B(t I +δ t) B II(t+δt) = + δt δt δt δt δbσυσ DBσυσ Για δt 0 = δt Dt
22 ρbd B O.E. (t+δt) B O.E. (t) BO.E. O.E. lim = = δt t t δ t 0 B (t+δ t) = ( ρ b )(δv) = ρ bavδt II B (t+δt) B = lim =ρ A V b δt. B(t I +δt) Bin = lim =ρ1a1v1b 1 δ t 0 δt DB B II out Dt συσ O.E. = +ρ2avb ρ1avb t
23 Το θεώρηµα Reynolds στη γενική του µορφή DB Dt συσ B.. O.E. = + Bout Bin t
24 Προσδιορισµός των B in και Β out δ B= bρδ = b ρ(vcosθδt) δα b ρδ (bρvcosθδt) δα δ Bout = lim = lim = bρv cos θδα δ t 0 δt δ t 0 δt = = ρ θ Α = ρ Α.. Bout dbout b Vcos d b V nd ˆ EE,out EE,out EE,out
25 Κατά ανάλογο τρόπο = ρ θ Α= ρ Α Bin b Vcos d b V nd ˆ EE,in EE,in Bout Bin b V nd ˆ b V nd ˆ b V nd ˆ EE,out EE,in EE ΟE EE = ρ Α ρ Α = ρ Α DBσυσ = bρd + bρ V nd ˆ Α Dt t ρbdv=η ποσότητα του Β σε όγκο dv Χρονικές επιδράσεις Επιδράσεις µεταφοράς(συναγωγής) ΥΛΙΚΗ ΠΑΡΑΓΩΓΟΣ
6. ΙΑΦΟΡΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΡΟΗΣ
6.1 ΚΙΝΗΜΑΤΙΚΗ ΡΟΪΚΟΥ ΣΤΟΙΧΕΙΟΥ 6. ΙΑΦΟΡΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΡΟΗΣ -Λεπτοµέρειες της ροής Απειροστός όγκος ελέγχου - ιαφορική Ανάλυση Περιγραφή πεδίων ταχύτητας και επιτάχυνσης Euleian, Lagangian U U(x,y,,t)
ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ
ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΕΙΣΑΓΩΓΗ Σκοπός της κινηματικής είναι η περιγραφή της κίνησης του ρευστού Τα αίτια που δημιούργησαν την κίνηση και η αναζήτηση των δυνάμεων που την διατηρούν είναι αντικείμενο της
ΗΥΛΙΚΗ ΠΑΡΑΓΩΓΟΣ ΜΗ ΜΟΝΙΜΑ ΦΑΙΝΟΜΕΝΑ ΦΑΙΝΟΜΕΝΑ ΣΥΝΑΓΩΓΗΣ 5.3 ΟΓΚΟΣ ΕΛΕΓΧΟΥ ΘΕΩΡΗΜΑ ΜΕΤΑΦΟΡΑΣ REYNOLDS. 5.
ΠΕΡΙΕΧΟΜΕΝΑ ΔΙΑΛΕΞΗΣ 5.1 ΠΕΡΙΕΧΟΜΕΝΑ 5.1 ΠΕΔΙΟ ΤΑΧΥΤΗΤΑΣ 5.1.1 ΠΕΡΙΓΡΑΦΗ ΡΟΩΝ ΚΑΤΑ EULER &LAGRANGE 5.1.2 ΜΟΝΟ, ΔΙΣ & ΤΡΙΣ ΔΙΑΣΤΑΤΗ ΡΟΗ 5.1.3 ΜΟΝΙΜΗ & ΜΗ ΜΟΝΙΜΗ ΡΟΗ 5.1.4 ΡΟΪΚΕΣ ΓΡΑΜΜΕΣ, ΙΝΩΔΕΙΣ ΦΛΕΒΕΣ
3. ΚΙΝΗΣΗ ΡΕΥΣΤΟΥ-ΕΞΙΣΩΣΗ BERNOULLI Κίνηση σωµατιδίων ρευστού
. ΚΙΝΗΣΗ ΡΕΥΣΤΟΥ-ΕΞΙΣΩΣΗ BERNOLLI Κίνηση σωµατιδίων ρευστού ύναµη, επιτάχυνση F mα εφαρµογή στην κίνηση σωµατιδίου εύτερος νόµος του NEWTON Επιτάχυνση F mα ΒΑΣΙΚΕΣ ΠΑΡΑ ΟΧΕΣ Ρευστά χωρίς ιξώδες Πίεση-Βαρύτητα
κατά το χειµερινό εξάµηνο του ακαδηµαϊκού έτους ΕΜ-351 του Τµήµατος Εφαρµοσµένων Μαθηµατικών της Σχολής Θετικών
Ύλη που διδάχτηκε κατά το χειµερινό εξάµηνο του ακαδηµαϊκού έτους 2005-2006 στα πλαίσια του µαθήµατος ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑ ΥΛΙΚΩΝ Ι ΕΜ-351 του Τµήµατος Εφαρµοσµένων Μαθηµατικών της Σχολής Θετικών Επιστηµών
Περιεχόμενα. Εξίσωση Συνέχειας Αστρόβιλη Ροή Εξισώσεις Κίνησης. Σειρά ΙΙ 2
Περιεχόμενα Εξίσωση Συνέχειας Αστρόβιλη Ροή Εξισώσεις Κίνησης Σειρά ΙΙ 2 Πεδίο ταχύτητας Όγκος Ελέγχου Καρτεσιανές Συντεταγμένες w+(/)dz z y u dz u+(/ x)dx x dy dx w Σειρά ΙΙ 3 1. Εισαγωγή 1.1 Εξίσωση
ΚΙΝΗΜΑΤΙΚΗ ΡΕΥΣΤΩΝ. Α. Παϊπέτης. 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών
ΚΙΝΗΜΑΤΙΚΗ ΡΕΥΣΤΩΝ Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Η κινηματική είναι η μελέτη της κίνησης χωρίς να λαμβάνονται υπόψη τα αίτια που την προκαλούν (δυνάμεις, ροπές) Η μελέτη της
ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Αγγελίδης Π., Αναπλ. καθηγητής ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΑΙ ΑΡΧΕΣ ΣΥΓΚΕΝΤΡΩΣΗ ΡΥΠΟΥ Έστω η συγκέντρωση
u u u u u u u u u u u x x x x
Βασικοί συµβολισµοί και σχέσεις ϕ ϕ ui & ϕ=, ϕ, i=, ui, j= t x x u1 u1 u1 x1 x2 x u 3 1, 1 ui, j ui, j u1, 1 ui, j ui, j u u u u u u u u u u u i 2 2 2 i, j= = i, j 2, 2 i, j = i, j 2, 2 i, j = x j x1 x2
Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις
Κεφάλαιο M4 Κίνηση σε δύο διαστάσεις Κινηµατική σε δύο διαστάσεις Θα περιγράψουµε τη διανυσµατική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης µε περισσότερες λεπτοµέρειες. Θα µελετήσουµε την κίνηση
Ρευστομηχανική. Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής. Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης
Ρευστομηχανική Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΚινηματικήκαιΔυναμικήτων Ρευστών 5 ο Μάθημα van Gogh starry night ΔΠΘ-ΜΠΔ Μηχανική
2) Κυλινδρικό δοχείο ύψους H είναι γεμάτο με υγρό που θεωρείται ιδανικό.
1) Υποθέστε ότι δύο δοχεία το καθένα με ένα μεγάλο άνοιγμα στην κορυφή περιέχουν διαφορετικά υγρά. Μια μικρή τρύπα ανοίγεται στο πλευρό του καθενός δοχείου στην ίδια απόσταση h κάτω από την επιφάνεια του
ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗΣ
ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗΣ ΑΣΥΜΠΙΕΣΤΗ ΚΑΙ ΑΣΤΡΟΒΙΛΗ ΡΟΗ Μία ροή αποκαλείται αστρόβιλη, όταν ισχύει η σχέση ro όπου 3 3 3 3 3 e e e ro Η απόδειξη της παραπάνω σχέσης δεν αποτελεί αντικείμενο της εξέτασης Αποδείξαμε
Εφαρμοσμένη Υδραυλική. ΕΔΙΠ, Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών, ΑΠΘ
Εφαρμοσμένη Υδραυλική Πατήστε για προσθήκη Γ. Παπαευαγγέλου κειμένου ΕΔΙΠ, Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών, ΑΠΘ 1 Εισαγωγή Ρευστομηχανική = Μηχανικές ιδιότητες των ρευστών (υγρών και αερίων) Υδρομηχανική
Μακροσκοπική ανάλυση ροής
Μακροσκοπική ανάλυση ροής Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Μακροσκοπική ανάλυση Όγκος ελέγχου και νόμοι της ρευστομηχανικής Θεώρημα μεταφοράς Εξίσωση συνέχειας Εξίσωση ορμής
ΦΥΣ Διάλ Άλγεβρα. 1 a. Άσκηση για το σπίτι: Διαβάστε το παράρτημα Β του βιβλίου
ΦΥΣ 131 - Διάλ. 4 1 Άλγεβρα a 1 a a ( ± y) a a ± y log a a 10 log a ± logb log( ab ± 1 ) log( a n ) n log( a) ln a a e ln a ± ln b ln( ab ± 1 ) ln( a n ) nln( a) Άσκηση για το σπίτι: Διαβάστε το παράρτημα
1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1.
1. Κινηµατική Βιβλιογραφία C. Kittel W. D. Knight M. A. Rueman A. C. Helmholz και B. J. Moe Μηχανική. Πανεπιστηµιακές Εκδόσεις Ε.Μ.Π. 1998. Κεφ.. {Μαθηµατικό Συµπλήρωµα Μ1 Παράγωγος} {Μαθηµατικό Συµπλήρωµα
v = 1 ρ. (2) website:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Βασικές έννοιες στη μηχανική των ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 17 Φεβρουαρίου 2019 1 Ιδιότητες των ρευστών 1.1 Πυκνότητα Πυκνότητα
Καρτεσιανό Σύστηµα y. y A. x A
Στη γενική περίπτωση µπορούµε να ορίσουµε άπειρα συστήµατα συντεταγ- µένων τα οποία να µας επιτρέπουν να προσδιορίσουµε τη θέση ενός σηµείου. Στη Φυσική χρησιµοποιούνται αρκετά. Τα βασικά από αυτά θα εξετάσουµε
ΠΕΡΙΕΧΟΜΕΝΑ 2.1 ΕΙΔΗ ΡΟΩΝ 2.2 ΣΥΣΤΗΜΑ & ΟΓΚΟΣ ΕΛΕΓΧΟΥ 2.3 ΕΙΔΗ ΑΝΑΛΥΣΗΣ
ΠΕΡΙΕΧΟΜΕΝΑ ΔΙΑΛΕΞΗΣ 2.1 ΠΕΡΙΕΧΟΜΕΝΑ 2.1 ΕΙΔΗ ΡΟΩΝ 2.2 ΣΥΣΤΗΜΑ & ΟΓΚΟΣ ΕΛΕΓΧΟΥ 2.3 ΕΙΔΗ ΑΝΑΛΥΣΗΣ 2.4 2.4 ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ 2.4.1 ΑΡΧΗ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΜΑΖΑΣ ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ 2.4.2 ΑΡΧΗ
Υποστηρικτικό υλικό για την εργασία «Πειραματική διάταξη για τη μελέτη της ροής ρευστού σε σωλήνα» του Σπύρου Χόρτη.
Υποστηρικτικό υλικό για την εργασία «Πειραματική διάταξη για τη μελέτη της ροής ρευστού σε σωλήνα» του Σπύρου Χόρτη. Η εργασία δημοσιεύτηκε στο 9ο τεύχος του περιοδικού Φυσικές Επιστήμες στην Εκπαίδευση,
5. ΑΝΑΛΥΣΗ ΤΗΣ ΡΟΗΣ ΜΕ ΟΓΚΟΥΣ ΕΛΕΓΧΟΥ
5. ΑΝΑΛΥΣΗ ΤΗΣ ΡΟΗΣ ΜΕ ΟΓΚΟΥΣ ΕΛΕΓΧΟΥ α) ιατήρηση της Μάζας-Εξίσωση Συνέχειας β) εύτερος νόµος του Newton-Εξίσωση Ορµής γ) Πρώτος νόµος Θερµοδυναµικής-Εξίσωση Ενέργειας Ολοκληρωτική ανάλυση ιαφορική ανάλυση
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 11 ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ
ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΟΚΙΝΗΤΗΡΩΝ ΚΑΙ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΔΙΔΑΚΤΙΚΗ ΠΕΡΙΟΧΗ: ΕΡΓΑΣΤΗΡΙΟ ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ Υπεύθυνος: Επικ. Καθηγητής Δρ. Α. ΦΑΤΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ
Ρευστoμηχανική Εισαγωγικές έννοιες. Διδάσκων: Άλκης Παϊπέτης Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Επιστήμης Υλικών
Ρευστoμηχανική Εισαγωγικές έννοιες Διδάσκων: Άλκης Παϊπέτης Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Επιστήμης Υλικών Εισαγωγή Περιεχόμενα μαθήματος Βασικές έννοιες, συνεχές μέσο, είδη, μονάδες διαστάσεις
website:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 31 Μαρτίου 2019 1 Δυνάμεις μάζας και επαφής Δυνάμεις μάζας ή δυνάμεις όγκου ονομάζονται οι δυνάμεις που είναι
ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ. Αγγελίδης Π., Αναπλ. Καθηγητής ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Αγγελίδης Π., Αναπλ. Καθηγητής ΚΕΦΑΛΑΙΟ 3 ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ θα εξετάσουμε τις
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να
ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES
ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES ΙΣΟΡΡΟΠΙΑ ΔΥΝΑΜΕΩΝ ΣΕ ΕΝΑΝ ΑΠΕΙΡΟΣΤΟ ΟΓΚΟ ΡΕΥΣΤΟΥ Στο κεφάλαιο αυτό θα εξετάσουμε την ισορροπία των δυνάμεων οι οποίες ασκούνται σε ένα τυχόν σωματίδιο ρευστού.
b proj a b είναι κάθετο στο
ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ. Βρείτε όλα τα σηµεία P τέτοια ώστε η απόσταση του P από το A(, 5, 3) είναι διπλάσια από την απόσταση του P από το B(6, 2, 2). είξτε ότι το σύνολο όλων αυτών των σηµείων είναι σφαίρα.
website:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 3 Μαρτίου 2019 1 Τανυστής Παραμόρφωσης Συνοδεύον σύστημα ονομάζεται το σύστημα συντεταγμένων ξ i το οποίο μεταβάλλεται
Ανασκόπηση εννοιών ρευστομηχανικής
Υδραυλική &Υδραυλικά Έργα Ανασκόπηση εννοιών ρευστομηχανικής Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Φωτογραφίες σχηματισμού σταγόνων νερού Φωτογραφίες schlieren θερμικά
ΑΕΡΟ ΥΝΑΜΙΚΗ ΕΡΓ Νο2 ΡΟΗ ΑΕΡΑ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝ ΡΟ
ΑΕΡΟ ΥΝΑΜΙΚΗ ΕΡΓ Νο2 ΡΟΗ ΑΕΡΑ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝ ΡΟ Η µελέτη της ροής µη συνεκτικού ρευστού γύρω από κύλινδρο γίνεται µε την µέθοδο της επαλληλίας (στην προκειµένη περίπτωση: παράλληλη ροή + ροή διπόλου).
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να
ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙΙ. Διάχυση Συναγωγή. Δημήτριος Τσιπλακίδης e mail: dtsiplak@chem.auth.gr url: users.auth.gr/~dtsiplak
1 ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙΙ Διάχυση Συναγωγή Δημήτριος Τσιπλακίδης e mail: dtsiplak@chem.auth.gr url: users.auth.gr/~dtsiplak Μεταφορά μάζας Κινητήρια δύναμη: Διαφορά συγκέντρωσης, ΔC Μηχανισμός: Διάχυση (diffusion)
ΦΥΣ Διαλ Σύνοψη εννοιών. Κινηµατική: Περιγραφή της κίνησης ενός σώµατος. Θέση και µετατόπιση Ταχύτητα Μέση Στιγµιαία Επιτάχυνση Μέση
Κινηµατική ΦΥΣ 111 - Διαλ.04 2 Σύνοψη εννοιών Κινηµατική: Περιγραφή της κίνησης ενός σώµατος Θέση και µετατόπιση Ταχύτητα Μέση Στιγµιαία Επιτάχυνση Μέση Στιγµιαία Κίνηση - Τροχιές ΦΥΣ 111 - Διαλ.04 3!
1. Ηλεκτρικό Φορτίο. Ηλεκτρικό Φορτίο και Πεδίο 1
. Ηλεκτρικό Φορτίο Το ηλεκτρικό φορτίο είναι ένα από τα βασικά χαρακτηριστικά των σωματιδίων από τα οποία οικοδομείται η ύλη. Υπάρχουν δύο είδη φορτίου (θετικό αρνητικό). Κατά την φόρτιση το φορτίο δεν
Κίνηση σε μία διάσταση
Κίνηση σε μία διάσταση ΦΥΣ 131 - Διαλ.5 1 q Ανακεφαλαιώνοντας θέσης τροχιάς μετατόπισης Δx = x f - x i, χρονικού διαστήματος Δ = f i, μέση ταχύτητα v = x x στιγμιαία ταχύτητα x v = lim " = d x d παράγωγος
ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: ,
Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Τηλ.: 10 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 10 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr ΣΜΑΡΑΓ Α ΣΑΡΑΝΤΟΠΟΥΛΟΥ, MSC, ΥΠΟΨΗΦΙΑ Ι ΑΚΤΩΡ ΕΜΠ Ε
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να ιδωθεί
Κεφάλαιο 6α. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα
Κεφάλαιο 6α Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Στερεό (ή άκαμπτο) σώμα Τα μοντέλα ανάλυσης που παρουσιάσαμε μέχρι τώρα δεν μπορούν να χρησιμοποιηθούν για την ανάλυση όλων των κινήσεων. Μπορούμε
Φυσική για Μηχανικούς
Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να ιδωθεί ως κίνηση σε δυο (αντί
ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α
ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 0 ΘΕΜΑΤΑ Α Θέµα ο. Να βρεθεί (α) η γενική λύση yy() της διαφορικής εξίσωσης y' y + καθώς και (β) η µερική λύση που διέρχεται από το σηµείο y(/). (γ) Από ποια σηµεία του επιπέδου
Φάσεις της ύλης. Τρεις συνήθεις φάσης της ύλης είναι: αέριο. τήξη. πήξη υγρή. στερεό. Συγκεκριµένο σχήµα και µέγεθος (κρυσταλικά / άµορφα
ΦΥΣ 111 - Διαλ.40 1 Φάσεις της ύλης ΦΥΣ 111 - Διαλ.40 2 Τρεις συνήθεις φάσης της ύλης είναι: αέριο τήξη στερεό πήξη υγρή Στερεά: Υγρά: Αέρια: Συγκεκριµένο σχήµα και µέγεθος (κρυσταλικά / άµορφα Συγκεκριµένο
σχηματική αναπαράσταση των βασικών τμημάτων μίας βιομηχανικής εγκατάστασης
σχηματική αναπαράσταση των βασικών τμημάτων μίας βιομηχανικής εγκατάστασης Αρχές μεταφοράς μάζας Αρχές σχεδιασμού συσκευών μεταφοράς μάζας Διεργασίες μεταφοράς μάζας - Απορρόφηση - Απόσταξη - Εκχύλιση
ΦΥΣ Διαλ Κινηµατική και Δυναµική Κυκλικής κίνησης
ΦΥΣ - Διαλ.4 Κινηµατική και Δυναµική Κυκλικής κίνησης Κυκλική κίνηση ΦΥΣ - Διαλ.4 Ορίζουµε τα ακόλουθα µοναδιαία διανύσµατα: ˆ βρίσκεται κατά µήκος του διανύσµατος της ακτίνας θˆ είναι εφαπτόµενο του κύκλου
Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα
Κεφάλαιο M6 Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κυκλική κίνηση Αναπτύξαµε δύο µοντέλα ανάλυσης στα οποία χρησιµοποιούνται οι νόµοι της κίνησης του Νεύτωνα. Εφαρµόσαµε τα µοντέλα αυτά
Κίνηση κατά μήκος ευθείας γραμμής
Μελέτη κινηματικών εννοιών: Θέση, μετατόπιση, ταχύτητα, μέτρο ταχύτητας, και επιτάχυνση. Διαφορά εννοιών "μετατόπισης - " διαστήματος" και "στιγμιαία "μέση". Μελέτη κίνησης με σταθερή επιτάχυνση. Κίνηση
ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός
Μετάδοση Θερµότητας ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός ΤΕΙ Σερρών Μετάδοση Θερµότητας 1 Εισαγωγή στη Μετάδοση Θερµότητας Κεφάλαιο 1 ΤΕΙ Σερρών Μετάδοση Θερµότητας Ορισµός Μετάδοση θερµότητας: «Μεταφορά
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 2 Σεπτεμβρίου 2010
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I Σεπτεμβρίου 00 Απαντήστε και στα 0 ερωτήματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις εκτιμώνται ιδιαιτέρως. Καλή σας επιτυχία.. Ένας
ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ
Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 2 ο : Είδη ροής
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Ο πίνακας ελέγχου σε ένα πιλοτήριο βοηθά τον πιλότο να κρατά το αεροσκάφος υπό έλεγχο δηλ. να ελέγχει πόσο γρήγορα ταξιδεύει και σε ποια κατεύθυνση επιτρέποντάς του
Προσεγγιστικός υπολογισµός άνωσης και επαγόµενης αντίστασης µε θεωρία φέρουσας γραµµής.
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΝΑΥΤΙΚΗΣ ΚΑΙ ΘΑΛΑΣΣΙΑΣ Υ ΡΟ ΥΝΑΜΙΚΗΣ ιδάσκοντες: Γ Τριανταφύλλου και Κ Μπελιµπασάκης (kbel@fluidmechntuagr) Ροές µε δυναµικό σε δύο και τρεις διαστάσεις Χρήση µιγαδικών συναρτήσεων, θεωρήµατα
Δυναμική των ρευστών Στοιχεία θεωρίας
Δυναμική των ρευστών Στοιχεία θεωρίας 1. Ρευστά σε ισορροπία Πίεση, p: Ορίζεται ως το πηλίκο του μέτρου της δύναμης df που ασκείται κάθετα σε μια επιφάνεια εμβαδού dα προς το εμβαδόν αυτό. p= df da Η πίεση
Ασκήσεις Κεφ. 1, Κινηματική υλικού σημείου Κλασική Μηχανική, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 10 Απριλίου 2012 1. Αν το διάνυσμα θέσης υλικού σημείου είναι: r(t) = [ln(t
dx cos x = ln 1 + sin x 1 sin x.
Μηχανική Ι Εργασία #5 Χειμερινό εξάμηνο 17-18 Ν. Βλαχάκης 1. Εστω πεδίο δύναμης F = g () cos y ˆ + λ g() sin y ŷ, όπου λ = σταθερά και g() = 1 e π/ B C (σε κατάλληλες μονάδες). (α) Υπολογίστε πόση ενέργεια
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Ρευστά. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός. https://physicscourses.wordpress.com
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Ρευστά Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://physicscourses.wordpress.com Βασικές έννοιες Πρώτη φορά συναντήσαμε τη φυσική των ρευστών στη Β Γυμνασίου. Εκεί
Υδροδυναμική. Περιγραφή της ροής Μορφές ροών Είδη ροών Εξίσωση συνέχειας Εξίσωση ενέργειας Bernoulli
Υδροδυναμική Περιγραφή της ροής Μορφές ροών Είδη ροών Εξίσωση συνέχειας Εξίσωση ενέργειας Bernoulli Υδροδυναμική - γενικά Ρευστά σε κίνηση Τμήματα με διαφορετικές ταχύτητες και επιταχύνσεις Αλλαγή μορφής
Κεφάλαιο 1. Κίνηση σε μία διάσταση
Κεφάλαιο 1 Κίνηση σε μία διάσταση Κινηματική Περιγράφει την κίνηση, αγνοώντας τις αλληλεπιδράσεις με εξωτερικούς παράγοντες που ενδέχεται να προκαλούν ή να μεταβάλλουν την κίνηση. Προς το παρόν, θα μελετήσουμε
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στους αγώνες drag, ο οδηγός θέλει να επιτύχει όσο γίνεται μεγαλύτερη επιτάχυνση. Σε απόσταση περίπου μισού χιλιομέτρου, το όχημα αναπτύσσει ταχύτητες κοντά στα 515
Σημειώσεις Εγγειοβελτιωτικά Έργα
4. ΚΛΕΙΣΤΟΙ ΑΓΩΓΟΙ 4.1. Γενικά Για τη μελέτη ενός δικτύου κλειστών αγωγών πρέπει να υπολογιστούν οι απώλειες ενέργειας λόγω τριβών τόσο μεταξύ του νερού και των τοιχωμάτων του αγωγού όσο και μεταξύ των
ιανύσµατα A z A y A x 1.1 Αλγεβρικές πράξεις µεταξύ διανυσµάτων 1.2 Εσωτερικό γινόµενο δύο διανυσµάτων ca = ca x ˆx + ca y ŷ + ca z ẑ
1 ιανύσµατα Ο ϕυσικός χώρος µέσα στον οποίο Ϲούµε και κινούµαστε είναι ένας τρισδιάστατος ευκλείδειος γραµµικός χώ- ϱος. Ισχύουν λοιπόν τα αξιώµατα της Γεωµετρίας του Ευκλείδη, το πυθαγόρειο ϑεώρηµα και
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στους αγώνες drag, ο οδηγός θέλει να επιτύχει όσο γίνεται μεγαλύτερη επιτάχυνση. Σε απόσταση περίπου μισού χιλιομέτρου, το όχημα αναπτύσσει ταχύτητες κοντά στα 515
ΡΕΥΣΤΑ. Φυσική Θετικού Προσανατολισμου Γ' Λυκείου
ΡΕΥΣΤΑ ΕΙΣΑΓΩΓΗ Ρευστά Με τον όρο ρευστά εννοούμε τα ΥΓΡΑ και τα ΑΕΡΙΑ τα οποία, αντίθετα από τα στερεά, δεν έχουν καθορισμένο όγκο ούτε σχήμα. Τα υγρά είναι ασυμπίεστα και τα αέρια συμπιεστά. Τα υγρά
2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης
Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Βιβλιογραφία C Kittel, W D Knight, A Rudeman, A C Helmholz και B J oye, Μηχανική (Πανεπιστηµιακές Εκδόσεις ΕΜΠ, 1998) Κεφ, 3 R Spiegel, Θεωρητική
ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ
ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ Αθήνα, Απρίλιος 13 1. Η Έννοια του Οριακού Στρώματος Το οριακό στρώμα επινοήθηκε για
Κ. Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής Παράγωγος. x ορίζεται ως
Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 5 Παράγωγος Παράγωγος Η παράγωγος της συνάρτησης f f () στο σηµείο f ( ) lim 0 ορίζεται ως f ( + ) f ( ) () Παράγωγοι ανώτερης
ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ
Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 3 ο : Εξίσωση
ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Αγγελίδης Π., Αναπλ. καθηγητής ΚΕΦΑΛΑΙΟ ΙΑΧΥΣΗ Α ΡΑΝΩΝ ΡΥΠΩΝ ΙΑΧΥΣΗ Α ΡΑΝΩΝ ΡΥΠΩΝ Στην αρχική περιοχή
ΙΑΧΥΣΗ ( ΜΟΡΙΑΚΗ ΤΥΡΒΩ ΗΣ ) ΝΟΜΟΣ FICK. C y ΡΟΗ MAZAΣ / M.E.+ M.X. ΙΑΤΗΡΗΣΗ ΜΑΖΑΣ. J t C ΟΓΚΟΣ
ΙΑΧΥΣΗ ΜΟΡΙΑΚΗ ΤΥΡΒΩ ΗΣ ΝΟΜΟΣ FIK J ΣΥΝΤ. ΜΟΡ. ΙΑΧ. ΡΟΗ MAZAΣ / M.E. M.X. ΙΑΤΗΡΗΣΗ ΜΑΖΑΣ J Σ Σ Σ ΕΠΙΦ. ΑΠΟΣ. ------------------ ΟΓΚΟΣ , B ep 4 ΛΥΣΗ: Ε Ω ΘΕΩΡΕΙΤΑΙ ΟΤΙ Ο ΧΩΡΟΣ ΠΛΗΡΟΥΤΑΙ ΣΥΝΕΧΩΣ ΑΠΟ ΡΕΥΣΤΟ
Η f(x) y είναι συνεχής στο [0, 2α], σαν διαφορά των συνεχών f(x) και y = 8αx 8α 2
1994 ΘΕΜΑΤΑ 1. ίνεται η συνάρτηση f()=,. Α) Αν ε είναι η εφαπτοµένη της γραφικής παράστασης C της συνάρτησης f στο σηµείο Μ(α, α ), α >, να βρείτε το εµβαδόν του χωρίου που περικλείεται από τη C, την ευθεία
Μηχανική - Ρευστομηχανική
Μηχανική - Ρευστομηχανική Ενότητα 3: Κίνηση Υλικού σημείου σε τρείς διαστάσεις Διδάσκων: Πομόνη Αικατερίνη, Αναπλ. Καθηγήτρια Επιμέλεια: Γεωργακόπουλος Τηλέμαχος, Υπ. Διδάκτωρ Φυσικής 05 Θετικών Επιστημών
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στους αγώνες drag, ο οδηγός θέλει να επιτύχει όσο γίνεται μεγαλύτερη επιτάχυνση. Σε απόσταση περίπου μισού χιλιομέτρου, το όχημα αναπτύσσει ταχύτητες κοντά στα 515
Μεθοδολογία επίλυσης προβληµάτων καταβύθισης
Μεθοδολογία επίλυσης προβληµάτων καταβύθισης Τα προβλήµατα που υπάρχουν πάντα στις περιπτώσεις βαρυτοµετρικών διαχωρισµών είναι η γνώση της συµπεριφοράς των στερεών, όσον αφορά στην καταβύθισή τους µέσα
ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ
166 Α. ΕΡΩΤΗΣΕΙΣ ΑΝΟΙΚΤΟΥ ΤΥΠΟΥ: ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ 1. Να αναφέρεται παραδείγματα φαινομένων που μπορούν να ερμηνευτούν με την μελέτη των ρευστών σε ισορροπία. 2. Ποια σώματα ονομάζονται ρευστά;
ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΧΤΩΝ ΚΑΙ ΚΛΕΙΣΤΩΝ ΑΓΩΓΩΝ
ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΧΤΩΝ ΚΑΙ ΚΛΕΙΣΤΩΝ ΑΓΩΓΩΝ Π. Σιδηρόπουλος Δρ. Πολιτικός Μηχανικός Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων Τμήμα Πολιτικών Μηχανικών Π.Θ. E-mail: psidirop@teilar.gr ΕΓΓΕΙΟΒΕΛΤΙΩΤΙΚΑ
ΘΕΜΑ 1: ίδεται η περιγραφή µίας κίνησης ενός µονοδιάστατου Συνεχούς κατά Lagrange
ΜΗΧΑΝΙΚΗ ΤΟΥ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ Σχολή Πολιτικών Μηχανικών, Εξ. ιδ. 04 Καθηγητής Ι. Βαρδουλάκης, Σ.Ε.Μ.Φ.Ε. 8:30 π.µ., Πέµπτη 8 Ιουλίου 004 ΘΕΜΑ : ίδεται η περιγραφή µίας κίνησης ενός µονοδιάστατου Συνεχούς
Κεφάλαιο M7. Ενέργεια συστήµατος
Κεφάλαιο M7 Ενέργεια συστήµατος Εισαγωγή στην ενέργεια Οι νόµοι του Νεύτωνα και οι αντίστοιχες αρχές µας επιτρέπουν να λύνουµε µια ποικιλία προβληµάτων. Ωστόσο, µερικά προβλήµατα που θεωρητικά µπορούν
Αστροφυσική. Ενότητα # 1 (Εισαγωγική): Εισαγωγή στη Ρευστομηχανική. Νικόλαος Στεργιούλας Τμήμα Φυσικής ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αστροφυσική Ενότητα # 1 (Εισαγωγική): Εισαγωγή στη Ρευστομηχανική Νικόλαος Στεργιούλας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Κινηματική ρευστών. Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του
301 Κινηματική ρευστών Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του Είδη ροής α) Σταθερή ή μόνιμη = όταν σε κάθε σημείο του χώρου οι συνθήκες ροής, ταχύτητα, θερμοκρασία, πίεση και πυκνότητα,
Παραμετρικές εξισώσεις καμπύλων. ΗΥ111 Απειροστικός Λογισμός ΙΙ
ΗΥ-111 Απειροστικός Λογισμός ΙΙ Παραμετρικές εξισώσεις καμπύλων Παραδείγματα ct (): U t ( x ( t), x ( t)) 1 ct (): U t ( x ( t), x ( t), x ( t)) 3 1 3 Θέσης χρόνου ταχύτητας χρόνου Χαρακτηριστικού-χρόνου
ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός
ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός 1 Συναγωγή Γενικές αρχές Κεφάλαιο 6 2 Ορισµός Μηχανισµός µετάδοσης θερµότητας ανάµεσα σε ένα στερεό και σε ένα ρευστό, το οποίο βρίσκεται σε κίνηση Εξαναγκασµένη
Διαφορικός λογισµός. y(x + Δx) y(x) dy dx = lim Δy
Διαφορικός λογισµός ΦΥΣ 111 - Διαλ.5 1 Έστω y = f(x) µια συναρτησιακή σχέση της µεταβλητής y ως προς την µεταβλητή x: y = f(x) = αx 3 + bx 2 + cx + H παράγωγος του y ως προς το x ορίζεται ως το όριο των
ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 19//013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 υ (m/s) Σώμα μάζας m = 1Kg κινείται σε ευθύγραμμη τροχιά
Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων
Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης
υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση
υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση Τεράστια σημασία του ιξώδους: Ύπαρξη διατμητικών τάσεων που δημιουργούν απώλειες ενέργειας Απαραίτητες σε κάθε μελέτη Είδη ροών Τυρβώδης ροή αριθμός
Υδραυλικές Μηχανές και Ενέργεια
Υδραυλικές Μηχανές και Ενέργεια Διάλεξη 6. - Εξισώσεις διατήρησης μάζας, ορμής και ενέργειας Σκουληκάρης Χαράλαμπος Ηλεκτρολόγος Μηχανικός & Μηχ. Η/Υ, MSc, PhD hskoulik@civil.auth.gr Ξάνθη, 18 Νοεμβρίου
Μηχανική - Ρευστομηχανική
Μηχανική - Ρευστομηχανική Ενότητα 5: Έργο και Ενέργεια Διδάσκων: Πομόνη Αικατερίνη, Αναπλ. Καθηγήτρια Επιμέλεια: Γεωργακόπουλος Τηλέμαχος, Υπ. Διδάκτωρ Φυσικής 015 Θετικών Επιστημών Φυσικής Άδειες Χρήσης
website:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 6 Ιουνίου 18 1 Οριακό στρώμα και χαρακτηριστικά μεγέθη Στις αρχές του ου αιώνα ο Prandtl θεμελίωσε τη θεωρία
Έργο Ενέργεια. ΦΥΣ 131 - Διαλ.15 1
Έργο Ενέργεια ΦΥΣ 131 - Διαλ.15 1 ΦΥΣ 131 - Διαλ.15 2 Έργο, Κινητική Ενέργεια και Δυναμική Ενέργεια q Βέλος εκτοξεύεται από ένα τόξο: Ø Η δύναμη μεταβάλλεται καθώς το τόξο επανέρχεται στην αρχική του θέση
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μετάδοση Θερμότητας Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας Κωνσταντίνος - Στέφανος Νίκας Τμήμα Μηχανολόγων Μηχανικών
Δυναμική Μηχανών I. Μοντελοποίηση Ηλεκτρικών και Υδραυλικών Συστημάτων
Δυναμική Μηχανών I Μοντελοποίηση Ηλεκτρικών και Υδραυλικών Συστημάτων Χειμερινό Εξάμηνο 2014 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δημήτριος Τζεράνης, Ph.D. Περιεχόμενα Μοντελοποίηση Ηλεκτρικών Συστημάτων Μεταβλητές
Υδροδυναμικές Ροές και Ωστικά Κύματα
Υδροδυναμικές Ροές και Ωστικά Κύματα 7 7.1 Εισαγωγή Οι διαδικασίες υψηλών ενεργειών που περιγράφηκαν στα προηγούμενα κεφάλαια, καθώς και η επιτάχυνση σωματιδίων σε υψηλές ενέργειες η οποία θα περιγραφεί
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στους αγώνες drag, ο οδηγός θέλει να επιτύχει όσο γίνεται μεγαλύτερη επιτάχυνση. Σε απόσταση περίπου μισού χιλιομέτρου, το όχημα αναπτύσσει ταχύτητες κοντά στα 515
Έργο Ενέργεια Παραδείγµατα
ΦΥΣ 131 - Διαλ.17 1 Έργο Ενέργεια Παραδείγµατα Mn Επανάληψη Έργο δύναμης W = Έργο συνισταμένης δυνάμεων W = E "#$ Βαρυτική δυναμική ενέργεια U g " 1 2 F d r Ελαστική δυναμική ενέργεια U " = 1 2 kx 2 ΦΥΣ
Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2
ΦΥΣ 131 - Διαλ.22 1 Ροπή αδράνειας q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: m (α) m (β) m r r 2r 2 2 I =! m i r i = 2mr 2 1 I = m(2r) 2 = 4mr 2 Ø Είναι δυσκολότερο να προκαλέσεις περιστροφή
Ενότητα 9: Ασκήσεις. Άδειες Χρήσης
Μηχανική των Ρευστών Ενότητα 9: Ασκήσεις Βασίλειος Λουκόπουλος, Επίκουρος Καθηγητής Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ
Μηχανισμοί & Εισαγωγή στο Σχεδιασμό Μηχανών Ακαδημαϊκό έτος: 214-215 ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ - 7.1 - Μηχανισμοί & Εισαγωγή στο Σχεδιασμό Μηχανών Ακαδημαϊκό έτος: 214-215 Copyright ΕΜΠ
ΡΟΗ ΑΕΡΑ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ
ΡΟΗ ΑΕΡΑ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ Η μελέτη της ροής μη συνεκτικού ρευστού γύρω από κύλινδρο γίνεται με την μέθοδο της επαλληλίας (στην προκειμένη περίπτωση: παράλληλη ροή + ροή διπόλου). Εδώ περιοριζόμαστε να
Ρευστομηχανική Εισαγωγικές έννοιες
Ρευστομηχανική Εισαγωγικές έννοιες Διδάσκων: Αντώνης Σακελλάριος Email: ansakel13@gmail.com Phone: 2651007837 Ώρες Γραφείου Διδάσκοντα: καθημερινά 14:00 17:00, Εργαστήριο MEDLAB, Ιατρική Σχολή Περιεχόμενα
Παράδειγµα Θεωρείστε το σύστηµα: αυτοκίνητο επάνω σε επίπεδη επιφάνεια κάτω από την επίδραση δύναµης x( t ) : v(t)
Παράδειγµα Θεωρείστε το σύστηµα: αυτοκίνητο επάνω σε επίπεδη επιφάνεια κάτω από την επίδραση δύναµης x( t ) : p(t) v(t) v(t) Πίεση στό γκάζι Σήµα εισόδου t ΣΥΣΤΗΜΑ Ταχύτης του αυτοκινήτου Σήµα εξόδου t