Θαλής ΤΕΙ Καβάλας - Nanocapillary. Αναφορά Προσομοιώσεων MIS

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Θαλής ΤΕΙ Καβάλας - Nanocapillary. Αναφορά Προσομοιώσεων MIS"

Transcript

1 Θαλής ΤΕΙ Καβάλας - Nanocapillary Αναφορά Προσομοιώσεων MIS

2 ΕΙΣΑΓΩΓΗ H προσομοίωση (simulation) ως τεχνική μίμησης της συμπεριφοράς ενός συστήματος από ένα άλλο σύστημα, καταλαμβάνει περίοπτη θέση στα πλαίσια των εκπαιδευτικών εφαρμογών των ΤΠΕ. Μπορούμε να ορίσουμε την προσομοίωση ως μια μέθοδο μελέτης ενός συστήματος (ενός αντικειμένου, ενός φαινομένου, μιας δραστηριότητας, μιας διαδικασίας) με τη βοήθεια ενός άλλου συστήματος. Η προσομοίωση δηλαδή είναι μία αναπαράσταση ή ένα μοντέλο που έχει κατασκευαστεί για να αναπαραστήσει και να επιτρέψει την κατανόηση της λειτουργίας ενός συστήματος. Το σύστημα προσομοίωσης «μιμείται» τη συμπεριφορά αυτού που αναπαριστά και συνεπώς επιτρέπει εξοικείωση με τα χαρακτηριστικά του και κατανόηση των λειτουργιών του. Μια προσομοίωση με υπολογιστές είναι υπολογιστικό μοντέλο που χρησιμοποιείται για να πειραματιστούμε πάνω σε ένα πραγματικό σύστημα χωρίς να έχουμε άμεση επαφή μαζί του. Στόχος ενός συστήματος προσομοίωσης είναι η μελέτη, η κατανόηση και ο πειραματισμός με πολύπλοκα συστήματα (στα οποία συνήθως δεν έχουμε απευθείας πρόσβαση). Οι χρήστες χειρίζονται τα συστατικά του συστήματος με πλήρως αλληλεπιδραστικό τρόπο, όπως είναι για παράδειγμα η προσομοίωση χειρισμού ενός πολεμικού αεροπλάνου. Οι προσομοιώσεις χρησιμοποιούνται για τη μελέτη και την κατανόηση αρχών λειτουργίας πολλών φυσικών, βιολογικών και κοινωνικών διαδικασιών. Πλεονεκτήματα προσομοίωσης Μπορεί να αποτελεί την μόνη προσέγγιση για την επίλυση κάποιων προβλημάτων (π.χ. μελέτη λειτουργίας ενός απροσπέλαστου συστήματος) Μπορεί να κοστίζει λιγότερο από το χειρισμό του πραγματικού συστήματος Παρουσιάζει μεγαλύτερη ευαισθησία στην αντίληψη των σχέσεων μεταξύ των προβλημάτων (αφού οι μεταβλητές που μπορούμε να χειριστούμε είναι εμφανείς και προσπελάσιμες από τους χρήστες της προσομοίωσης) 2 Σ ε λ ί δ α

3 Είναι ασφαλής μέθοδος, σε αντίθεση με πολλά από τα πραγματικά πειράματα Δίνει τη δυνατότητα επανάληψης του ιδίου φαινομένου κατά βούληση Δίνει τη δυνατότητα πλήρους ενόρασης του συστήματος που εξετάζεται από όλες τις πλευρές Αν οι σχέσεις που περιγράφουν την εξέλιξη του συστήµατος είναι απλές, όπως αυτές του παραδείγµατος, τότε είναι δυνατή η εύρεση λύσεων κλειστής µορφής, οπότε λέµε ότι το µοντέλο επιλύεται αναλυτικά. Ωστόσο τα περισσότερα συστήµατα έχουν διάνυσµα κατάστασης µεγάλων διαστάσεων και περιγράφονται από πολύπλοκα µοντέλα των οποίων η αναλυτική επίλυση είναι αδύνατη. Για τη µελέτη τους εφαρµόζονται οι λεγόµενες αριθµητικές µέθοδοι. Τέτοιες είναι η αριθµητική ανάλυση και η προσοµοίωση. Η προσοµοίωση συνίσταται στην ανάπτυξη ενός µοντέλου του υπό εξέταση συστήµατος µε τη µορφή προγράµµατος σε υπολογιστή και στην εκτέλεση ενός (ή περισσοτέρων) πειράµατος το οποίο κ αταγράφει την κατάσταση του συστήµατος σε διαδοχικές χρονικές στιγµές αποτυπώνοντας ένα πιθανό σενάριο εξέλιξης του συστήµατος στο χρόνο. ΓΙΑΤΙ ΠΡΟΣΟΜΟΙΩΣΗ Οι υποθέσεις που απαιτούνται για να εκφρασθεί και να αναπτυχθεί ένα μοντέλο προσομοίωσης είναι σαφώς λιγότερες από τις υποθέσεις που πρέπει να ικανοποιηθούν σε άλλες περιπτώσεις όπου επιλέγονται άλλες μέθοδοι και τεχνικές. Έτσι η προσομοίωση εμφανίζεται ως η μέθοδος με τις λιγότερες αναγκαίες υποθέσεις για την αντιμετώπιση κοινωνικο- οικονομικών προβλημάτων. Άλλοι θετικοί λόγοι για την χρήση της προσομοίωσης στην αντιμετώπιση προβληματικών καταστάσεων σε συστήματα ανθρώπινων δραστηριοτήτων είναι: 1. Η προσομοίωση ουσιαστικά αντικαθιστά την πειραματική προσέγγιση. Έτσι μπορούν να γίνουν πειράματα με ελάχιστο κόστος, πολύ γρήγορα και με 16 ασφάλεια σε σενάρια που μέχρι τώρα δεν είναι εφικτά. Πειραματισμός με τη βοήθεια των 3 Σ ε λ ί δ α

4 υπολογιστών σημαίνει ότι εκτός της μεγάλης μείωσης που επιτυγχάνεται στο κόστος, υπάρχει και μεγάλη αύξηση στον βαθμό και στην ποιότητα της ασφάλειας. 2. Η προσομοίωση αντιμετωπίζει το πρόβλημα της αδυναμίας της πρόσβασης στο σύστημα. Η προσομοίωση κάνει δυνατή τη μελέτη και τον πειραματισμό σε περίπλοκες προβληματικές καταστάσεις σε συστήματα που μερικές φορές η πρόσβαση είναι αδύνατη ή επικίνδυνη. Κατασκευάζοντας ένα μοντέλο προσομοίωσης μπορεί να μελετηθεί το σύστημα χωρίς να κινδυνεύσει ο μελετητής ή το σύστημα. 3. Η προσομοίωση οδηγεί στην καλύτερη κατανόηση του συστήματος. Μια λεπτομερής παρατήρηση του συστήματος του οποίου γίνεται η προσομοίωση, μέσα από τη διαδικασία ανάπτυξη του μοντέλου προσομοίωσης, μπορεί να οδηγήσει σε καλύτερη κατανόηση του συστήματος, και σε προτάσεις βελτίωσής του, που σε διαφορετική περίπτωση θα ήταν κάτι το ανέφικτο. 4. Η προσομοίωση μπορεί να χρησιμοποιηθεί σαν εκπαιδευτικός μηχανισμός. Με την ανάπτυξη μοντέλων προσομοίωσης είναι δυνατόν να εκπαιδευτούν χειριστές χωρίς τον κίνδυνο καταστροφών από λάθος των εκπαιδευόμενων. Επίσης είναι δυνατό να εκπαιδευτούν οι χειριστές ενός συστήματος το οποίο ακόμη δεν έχει κατασκευασθεί. 5. Η προσομοίωση αποτελεί εργαλείο πρόβλεψης. Πολλά συστήματα παρουσιάζουν αργές μεταβολές της κατάστασή τους με αποτέλεσμα να είναι αδύνατη η πρόβλεψη της συμπεριφοράς τους για μεγάλα χρονικά διαστήματα. Κατασκευάζοντας και υλοποιώντας ένα μοντέλο προσομοίωσης σε ηλεκτρονικούς υπολογιστές είναι δυνατή η επιτάχυνση των χρονικών μεταβολών, έτσι ώστε να προβλεφθεί η μελλοντική συμπεριφορά του πραγματικός συστήματος για μεγάλο χρονικό διάστημα μέσα σε λίγο πραγματικό χρόνο. 6. Η προσομοίωση επιτρέπει τον έλεγχο αλλαγών σε ένα σύστημα σε κοινωνικοοικονομικούς χώρους με το ελάχιστο κόστος. Με την κατασκευή ενός μοντέλου προσομοίωσης είναι δυνατό να ελεγχθεί η συμπεριφορά του συστήματος για διάφορες τιμές των μεταβλητών και των παραμέτρων του με ελάχιστο κόστος. Από τη μελέτη του μοντέλου προσομοίωσης που έχει κατασκευασθεί διαπιστώνεται ο αποδοτικότερος συνδυασμός μεταβλητών και παραμέτρων, και στη συνέχεια, οι μεταβλητές και οι παράμετροι εφαρμόζονται στο πραγματικό σύστημα. 7. Η προσομοίωση μπορεί να χρησιμεύσει ως έλεγχος συντήρησης, αφού με το μοντέλο 4 Σ ε λ ί δ α

5 προσομοίωσης μπορούμε να δοκιμάσουμε νέες πολιτικές και κανόνες απόφασης για την λειτουργία του συστήματος πριν την έκθεση στο κίνδυνο του πειραματισμού του πραγματικού συστήματος. Επίσης η προσομοίωση μπορεί να χρησιμοποιηθεί για τον πειραματισμό με νέες συνθήκες, για τις οποίες έχουμε λίγες ή και καθόλου πληροφορίες ώστε να προετοιμαζόμαστε για το τι μπορεί να συμβεί. ΕΦΑΡΜΟΓΕΣ Η προσοµοίωση ευρίσκει εφαρµογές: 1. στην ανάλυση και σχεδίαση συστηµάτων παραγωγής (βιοµηχανία) 2. στον έλεγχο αποθεµάτων (βιοµηχανία, εµπορικές επιχειρήσεις) 3. στη µελέτη κυκλοφοριακών συστηµάτων (οδικό δίκτυο, αεροδρόµια) 4. στη µελέτη συστηµάτων εξυπηρετήσεως πελατών (τράπεζες, νοσοκοµεία, τηλεπικοινωνίες) 5. στην αξιολόγηση αποφάσεων υπό αβεβαιότητα (χρηµατιστήριο, επενδύσεις, marketing). Με την προσοµοίωση µπορεί κανείς να αξιολογήσει την αποτελεσµατικότητα ή απόδοση ενός συστήµατος πριν αυτό κατασκευασθεί µε σκοπό τη βέλτιστη σχεδίασή του. ΠΡΟΣΟΜΟΙΩΣΗ MONTE CARLO Η Monte Carlo προσομοίωση είναι μια ευέλικτη μέθοδος για την ανάλυση της συμπεριφοράς ορισμένων δραστηριοτήτων, πρoγραμμάτων ή διαδικασιών που αφορούν την αβεβαιότητα. Η μέθοδος αυτή εφευρέθηκε από επιστήμονες το 1944 περίπου, και ονομάστηκε έτσι από την πόλη του Μονακό, εξαιτίας μιας ρουλέτας, μια απλής γεννήτριας τυχαίων αριθμών. Η μέθοδος Monte Carlo είναι μια κατηγορία υπολογιστικών αλγορίθμων που στηρίζονται σε επαναλαμβανόμενες τυχαίες δειγματοληψίες για τον υπολογισμό των αποτελεσμάτων τους. Monte Carlo μέθοδοι χρησιμοποιούνται συχνά κατά την προσομοίωση φυσικής και μαθηματικών συστημάτων. Λόγω της εξάρτησης από τον 5 Σ ε λ ί δ α

6 επαναλαμβανόμενο υπολογισμό τυχαίων αριθμών, οι Monte Carlo μέθοδοι είναι οι πλέον κατάλληλες για τον υπολογισμό από ένα υπολογιστή. Οι Monte Carlo μέθοδοι τείνουν να χρησιμοποιούνται όταν είναι εφικτό ή αδύνατο να υπολογιστεί το ακριβές αποτέλεσμα με ντετερμινιστικό αλγόριθμο. Οι Monte Carlo μέθοδοι προσομοίωσης είναι ιδιαίτερα χρήσιμοι στη μελέτη συστημάτων με μεγάλο αριθμό συνδυασμού βαθμού ελευθερίας, όπως τα υγρά, ισχυρά συνδεδεμένα στερεά, και η κυτταρική δομή. Γενικότερα, οι Monte Carlo μέθοδοι είναι χρήσιμες για τη μοντελοποίηση των φαινομένων με σημαντική αβεβαιότητα όσον αφορά τους διαθέσιμους πόρους, όπως ο υπολογισμός των κινδύνων στον τομέα των επιχειρήσεων. Οι μέθοδοι αυτές χρησιμοποιούνται ευρέως στα μαθηματικά. Μια κλασική χρήση είναι για την αξιολόγηση των ολοκληρωμάτων, ιδιαίτερα των πολυδιάστατων ολοκληρωμάτων με περίπλοκες οριακές συνθήκες. Είναι ευρέως επιτυχείς μέθοδοι ανάλυσης κινδύνου σε σύγκριση με εναλλακτικές μεθόδους ή την ανθρώπινη διαίσθηση. Οι Monte Carlo προσομοιώσεις έχουν εφαρμοστεί για την εξερεύνηση και εκμετάλλευση του πετρελαίου, την πραγματική παρατήρηση βλαβών, για τις υπερβάσεις κόστους και χρονοδιαγράμματος όπου είναι συνήθως καλύτερες από την προβλεπόμενη απ ότι τις προσομοιώσεις ανθρώπινης διαίσθησης ή εναλλακτικά ευέλικτων μεθόδων. NANOCAPILLARY Μετά την επιτυχή υλοποίηση των δυο πρώτων στατιστικών χαρακτηριστικών ενός υλικού που περιγράφεται μέσω μίας 2D εικόνας, το πορώδες ( porosity) και την αυτοσυσχέτιση (autocorrelation), ολοκληρώθηκε ο υπολογισμός του φάσματος I(q) του υλικού. Κατά το χρονικό αυτό διάστημα ξεκίνησε η υλοποίηση της Στοχαστικής Ανακασκευής (Stochastic Reconstruction) του 3D μοντέλου του υλικού, βασιζόμενη 6 Σ ε λ ί δ α

7 στην πληροφορία που εντοπίζεται σε μία εικόνα 2D του υλικού. Η προς υλοποίηση μέθοδος περιγράφεται στην εργασία [1]. Στα πλαίσια της προαναφερθήσας μεθοδολογίας ανακατασκευής, υλοποιήθηκαν τα εξής στάδια επεξεργασίας: 1) δημιουργία ενός τυχαίου (μέση τιμή 0 και τυπική απόκλιση 1) πληθυσμού σημείων στον 3D χώρο συντεταγμένων 2) υπολογισμός των ορθογώνιων πολυωνύμων Hermite, 3) υπολογισμός των συντελεστών που καθορίζουν την συμμετοχή του κάθε στοιχείου της συνάρτησης αυτοσυσχέτισης του 3D μοντέλου, στην συνάρτηση αυτοσυσχέτισης της 2D αναπαράστασης του υλικού. Η προαναφερθείσα διαδικασία 3D ανακατασκευής χρησιμοποιεί την συνάρτηση αυτοσυσχέτισης που υπολογίζεται από μία 2D εικόνα του υλικού που θεωρείται δεδομένη. Στην περίπτωση όμως που μία τέτοια 2D εικόνα δεν είναι διαθέσιμη, αλλά είναι διαθέσιμο ( SAXS) το φάσμα I(q) του υλικού, απαιτείται ο υπολογισμός της συνάρτησης συσχέτισης γ(r) [2]. Για τον σκοπό αυτό, κατα την χρονική αυτή περίοδο αναπτύχθηκε η διαδικασία υπολογισμού της συσχέτισης γ(r) δοθέντος του φάσματος I(q), μέσω της θεμελιώδους σχέσης [2] που συνδέει τις δύο ποσότητες. Η υλοποίηση του προαναφερθέντος λογισμικού έγινε σε περιβάλλον MATLAB για λόγους γρήγορης προτοτυποποίησης (rapid prototyping). Σε αυτό το χρονικό διάστημα, έγινε μία σημαντική προσπάθεια ανακατασκευής του 3Δ μοντέλου ενός πορώδους υλικού με την χρήση της Στοχαστικής Ανακασκευής (Stochastic Reconstruction) [1]. Λόγω έλλειψης σημαντικών πληροφοριών αναφορικά με την επίλυση ενός μεγάλου αριθμού μη γραμμικών εξισώσεων που απαιτείται, αποφασίστηκε η αναστολή της υλοποίησης. Εξαιτίας της προαναφερθήσας αδυναμίας, η ανάπτυξη του λογισμικού στράφηκε προς την επονομαζόμενη «Απλοποιημένη προσέγγιση των Joshi Quiblier Adler» (JQA). Η μέθοδος αυτή δεν απαιτεί την επίλυση του συστήματος εξισώσεων όπως η Στοχαστική Ανακατασκευή και αποτελείται από τα παρακάτω στάδια επεξεργασίας: 7 Σ ε λ ί δ α

8 1. Δημιορυργία ενός τυχαίου 3Δ μοντέλου N x, y, zμε την χρήση Gaussian θορύβου και του Box-Muller μετασχηματισμού. 2. Υπολογισμός της κανονικοποιημένης συνάρτησης αυτοσυσχέτισης όπου F x, y, z F r S r x y z S 2 S 0 S S2 r είναι η συνάρτηση αυτοσυσχέτισης 2 σημείων της 2D εικόνας Ανακατασκευή του 3Δ μοντέλου μέσω συνέλιξης (φιλτράρισμα), ως ακολούθως: c c c,,,,,, R x y z N x i y j z k F i j k i0 j0 k 0 4. Εξομάλυνση της ανακατασκευασμένης 3D εικόνας ( R) με χρήση Gaussian φίλτρου. 5. Επαναληπτική κατωφλίωση (thresholding) της προκύπτουσας εικόνας ώστε το προκύπτων 3D μοντέλο υλικού να έχει το ίδιο πορώδες (e) με το υλικό της 2D εικόνας. Η υλοποίηση του προαναφερθέντος λογισμικού έγινε σε περιβάλλον MATLAB για λόγους γρήγορης προτοτυποποίησης (rapid prototyping). Κάποια πρόωρα αποτελέσματα ανακατασκευής φαίνονται στην παρακάτω Εικόνα 1: 8 Σ ε λ ί δ α

9 (α) (β) (γ) Εικόνα 1: (α) Αρχική 2D εικόνα, (β) Τυχαία τομή του ανακατασκευασμένου 3 D μοντέλου και (γ) Ανακατασκευασμένο 3D μοντέλου. Σε αυτό το χρονικό διάστημα ολοκληρώθηκε και ελέγθηκε η ανακατασκευή του 3Δ μοντέλου ενός πορώδους υλικού με την χρήση της μεθόδου Joshi Quiblier Adler» (JQA). Η μέθοδος αυτή μελετήθηκε και αναπτύχθηκε μερικώς κατά το προηγούμενο χρονικό διάστημα, όπως έχει αποτυπωθεί στην έκθεση πεπραγμένων του προηγούμενου μήνα (01/5-31/5). Συντάχθηκε επιστημονική δημοσίευση στην οποία επιδιώκεται να αποτυπωθεί η γνώση που αποκτήθηκε αναφορικά με την 3Δ ανακατασκευή πορώδων υλικών με την χρήση χωρικών συναρτήσεων αυτοσυσχέτισης. Η εν λόγω δημοσίευση έχει προσωρινό τίτλο «On 3D Reconstruction of Porous Media by Using Spatial Correlation Functions», και έχει τους παρακάτω στόχους: 9 Σ ε λ ί δ α

10 1. Την μελέτη της συμπεριφοράς διάφορων γνωστών συναρτήσεων χωρικής αυτοσυσχέτισης, στην 3Δ ανακατασκευή με την μέθοδο (JQA). 2. Την επισήμανση και ανάδειξη των απαραίτητων ιδιοτήτων που θα πρέπει να διαθέτει μία συνάρτηση αυτοσυσχέτισης ώστε να επιτυγχάνεται μία ικανοποιητική 3Δ ανακατασκευή. Η προαναφερθείσα δημοσίευση είναι πρωτότυπη, ενώ θα αποτελέσει την βάση πάνω στην οποία θα στηριχτούν μελλοντικές δημοσιεύσεις στις οποίες θα προτείνονται νέες συναρτήσεις μέτρησης των στατιστικών ιδιοτήτων των πορώδων υλικών. Η εργασία αυτή αποτελεί μία μελέτη της απόδοσης διάφορων γνωστών συναρτήσεων χωρικής αυτοσυσχέτισης στην 3Δ ανακατασκευή πορώδων υλικών με την μέθοδο (JQA). Η εξαγόμενη γνώση από την προαναφερθήσα δημοσίευση αναφορικά με την καταλληλότητα των συναρτήσεων αυτοσυσχέτισης χρησιμοποιήθηκε σε επόμενη προγραμματισμένη δημοσίευση, όπως αυτή σχεδιάστηκε μέσα σε αυτή την περίοδο. Έγινε μία ανάλυση της μεθόδου 3Δ ανακατασκευής πορώδων υλικών, ώς πρόβλημα βελτιστοποίησης ( Simulated Annealing) όπως αυτή προτάθηκε από τους Yeong και Torquato [1,2]. Εμπνευσμένοι από αυτή την προσέγγιση, σχεδιάστηκε η δημιουργία μίας δημοσίευσης στην οποία θα συγκριθεί η απόδοση του αλγορίθμου βελτιστοποίησης Simulated Annealing με σύγχρονους αλγορίθμους εύρεσης λύσεων. Πιο συγεγκριμένα, εφαρμόστηκαν οι εξής αλγόριθμοι βελτιστοποίσης : Genetic Algorithms (GAs), Particle Swarm Optimization (PSO), Differential Evolution (DE) και Gravitational Search Algorithm (GSA). Ολοκληρώθηκε η πειραματική ανάλυση και συγγραφή της δημοσίευσης με τίτλο «Nature-inspired Optimization Algorithms for 3D Reconstruction of Porous Media». Η εργασία αυτή αποτελεί την πρώτη δημοσίευση που μελετάει την 3Δ ανακατασκευή πορώδων υλικών με την εφαρμογή εξελιγμένων αλγορίθμων βελτιστοποίησης που διέπονται από γνωστούς μηχανισμούς της φύσης. 10 Σ ε λ ί δ α

11 Σύμφωνα με αυτή την εργασία, η διαδικασία της 3Δ ανακατασκευής περιγράφεται ως πρόβλημα βελτιστοποίησης κατα το οποίο αναζητούνται οι φάσεις (πόρος ή όχι) των σημείων του υλικού, έτσι ώστε το προκύπτον 3Δ υλικό να παρουσιάζει ίδιες στατιστικές ιδιότητες με την 2Δ εικόνα του υλικού. Ως στατιστικές ιδιότητες χρησιμοποιούνται το πορώδες (ε) του υλικού και η συνάρτηση αυτοσυσχέτισης που περιγράφεται παρακάτω: R 1 z Z x Z x u 2 Z x Αξίζει να σημειωθεί ότι η επιλογή της παραπάνω συνάρτησης αυτοσυσχέτισης προέκυψε μέσα από μία συγκριτική μελέτη, που παρουσιάστηκε σε προηγούμενη δημοσίευση. Πιο συγεγκριμένα, εφαρμοστόστηκαν οι εξής αλγόριθμοι βελτιστοποίσης : Genetic Algorithms (GAs), Particle Swarm Optimization (PSO), Differential Evolution (DE), Firefly Algorithm (FFA), Artificial Bee Colony (ABC), Gravitational Search Algorithm (GSA). Στο χρονικό διάστημα αυτό πραγματοποιήθηκε μία αναζήτηση στην διεθνή βιβλιογραφία, των υπολογιστικών μεθόδων χαρακτηρισμού των πορώδων υλικών. Πιο συγκεκριμένα, δόθηκε βαρύτητα στην διαδικασία 3D ανακατασκευής του υλικού, βάσει της πληροφορίας που λαμβάνεται από μία 2D εικόνα (τομή) του υλικού, μέσω της εφαρμογής μίας στοχαστικής διαδικασίας. Στα πλαίσια της ανακατασκευής υλοποιήθηκαν τα πρώτα στάδια επξεργασίας: 1) τμηματοποίηση μίας τυχαίας εικόνας υλικού, 2) κατωφλίωση της εικόνας του υλικού, 3) υπολογισμός του πορώδους (ε - porosity) και της συνάρτησης αυτοσυσχέτισης (R z ) δύο σημείων του υλικού. Οι δύο τελευταίες στατιστικές ποσότητες είναι απαραίτητες για την εκτίμηση της 3D δομής του υλικού που θα επιδιωχθεί σε επόμενο στάδιο. 11 Σ ε λ ί δ α

12 Επιπλέον, έχει ολοκληρωθεί και είναι σε διαδικασία απασφαλμάτωσης το λογισμικό υπολογισμού του φάσματος I(q) με την χρήση της συνάρτησης αυτοσυσχέτισης δύο σημείων. Η υλοποίηση του προαναφερθέντος λογισμικού έγινε σε περιβάλλον MATLAB για λόγους γρήγορης προτοτυποποίησης (rapid prototyping), ενώ το προκύπτον λογισμικό εφαρμόστηκε σε συνθετικά και πειραματικά δεδομένα εικόνων. Κάποια πρόωρα αποτελέσματα για μία εικόνα υλικού από την βιβλιογραφία, παρατίθενται παρακάτω. Μετά την επιτυχή υλοποίηση των δυο πρώτων στατιστικών χαρακτηριστικών ενός υλικού που περιγράφεται μέσω μίας 2D εικόνας, το πορώδες ( porosity) και την αυτοσυσχέτιση (autocorrelation), ολοκληρώθηκε ο υπολογισμός του φάσματος I(q) του υλικού. Στα πλαίσια της προαναφερθήσας μεθοδολογίας ανακατασκευής, υλοποιήθηκαν τα εξής στάδια επεξεργασίας: 1) δημιουργία ενός τυχαίου (μέση τιμή 0 και τυπική απόκλιση 1) πληθυσμού σημείων στον 3D χώρο συντεταγμένων 2) υπολογισμός των ορθογώνιων πολυωνύμων Hermite, 3) υπολογισμός των συντελεστών που καθορίζουν την συμμετοχή του κάθε στοιχείου της συνάρτησης αυτοσυσχέτισης του 3D μοντέλου, στην συνάρτηση αυτοσυσχέτισης της 2D αναπαράστασης του υλικού. 12 Σ ε λ ί δ α

13 Η υλοποίηση του προαναφερθέντος λογισμικού έγινε σε περιβάλλον MATLAB για λόγους γρήγορης προτοτυποποίησης (rapid prototyping). ΑΝΑΦΟΡΕΣ [1] M.E. Kainourgiakis, E.S. Kikkinides, A.K. Stubos, Diffusion and Flow in Porous Domains Constructed Using Process-Based and Stochastic Techniques, Journal of Porous Materials, vol. 9, no. 2, pp , [2] Karthik K. Bodla, Suresh V. Garimella, Jayathi Y. Murthy, 3D reconstruction and design of porous media from thin sections, International Journal of Heat and Mass Transfer, vol. 73, pp , [3] C.L.Y. Yeong and S. Torquato, Reconstructing random media, Physical Review E, vol. 57, no. 1, pp , [4] C.L.Y. Yeong and S. Torquato, Reconstructing random media. II. Threedimensional media from two-dimensional cuts, Physical Review E, vol. 58, no. 1, pp , [5] G.A. Papakostas, J.W. Nolan, N. Vordos, D. Α. Gkika, M.E. Kainourgiakis and A.C. Mitropoulos, On 3D Reconstruction of Porous Media by Using Spatial Correlation Functions, Journal of Engineering Science and Technology Review, 13 Σ ε λ ί δ α

Εφαρμογές Προσομοίωσης

Εφαρμογές Προσομοίωσης Εφαρμογές Προσομοίωσης H προσομοίωση (simulation) ως τεχνική μίμησης της συμπεριφοράς ενός συστήματος από ένα άλλο σύστημα, καταλαμβάνει περίοπτη θέση στα πλαίσια των εκπαιδευτικών εφαρμογών των ΤΠΕ. Μπορούμε

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Πληροφοριακά Συστήματα Διοίκησης Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Σημασία μοντέλου Το μοντέλο δημιουργεί μια λογική δομή μέσω της οποίας αποκτούμε μια χρήσιμη άποψη

Διαβάστε περισσότερα

Προσομοίωση Συστημάτων

Προσομοίωση Συστημάτων Προσομοίωση Συστημάτων Προσομοίωση και μοντέλα συστημάτων Άγγελος Ρούσκας Τμήμα Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιώς Γενικός ορισμός συστήματος Ένα σύνολο στοιχείων/οντοτήτων που αλληλεπιδρούν μεταξύ

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΚΙΝΗΣΗΣ ΚΑΙ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΙΩΝ ΣΕ ΒΙΟΜΗΧΑΝΙΚΑ ΠΕΡΙΒΑΛΛΟΝΤΑ

ΣΧΕΔΙΑΣΜΟΣ ΚΙΝΗΣΗΣ ΚΑΙ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΙΩΝ ΣΕ ΒΙΟΜΗΧΑΝΙΚΑ ΠΕΡΙΒΑΛΛΟΝΤΑ ΣΧΕΔΙΑΣΜΟΣ ΚΙΝΗΣΗΣ ΚΑΙ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΙΩΝ ΣΕ ΒΙΟΜΗΧΑΝΙΚΑ ΠΕΡΙΒΑΛΛΟΝΤΑ Ηλίας Κ. Ξυδιάς 1, Ανδρέας Χ. Νεάρχου 2 1 Τμήμα Μηχανικών Σχεδίασης Προϊόντων & Συστημάτων, Πανεπιστήμιο Αιγαίου, Σύρος

Διαβάστε περισσότερα

Σύγχρονα συστήµατα προβλέψεων και µοντελοποίησης. Τµήµα Στατιστικής και Αναλογιστικών Χρηµατοοικονοµικών Μαθηµατικών

Σύγχρονα συστήµατα προβλέψεων και µοντελοποίησης. Τµήµα Στατιστικής και Αναλογιστικών Χρηµατοοικονοµικών Μαθηµατικών Σύγχρονα συστήµατα προβλέψεων και µοντελοποίησης Τµήµα Στατιστικής και Αναλογιστικών Χρηµατοοικονοµικών Μαθηµατικών 2 Εργαλεία διαχείρισης Για κάθε µελλοντική εξέλιξη και απόφαση, η πρόβλεψη αποτελεί το

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ (1) ΓΕΝΙΚΑ ΣΧΟΛΗ Πολυτεχνική Σχολή ΤΜΗΜΑ Τμήμα Μηχανικών Οικονομίας και Διοίκησης ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Προπτυχιακό ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ ΓΕ0125 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 7 ο ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Προσομοίωση

Διαβάστε περισσότερα

Λίγα λόγια για τους συγγραφείς 16 Πρόλογος 17

Λίγα λόγια για τους συγγραφείς 16 Πρόλογος 17 Περιεχόμενα Λίγα λόγια για τους συγγραφείς 16 Πρόλογος 17 1 Εισαγωγή 21 1.1 Γιατί χρησιμοποιούμε τη στατιστική; 21 1.2 Τι είναι η στατιστική; 22 1.3 Περισσότερα για την επαγωγική στατιστική 23 1.4 Τρεις

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση χωρίς περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 7-8 η /2017 Τι παρουσιάστηκε

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Γεωμετρικός Πυρήνας Παραμετρική Σχεδίαση

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Γεωμετρικός Πυρήνας Παραμετρική Σχεδίαση Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή Γεωμετρικός Πυρήνας Παραμετρική Σχεδίαση Παραμετρική σχεδίαση Παραμετρικό αντικείμενο (2D σχήμα/3d στερεό) ονομάζουμε το αντικείμενο του οποίου η (γεωμετρική)

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ ΑΝΟΠΤΗΣΗΣ: Ο ΑΛΓΟΡΙΘΜΟΣ ΤΗΣ ΑΠΟ ΟΧΗΣ ΚΑΤΩΦΛΙΟΥ (THRESHOLD ACCEPTING)

ΑΛΓΟΡΙΘΜΟΙ ΑΝΟΠΤΗΣΗΣ: Ο ΑΛΓΟΡΙΘΜΟΣ ΤΗΣ ΑΠΟ ΟΧΗΣ ΚΑΤΩΦΛΙΟΥ (THRESHOLD ACCEPTING) ΑΛΓΟΡΙΘΜΟΙ ΑΝΟΠΤΗΣΗΣ: Ο ΑΛΓΟΡΙΘΜΟΣ ΤΗΣ ΑΠΟ ΟΧΗΣ ΚΑΤΩΦΛΙΟΥ (THRESHOLD ACCEPTING) ΧΡΗΣΤΟΣ. ΤΑΡΑΝΤΙΛΗΣ ΚΛΑΣΙΚΟΙ ΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ Κλασικοί Ευρετικοί Classical Heuristics Κατασκευαστικοί Ευρετικοί Αλγόριθµοι

Διαβάστε περισσότερα

Κασταλία Σύστηµα στοχαστικής προσοµοίωσης υδρολογικών µεταβλητών

Κασταλία Σύστηµα στοχαστικής προσοµοίωσης υδρολογικών µεταβλητών Εθνικό Μετσόβιο Πολυτεχνείο Τοµέας Υδατικών Πόρων, Υδραυλικών και Θαλάσσιων Έργων Κασταλία Σύστηµα στοχαστικής προσοµοίωσης υδρολογικών µεταβλητών. Κουτσογιάννης Α. Ευστρατιάδης Φεβρουάριος 2002 Εισαγωγή

Διαβάστε περισσότερα

Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής

Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2016-2017 Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής (Least squares collocation) Χριστόφορος

Διαβάστε περισσότερα

ΠΡΟΣΟΜΟΙΩΣΗ. Προσομοίωση είναι η μίμηση της λειτουργίας ενός πραγματικού συστήματος και η παρακολούθηση της εξέλιξης του μέσα στο χρόνο.

ΠΡΟΣΟΜΟΙΩΣΗ. Προσομοίωση είναι η μίμηση της λειτουργίας ενός πραγματικού συστήματος και η παρακολούθηση της εξέλιξης του μέσα στο χρόνο. ΠΡΟΣΟΜΟΙΩΣΗ Προσομοίωση είναι η μίμηση της λειτουργίας ενός πραγματικού συστήματος και η παρακολούθηση της εξέλιξης του μέσα στο χρόνο. δημιουργία μοντέλου προσομοίωσης ( - χρήση μαθηματικών, λογικών και

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1)

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1) ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1) 1 Προέλευση και ιστορία της Επιχειρησιακής Έρευνας Αλλαγές στις επιχειρήσεις Τέλος του 19ου αιώνα: βιομηχανική

Διαβάστε περισσότερα

H Λήψη των Αποφάσεων. Αθανασία Καρακίτσιου, PhD

H Λήψη των Αποφάσεων. Αθανασία Καρακίτσιου, PhD H Λήψη των Αποφάσεων Αθανασία Καρακίτσιου, PhD 1 Πως λαμβάνονται οι αποφάσεις Η λήψη αποφάσεων είναι η επιλογή μίας λύσης μεταξύ εναλλακτικών προτάσεων που έχουμε στην διάθεση μας. Η άποψη αυτή παρουσιάζει

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

Εισαγωγή στην Επιχειρησιακή Έρευνα

Εισαγωγή στην Επιχειρησιακή Έρευνα Τμήμα Μηχανικών Πληροφορικής ΤΕ 2017-2018 Εισαγωγή στην Επιχειρησιακή Έρευνα Γεωργία Φουτσιτζή- Γκόγκος Χρήστος ΤΕΙ Ηπείρου τελευταία ενημέρωση: 7/10/2016 1 Περιεχόμενα Εισαγωγή Ιστορική Αναδρομή Επιχειρησιακή

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ Βασίζεται στην εφαρμογή των παρακάτω βημάτων:. Το φυσικό πεδίο αναπαριστάται με ένα σύνολο απλών γεωμετρικών σχημάτων που ονομάζονται Πεπερασμένα Στοιχεία.. Σε κάθε στοιχείο

Διαβάστε περισσότερα

Τα κύρια σηµεία της παρούσας διδακτορικής διατριβής είναι: Η πειραµατική µελέτη της µεταβατικής συµπεριφοράς συστηµάτων γείωσης

Τα κύρια σηµεία της παρούσας διδακτορικής διατριβής είναι: Η πειραµατική µελέτη της µεταβατικής συµπεριφοράς συστηµάτων γείωσης Κεφάλαιο 5 ΣΥΜΠΕΡΑΣΜΑΤΑ Το σηµαντικό στην επιστήµη δεν είναι να βρίσκεις καινούρια στοιχεία, αλλά να ανακαλύπτεις νέους τρόπους σκέψης γι' αυτά. Sir William Henry Bragg 5.1 Ανακεφαλαίωση της διατριβής

Διαβάστε περισσότερα

Παρεμβολή & πρόγνωση άγνωστης συνάρτησης μέσω σημειακής προσαρμογής

Παρεμβολή & πρόγνωση άγνωστης συνάρτησης μέσω σημειακής προσαρμογής Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2018-2019 Παρεμβολή & πρόγνωση άγνωστης συνάρτησης μέσω σημειακής προσαρμογής (Least squares collocation) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση με περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής Διάλεξη 9-10 η /2017 Τι παρουσιάστηκε

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ Η μελέτη διαφόρων στοχαστικών φαινομένων μπορεί γενικά να γίνει χρησιμοποιώντας

ΕΙΣΑΓΩΓΗ Η μελέτη διαφόρων στοχαστικών φαινομένων μπορεί γενικά να γίνει χρησιμοποιώντας ΕΙΣΑΓΩΓΗ Η μελέτη διαφόρων στοχαστικών φαινομένων μπορεί γενικά να γίνει χρησιμοποιώντας κυρίως τρεις μεθόδους:. Αναλυτικές Μέθοδοι: πραγματοποιείται κατάλληλη μαθηματική μοντελοποίηση του στοχαστικού

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ

ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Συνδυασμένη χρήση μοντέλων προσομοίωσης βελτιστοποίησης. Η μέθοδος του μητρώου μοναδιαίας απόκρισης Νικόλαος

Διαβάστε περισσότερα

Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων

Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων Σημειώσεις στα πλαίσια του μαθήματος: Βελτιστοποίηση Συστημάτων Υδατικών Πόρων Υδροπληροφορική Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων Ανδρέας Ευστρατιάδης, Χρήστος Μακρόπουλος

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ Κ Υ Κ Λ Ο Υ Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Κ Α Ι Υ Π Η Ρ Ε Σ Ι Ω Ν Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Η

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017 Αντικειμενικοί στόχοι Η μελέτη των βασικών στοιχείων που συνθέτουν ένα πρόβλημα βελτιστοποίησης

Διαβάστε περισσότερα

Αξιολόγηση Επενδυτικών Σχεδίων

Αξιολόγηση Επενδυτικών Σχεδίων Αξιολόγηση Επενδυτικών Σχεδίων Ενότητα 4: Ανάλυση ευαισθησίας και πιθανολογική ανάλυση Δ. Δαμίγος Μ. Μενεγάκη Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

Ε ανάληψη. Α ληροφόρητη αναζήτηση

Ε ανάληψη. Α ληροφόρητη αναζήτηση ΠΛΗ 405 Τεχνητή Νοηµοσύνη Το ική Αναζήτηση Local Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Α ληροφόρητη αναζήτηση σε πλάτος, οµοιόµορφου κόστους, σε βάθος,

Διαβάστε περισσότερα

Η επίδραση της δειγματοληπτικής αβεβαιότητας των εισροών στη στοχαστική προσομοίωση ταμιευτήρα

Η επίδραση της δειγματοληπτικής αβεβαιότητας των εισροών στη στοχαστική προσομοίωση ταμιευτήρα ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ Η επίδραση της δειγματοληπτικής αβεβαιότητας των εισροών στη στοχαστική προσομοίωση ταμιευτήρα Ελένη Ζαχαροπούλου

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες)

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, 2016-2017 ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) Κεφ. 2: Επίλυση συστημάτων εξισώσεων (διάρκεια: 3 εβδομάδες) 2.1 Επίλυση εξισώσεων 2.2 Επίλυση

Διαβάστε περισσότερα

ΠΡΟΣΟΜΟΙΩΣΗ: ΣΥΣΤΗΜΑΤΑ & ΜΟΝΤΕΛΑ

ΠΡΟΣΟΜΟΙΩΣΗ: ΣΥΣΤΗΜΑΤΑ & ΜΟΝΤΕΛΑ ΜΕΘΟΔΟΛΟΓΙΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΡΟΣΟΜΟΙΩΣΗ: ΣΥΣΤΗΜΑΤΑ & ΜΟΝΤΕΛΑ Ιωάννης Παραβάντης Αναπληρωτής Καθηγητής Πανεπιστήμιο Πειραιώς Μάρτιος 2017 1 Η έννοια του ΣΥΣΤΗΜΑΤΟΣ Σύστημα είναι ένα (κλειστό και αυτοτελές)

Διαβάστε περισσότερα

On line αλγόριθμοι δρομολόγησης για στοχαστικά δίκτυα σε πραγματικό χρόνο

On line αλγόριθμοι δρομολόγησης για στοχαστικά δίκτυα σε πραγματικό χρόνο On line αλγόριθμοι δρομολόγησης για στοχαστικά δίκτυα σε πραγματικό χρόνο Υπ. Διδάκτωρ : Ευαγγελία Χρυσοχόου Επιβλέπων Καθηγητής: Αθανάσιος Ζηλιασκόπουλος Τμήμα Μηχανολόγων Μηχανικών Περιεχόμενα Εισαγωγή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ Εισαγωγή Μεθοδολογία της Έρευνας ΕΙΚΟΝΑ 1-1 Μεθοδολογία της έρευνας.

ΚΕΦΑΛΑΙΟ Εισαγωγή Μεθοδολογία της Έρευνας ΕΙΚΟΝΑ 1-1 Μεθοδολογία της έρευνας. ΚΕΦΑΛΑΙΟ 1 Εισαγωγή Η Μεθοδολογία της Έρευνας (research methodology) είναι η επιστήμη που αφορά τη μεθοδολογία πραγματοποίησης μελετών με συστηματικό, επιστημονικό και λογικό τρόπο, με σκοπό την παραγωγή

Διαβάστε περισσότερα

6. Στατιστικές μέθοδοι εκπαίδευσης

6. Στατιστικές μέθοδοι εκπαίδευσης 6. Στατιστικές μέθοδοι εκπαίδευσης Μία διαφορετική μέθοδος εκπαίδευσης των νευρωνικών δικτύων χρησιμοποιεί ιδέες από την Στατιστική Φυσική για να φέρει τελικά το ίδιο αποτέλεσμα όπως οι άλλες μέθοδοι,

Διαβάστε περισσότερα

Σκοπός του μαθήματος. Αρχές Φυσικής Μοντελοποίησης

Σκοπός του μαθήματος. Αρχές Φυσικής Μοντελοποίησης Αρχές Φυσικής Μοντελοποίησης (Μαθηματική έκφραση της λεκτικής περιγραφής των φαινομένων) Σκοπός του μαθήματος Αρχές Φυσικής Μοντελοποίησης Αρχές Φυσικής Προσομοίωσης 1/2.1 Σκοπός της Φυσικής Προσομοίωσης

Διαβάστε περισσότερα

Τι είναι τα Συστήµατα Γεωγραφικών Πληροφοριών. (Geographical Information Systems GIS)

Τι είναι τα Συστήµατα Γεωγραφικών Πληροφοριών. (Geographical Information Systems GIS) Τι είναι τα Συστήµατα Γεωγραφικών Πληροφοριών (Geographical Information Systems GIS) ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ, ΤΜΗΜΑ ΓΕΩΓΡΑΦΙΑΣ ΧΑΛΚΙΑΣ ΧΡΙΣΤΟΣ Εισαγωγή στα GIS 1 Ορισµοί ΣΓΠ Ένα σύστηµα γεωγραφικών πληροφοριών

Διαβάστε περισσότερα

Μεθοδολογίες Παραγωγής Λογισµικού

Μεθοδολογίες Παραγωγής Λογισµικού Μεθοδολογίες Παραγωγής Λογισµικού Βασικά Γενικά Μοντέλα Μοντέλο καταρράκτη (waterfall model) Ξεχωριστές φάσεις καθορισµού απαιτήσεων και ανάπτυξης, επικύρωσης, εξέλιξης Εξελικτική ανάπτυξη (evolutionary

Διαβάστε περισσότερα

ΕΕΟ 11. Η χρήση στατιστικών εργαλείων στην εκτιμητική

ΕΕΟ 11. Η χρήση στατιστικών εργαλείων στην εκτιμητική ΕΕΟ 11 Η χρήση στατιστικών εργαλείων στην εκτιμητική 1. Εισαγωγή 2. Προϋποθέσεις χρήσης των Αυτοματοποιημένων Εκτιμητικών Μοντέλων (ΑΕΜ) 3. Περιορισμοί στη χρήση των ΑΕΜ εφόσον έχουν πληρωθεί οι προϋποθέσεις

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ

ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΚΟΥΛΙΝΑΣ ΓΕΩΡΓΙΟΣ Δρ. Μηχανικός Παραγωγής & Διοίκησης ΔΠΘ ΜΕΤΑΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ METAHEURISTIC ALGORITHMS Ευφυείς διαδικασίες επαναληπτικής βελτίωσης Χρησιμοποιούν

Διαβάστε περισσότερα

Επαναχρησιμοποίηση νερού Γραφήματα οριακής εξοικονόμησης και σχεδιασμός δικτύων

Επαναχρησιμοποίηση νερού Γραφήματα οριακής εξοικονόμησης και σχεδιασμός δικτύων Επαναχρησιμοποίηση νερού Γραφήματα οριακής εξοικονόμησης και σχεδιασμός δικτύων Κοκόσης Αντώνης Καθηγητής ΕΜΠ Σχολή Χημικών Μηχανικών, ΕΜΠ akokossis@chemeng.ntua.gr Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Υδρονοµέας Σύστηµα υποστήριξης της διαχείρισης υδατικών πόρων

Υδρονοµέας Σύστηµα υποστήριξης της διαχείρισης υδατικών πόρων Εθνικό Μετσόβιο Πολυτεχνείο Τοµέας Υδατικών Πόρων, Υδραυλικών και Θαλάσσιων Έργων Υδρονοµέας Σύστηµα υποστήριξης της διαχείρισης υδατικών πόρων Γ. Καραβοκυρός Α. Ευστρατιαδης. Κουτσογιάννης Φεβρουάριος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ιδάσκων:

Διαβάστε περισσότερα

Περιεχόµενα. Πληροφοριακά Συστήµατα: Κατηγορίες και Κύκλος Ζωής. Π.Σ. ιαχείρισης Πράξεων. Π.Σ. ιοίκησης. Κατηγορίες Π.Σ. Ο κύκλος ζωής Π.Σ.

Περιεχόµενα. Πληροφοριακά Συστήµατα: Κατηγορίες και Κύκλος Ζωής. Π.Σ. ιαχείρισης Πράξεων. Π.Σ. ιοίκησης. Κατηγορίες Π.Σ. Ο κύκλος ζωής Π.Σ. Πληροφοριακά Συστήµατα: Κατηγορίες και Κύκλος Ζωής Περιεχόµενα Κατηγορίες Π.Σ. ιαχείρισης Πράξεων ιοίκησης Υποστήριξης Αποφάσεων Έµπειρα Συστήµατα Ατόµων και Οµάδων Ο κύκλος ζωής Π.Σ. Ορισµός Φάσεις Χρήστες

Διαβάστε περισσότερα

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα

Διαβάστε περισσότερα

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2.

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2. Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης... 11 Λίγα λόγια για βιβλίο... 11 Σε ποιους απευθύνεται... 12 Τι αλλάζει στην 5η αναθεωρημένη έκδοση... 12 Το βιβλίο ως διδακτικό εγχειρίδιο... 14 Ευχαριστίες...

Διαβάστε περισσότερα

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών

Διαβάστε περισσότερα

Περιεχόμενα. σελ. Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii

Περιεχόμενα. σελ. Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii Περιεχόμενα Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή... 1 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων... 2 1.2 Συνάρτηση δ του Dirac...

Διαβάστε περισσότερα

Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων

Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων Σημειώσεις στα πλαίσια του μαθήματος: Βελτιστοποίηση Συστημάτων Υδατικών Πόρων Υδροπληροφορική Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων Ανδρέας Ευστρατιάδης, Χρήστος Μακρόπουλος

Διαβάστε περισσότερα

Γεωγραφικά Πληροφοριακά Συστήµατα (Geographical Information Systems GIS)

Γεωγραφικά Πληροφοριακά Συστήµατα (Geographical Information Systems GIS) Γεωγραφικά Πληροφοριακά Συστήµατα (Geographical Information Systems GIS) ρ. ΧΑΛΚΙΑΣ ΧΡΙΣΤΟΣ xalkias@hua.gr Χ. Χαλκιάς - Εισαγωγή στα GIS 1 Ορισµοί ΓΠΣ Ένα γεωγραφικό πληροφοριακό σύστηµα Geographic Information

Διαβάστε περισσότερα

Ανάλυση και Σχεδιασμός Μεταφορών Ι Εισαγωγή

Ανάλυση και Σχεδιασμός Μεταφορών Ι Εισαγωγή Εισαγωγή Παναγιώτης Παπαντωνίου Δρ. Πολιτικός Μηχανικός, Συγκοινωνιολόγος ppapant@upatras.gr Πάτρα, 2017 Εισαγωγή στο σχεδιασμό των Μεταφορών Βασικές έννοιες και αρχές των Μεταφορών Διαδικασία Ορθολογικού

Διαβάστε περισσότερα

Κύρια σημεία. Η έννοια του μοντέλου. Έρευνα στην εφαρμοσμένη Στατιστική. ΈρευναστηΜαθηματικήΣτατιστική. Αντικείμενο της Μαθηματικής Στατιστικής

Κύρια σημεία. Η έννοια του μοντέλου. Έρευνα στην εφαρμοσμένη Στατιστική. ΈρευναστηΜαθηματικήΣτατιστική. Αντικείμενο της Μαθηματικής Στατιστικής Κύρια σημεία Ερευνητική Μεθοδολογία και Μαθηματική Στατιστική Απόστολος Μπουρνέτας Τμήμα Μαθηματικών ΕΚΠΑ Αναζήτηση ερευνητικού θέματος Εισαγωγή στην έρευνα Ολοκλήρωση ερευνητικής εργασίας Ο ρόλος των

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Προσομοίωση Simulation

Πληροφοριακά Συστήματα Διοίκησης. Προσομοίωση Simulation Πληροφοριακά Συστήματα Διοίκησης Προσομοίωση Simulation Προσομοίωση Έστω ότι το σύστημα βρίσκεται σε κάποια αρχική κατάσταση Αν γνωρίζουμε τους κανόνες σύμφωνα με τους οποίους το σύστημα αλλάζει καταστάσεις

Διαβάστε περισσότερα

Κεφάλαιο 5 Κριτήρια απόρριψης απόμακρων τιμών

Κεφάλαιο 5 Κριτήρια απόρριψης απόμακρων τιμών Κεφάλαιο 5 Κριτήρια απόρριψης απόμακρων τιμών Σύνοψη Στο κεφάλαιο αυτό παρουσιάζονται δύο κριτήρια απόρριψης απομακρυσμένων από τη μέση τιμή πειραματικών μετρήσεων ενός φυσικού μεγέθους και συγκεκριμένα

Διαβάστε περισσότερα

Προσομοίωση ΚΕΦΑΛΑΙΟ 7

Προσομοίωση ΚΕΦΑΛΑΙΟ 7 ΚΕΦΑΛΑΙΟ 7 Προσομοίωση 7.1 Συστήματα και πρότυπα συστημάτων 7.2 Η διαδικασία της προσομοίωσης 7.3 Ανάπτυξη προτύπων διακριτών γεγονότων 7.4 Τυχαίοι αριθμοί 7.5 Δείγματα από τυχαίες μεταβλητές 7.6 Προσομοίωση

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ ΑΝΑΠΤΥΞΗΣ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΕΘΟΔΟΛΟΓΙΕΣ ΑΝΑΠΤΥΞΗΣ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΘΟΔΟΛΟΓΙΕΣ ΑΝΑΠΤΥΞΗΣ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Μεθοδολογίες Ανάπτυξης Συστημάτων Πληροφορικής Απαντούν στα εξής ερωτήματα Ποιά βήματα θα ακολουθηθούν? Με ποιά σειρά? Ποιά τα παραδοτέα και πότε? Επομένως,

Διαβάστε περισσότερα

Ένα φειδωλό μοντέλο για την πρόβλεψη των χαμηλών ροών σε μεσογειακά υδατορεύματα

Ένα φειδωλό μοντέλο για την πρόβλεψη των χαμηλών ροών σε μεσογειακά υδατορεύματα 5 ο ΠΑΝΕΛΛΗΝΙΟ ΣΥΝΕΔΡΙΟ ΑΓΡΟΝΟΜΩΝ & ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ Αθήνα 14 & 15 Οκτωβρίου 2017 Ένα φειδωλό μοντέλο για την πρόβλεψη των χαμηλών ροών σε μεσογειακά υδατορεύματα Κωνσταντίνα Ρίσβα (1), Διονύσιος Νικολόπουλος

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΥΑΓΓΕΛΙΑΣ Π. ΛΟΥΚΟΓΕΩΡΓΑΚΗ Διπλωματούχου Πολιτικού Μηχανικού ΟΛΟΚΛΗΡΩΜΕΝΟ

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΧΩΡΙΚΗΣ ΔΟΜΗΣ ΤΗΣ ΒΡΟΧΗΣ. Παρουσίαση διπλωματικής εργασίας Αθανάσιος Πασχάλης Επιβλέπων καθηγητής: Δημήτρης Κουτσογιάννης

ΣΤΟΧΑΣΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΧΩΡΙΚΗΣ ΔΟΜΗΣ ΤΗΣ ΒΡΟΧΗΣ. Παρουσίαση διπλωματικής εργασίας Αθανάσιος Πασχάλης Επιβλέπων καθηγητής: Δημήτρης Κουτσογιάννης ΣΤΟΧΑΣΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΧΩΡΙΚΗΣ ΔΟΜΗΣ ΤΗΣ ΒΡΟΧΗΣ Παρουσίαση διπλωματικής εργασίας Αθανάσιος Πασχάλης Επιβλέπων καθηγητής: Δημήτρης Κουτσογιάννης Διάρθρωση ρ της παρουσίασης Εισαγωγή Στατιστική επεξεργασία

Διαβάστε περισσότερα

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΕΙ ΠΕΙΡΑΙΑ ΤΤ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ Σκοπός της άσκησης 1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Σκοπός αυτής της άσκησης είναι η εξοικείωση των σπουδαστών με τα σφάλματα που

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 1 / 1 Τι είναι η Επιχειρησιακή Έρευνα; Η Επιχειρησιακή Έρευνα (Operations Research ή Operational Research) είναι ένας επιστημονικός

Διαβάστε περισσότερα

Στοιχεία επεξεργασίας σημάτων

Στοιχεία επεξεργασίας σημάτων Στοιχεία επεξεργασίας σημάτων ΕΜΠ - ΣΧΟΛΗ ΑΤΜ Ακ. Έτος 2004-2005 Β.Βεσκούκης, Δ.Παραδείσης, Δ.Αργιαλάς, Δ.Δεληκαράογλου, Β.Καραθανάση, Β.Μασσίνας Γενικά στοιχεία για το μάθημα Εισάγεται στα πλαίσια της

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών

ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών 44 Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών Διδακτικοί στόχοι Σκοπός του κεφαλαίου είναι οι μαθητές να κατανοήσουν τα βήματα που ακολουθούνται κατά την ανάπτυξη μιας εφαρμογής.

Διαβάστε περισσότερα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα Περιεχόμενα Κεφάλαιο - Ενότητα σελ 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων 1.2 Συνάρτηση δ του Dirac 1.3 Συνάρτηση του Heaviside 1.4 Οι συναρτήσεις Β, Γ και

Διαβάστε περισσότερα

«Τεχνολογία και Προοπτικές εξέλιξης μικρών υδροστροβίλων» Δημήτριος Παπαντώνης και Ιωάννης Αναγνωστόπουλος

«Τεχνολογία και Προοπτικές εξέλιξης μικρών υδροστροβίλων» Δημήτριος Παπαντώνης και Ιωάννης Αναγνωστόπουλος Τα μικρά Υδροηλεκτρικά Εργα γνωρίζουν τα τελευταία χρόνια σημαντική ανάπτυξη, τόσο στην Ευρώπη όσο και στον κόσμο ολόκληρο, είτε με την κατασκευή νέων ή με την ανανέωση του εξοπλισμού των υπαρχόντων σταθμών

Διαβάστε περισσότερα

ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ

ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ Το ενδιαφέρον επικεντρώνεται πάντα στον πληθυσμό Το δείγμα χρησιμεύει για εξαγωγή συμπερασμάτων για τον πληθυσμό π.χ. το ετήσιο εισόδημα των κατοίκων μιας περιοχής Τα στατιστικά

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Αναπληρωτής Καθηγητής Πανεπιστήμιο Δυτικής Αττικής 3ο εξάμηνο http://eclass.uniwa.gr

Διαβάστε περισσότερα

J-GANNO. Σύντοµη αναφορά στους κύριους στόχους σχεδίασης και τα βασικά χαρακτηριστικά του πακέτου (προέκδοση 0.9Β, Φεβ.1998) Χάρης Γεωργίου

J-GANNO. Σύντοµη αναφορά στους κύριους στόχους σχεδίασης και τα βασικά χαρακτηριστικά του πακέτου (προέκδοση 0.9Β, Φεβ.1998) Χάρης Γεωργίου J-GANNO ΓΕΝΙΚΕΥΜΕΝΟ ΠΑΚΕΤΟ ΥΛΟΠΟΙΗΣΗΣ ΤΕΧΝΗΤΩΝ ΝΕΥΡΩΝΙΚΩΝ ΙΚΤΥΩΝ ΣΤΗ ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ JAVA Σύντοµη αναφορά στους κύριους στόχους σχεδίασης και τα βασικά χαρακτηριστικά του πακέτου (προέκδοση 0.9Β,

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες ΜΑΘΗΜΑ 3ο Βασικές έννοιες Εισαγωγή Βασικές έννοιες Ένας από τους βασικότερους σκοπούς της ανάλυσης των χρονικών σειρών είναι η διενέργεια των προβλέψεων. Στα υποδείγματα αυτά η τρέχουσα τιμή μιας οικονομικής

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: μέθοδοι μονοδιάστατης ελαχιστοποίησης Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 6 η /2017 Τι παρουσιάστηκε

Διαβάστε περισσότερα

Εφαρμογές μεθοδολογιών μηχανικής εκμάθησης στο χώρο της παραγωγής υδρογονανθράκων. Βασίλης Γαγάνης

Εφαρμογές μεθοδολογιών μηχανικής εκμάθησης στο χώρο της παραγωγής υδρογονανθράκων. Βασίλης Γαγάνης Εφαρμογές μεθοδολογιών μηχανικής εκμάθησης στο χώρο της παραγωγής υδρογονανθράκων Μέθοδοι μηχανικής εκμάθησης Εύρεση μαθηματικής έκφρασης μοντέλου (κανόνα) ο κανόνας διέπει το υπό μελέτη πρόβλημα ανάπτυξη

Διαβάστε περισσότερα

Συνοπτικά περιεχόμενα

Συνοπτικά περιεχόμενα b Συνοπτικά περιεχόμενα 1 Τι είναι η στατιστική;... 25 2 Περιγραφικές τεχνικές... 37 3 Επιστήμη και τέχνη των διαγραμματικών παρουσιάσεων... 119 4 Αριθμητικές μέθοδοι της περιγραφικής στατιστικής... 141

Διαβάστε περισσότερα

Εισαγωγή στην Επιχειρησιακή Έρευνα

Εισαγωγή στην Επιχειρησιακή Έρευνα Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Εισαγωγή στην Επιχειρησιακή Έρευνα Γκόγκος Χρήστος ΤΕΙ Ηπείρου τελευταία ενημέρωση: 7/10/2016 1 Τι είναι η Επιχειρησιακή Έρευνα; Η Επιχειρησιακή Έρευνα (Operations

Διαβάστε περισσότερα

Προσομοίωση Βιομηχανικής Παραγωγής & Επιχειρήσεων

Προσομοίωση Βιομηχανικής Παραγωγής & Επιχειρήσεων Προσομοίωση Βιομηχανικής Παραγωγής & Επιχειρήσεων Ζ Εξάμηνο 2Θ+2Ε jdim@staff.teicrete.gr ΠΡΟΣΟΜΟΙΩΣΗ 1 ΠΡΟΣΟΜΟΙΩΣΗ: ΟΡΙΣΜΟΣ Wikipedia: Simulation is the imitation of the operation of a real-world process

Διαβάστε περισσότερα

Τεχνική Έκθεση Συνοπτική παρουσίαση... 3

Τεχνική Έκθεση Συνοπτική παρουσίαση... 3 Δ2.3/2 1.1 Συνοπτική παρουσίαση....................... 3 Δ2.3/3 Σύμφωνα με το τεχνικό δελτίο του έργου η δράση της παρούσας έκθεσης συνοψίζεται ως εξής. Δράση 2.3: ΣΤΟΧΑΣΤΙΚΕΣ/ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΕΣ ΥΒΡΙΔΙΚΕΣ

Διαβάστε περισσότερα

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua. Μέρος Β /Στατιστική Μέρος Β Στατιστική Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) Από τις Πιθανότητες στη Στατιστική Στα προηγούμενα, στο

Διαβάστε περισσότερα

Μεθοδολογίες παρεµβολής σε DTM.

Μεθοδολογίες παρεµβολής σε DTM. Μάθηµα : Αλγοριθµικές Βάσεις στη Γεωπληροφορική ιδάσκων : Συµεών Κατσουγιαννόπουλος Μεθοδολογίες παρεµβολής σε DTM.. Μέθοδοι παρεµβολής. Η παρεµβολή σε ψηφιακό µοντέλο εδάφους (DTM) είναι η διαδικασία

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ

ΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ ΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ Εισαγωγή στη μέθοδο των πεπερασμένων στοιχείων Α. Θεοδουλίδης Η Μεθοδος των Πεπερασμένων στοιχείων Η Μέθοδος των ΠΣ είναι μια

Διαβάστε περισσότερα

«Αριθμητική και πειραματική μελέτη της διεπιφάνειας χάλυβασκυροδέματος στις σύμμικτες πλάκες με χαλυβδόφυλλο μορφής»

«Αριθμητική και πειραματική μελέτη της διεπιφάνειας χάλυβασκυροδέματος στις σύμμικτες πλάκες με χαλυβδόφυλλο μορφής» ΠΕΡΙΛΗΨΗ ΤΗΣ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ «Αριθμητική και πειραματική μελέτη της διεπιφάνειας χάλυβασκυροδέματος στις σύμμικτες πλάκες με χαλυβδόφυλλο μορφής» του Θεμιστοκλή Τσαλκατίδη, Δρ. Πολιτικού Μηχανικού

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr Χρύσα Παπαγιάννη chrisap@noc.ntua.gr 24/2/2016 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ σ. 2 Α. ΕΡΕΥΝΑ ΚΑΙ ΕΠΕΞΕΡΓΑΣΙΑ Ε ΟΜΕΝΩΝ 2

ΕΙΣΑΓΩΓΗ σ. 2 Α. ΕΡΕΥΝΑ ΚΑΙ ΕΠΕΞΕΡΓΑΣΙΑ Ε ΟΜΕΝΩΝ 2 1 Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α ΕΙΣΑΓΩΓΗ σ. 2 Α. ΕΡΕΥΝΑ ΚΑΙ ΕΠΕΞΕΡΓΑΣΙΑ Ε ΟΜΕΝΩΝ 2 Β. ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΕΥΝΑ 1. Γενικά Έννοιες.. 2 2. Πρακτικός Οδηγός Ανάλυσης εδοµένων.. 4 α. Οδηγός Λύσεων στο πλαίσιο

Διαβάστε περισσότερα

ΛΥΣΕΙΣ AΣΚΗΣΕΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο

ΛΥΣΕΙΣ AΣΚΗΣΕΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο ΛΥΣΕΙΣ ΣΚΗΣΕΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Άσκηση (α) Οι συνορθωμένες συντεταγμένες του σημείου P είναι: ˆ 358.47 m, ˆ 4.46 m (β) Η a-psteriri εκτίμηση της μεταβλητότητας

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Αλγόριθμοι κλίσης - Gradient tools in MATLAB - Επίλυση ΝCM και CM ΑΛΓΟΡΙΘΜΟΙ ΚΛΙΣΗΣ Κατευθυντική αναζήτηση επί

Διαβάστε περισσότερα

ΒΕΛΤΙΣΤΟΣ ΓΕΩΜΕΤΡΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΧΩΡΙΚΟΥ ΒΡΑΧΙΟΝΑ RRR ΜΕ ΧΡΗΣΗ ΥΒΡΙΔΙΚΟΥ ΑΛΓΟΡΙΘΜΟΥ

ΒΕΛΤΙΣΤΟΣ ΓΕΩΜΕΤΡΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΧΩΡΙΚΟΥ ΒΡΑΧΙΟΝΑ RRR ΜΕ ΧΡΗΣΗ ΥΒΡΙΔΙΚΟΥ ΑΛΓΟΡΙΘΜΟΥ ΒΕΛΤΙΣΤΟΣ ΓΕΩΜΕΤΡΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΧΩΡΙΚΟΥ ΒΡΑΧΙΟΝΑ RRR ΜΕ ΧΡΗΣΗ ΥΒΡΙΔΙΚΟΥ ΑΛΓΟΡΙΘΜΟΥ Δ. Σαγρής, Σ. Μήτση, Κ.-Δ. Μπουζάκης, Γκ. Μανσούρ Εργαστήριο Εργαλειομηχανών και Διαμορφωτικής Μηχανολογίας, Τμήμα Μηχανολόγων

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑ ΣΤΟ BIZAGI ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΑΥΤΟΔΙΟΙΚΗΣΗΣ

ΠΑΡΑΔΕΙΓΜΑ ΣΤΟ BIZAGI ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΑΥΤΟΔΙΟΙΚΗΣΗΣ Ανάλυση - Προσομοίωση ΠΑΡΑΔΕΙΓΜΑ ΣΤΟ BIZAGI ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΑΥΤΟΔΙΟΙΚΗΣΗΣ 1 Προσομοίωση Η προσομοίωση είναι μέθοδος μελέτης ενός συστήματος και εξοικείωσης με τα χαρακτηριστικά του με

Διαβάστε περισσότερα

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη 7 Nicolas sapatsoulis Βιβλιογραφία Ενότητας Benvenuto []: Κεφάλαιo Wirow

Διαβάστε περισσότερα

Eθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών EMΠ

Eθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών EMΠ Eθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών EMΠ Ανάπτυξη μοντέλου βελτιστοποίησης της κατανομής πόρων για την συντήρηση των λιμένων της Ελλάδας Σωτήριος Χαριζόπουλος Επιβλέποντες: Γιώργος Γιαννής,

Διαβάστε περισσότερα

Kalman Filter Γιατί ο όρος φίλτρο;

Kalman Filter Γιατί ο όρος φίλτρο; Kalman Filter Γιατί ο όρος φίλτρο; Συνήθως ο όρος φίλτρο υποδηλώνει µια διαδικασία αποµάκρυνσης µη επιθυµητών στοιχείων Απότολατινικόόροfelt : το υλικό για το φιλτράρισµα υγρών Στη εποχή των ραδιολυχνίων:

Διαβάστε περισσότερα

Εισαγωγή Αλγόριθµοι Αποτελέσµατα Επίλογος Ορισµός του Προβλήµατος Ευθυγράµµιση : Εύρεση ενός γεωµετρικού µετασχηµατισµού που ϕέρνει κοντά δύο τρισδιάσ

Εισαγωγή Αλγόριθµοι Αποτελέσµατα Επίλογος Ορισµός του Προβλήµατος Ευθυγράµµιση : Εύρεση ενός γεωµετρικού µετασχηµατισµού που ϕέρνει κοντά δύο τρισδιάσ Εισαγωγή Αλγόριθµοι Αποτελέσµατα Επίλογος Αλγόριθµοι Ευθυγράµµισης Τρισδιάστατων Αντικειµένων Τµήµα Πληροφορικής και Τηλεπικοινωνιών Εθνικό & Καποδιστριακό Πανεπιστήµιο Αθηνών 20 Οκτωβρίου 2005 Εισαγωγή

Διαβάστε περισσότερα

Σχεδίαση μαθησιακών δραστηριοτήτων λογιστικά φύλλα υπερμεσικά περιβάλλοντα προσομοιώσεις

Σχεδίαση μαθησιακών δραστηριοτήτων λογιστικά φύλλα υπερμεσικά περιβάλλοντα προσομοιώσεις Σχεδίαση μαθησιακών δραστηριοτήτων λογιστικά φύλλα υπερμεσικά περιβάλλοντα προσομοιώσεις Καθηγητής Τ. Α. Μικρόπουλος Προδιαγραφές Βασικό και αφετηριακό σημείο για τη σχεδίαση μαθησιακών δραστηριοτήτων

Διαβάστε περισσότερα

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Τμηματοποίηση εικόνας Τμηματοποίηση εικόνας Γενικά Διαμερισμός μιας εικόνας σε διακριτές περιοχές

Διαβάστε περισσότερα

Λειτουργία και Απόδοση του Πρότυπου Ανιχνευτή ΝΕΣΤΩΡ

Λειτουργία και Απόδοση του Πρότυπου Ανιχνευτή ΝΕΣΤΩΡ 12 Λειτουργία και Απόδοση του Πρότυπου Ανιχνευτή ΝΕΣΤΩΡ Εισαγωγή Στο παρόν Κεφάλαιο περιγράφεται η λειτουργία και απόδοση του πρότυπου ανιχνευτή ΝΕΣΤΩΡ κατά τη λειτουργία του στη βαθιά θάλασσα. Συγκεκριμένα

Διαβάστε περισσότερα

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης Μάθημα 3ο Δρ. Ανέστης Γ. Χατζημιχαηλίδης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2016-2017 Εξελικτικός Υπολογισμός Ορισμός Βασικές Αρχές Βελτιστοποίησης Κλασικοί Αλγόριθμοι

Διαβάστε περισσότερα

Μοντελοποίηση Προσομοίωση

Μοντελοποίηση Προσομοίωση Μοντελοποίηση Προσομοίωση Σχεδιασμός είναι η διαδικασία μετατροπής των φυσικών νόμων σε μαθηματικές εξισώσεις είναι το κατάλληλο λογισμικό το οποίο χρησιμοποιώντας το μαθηματικό μοντέλο προβλέπει τη συμπεριφορά

Διαβάστε περισσότερα

Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών).

Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών). Μάθημα 5ο Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών). Ο δεύτερος ηλικιακός κύκλος περιλαμβάνει την ηλικιακή περίοδο

Διαβάστε περισσότερα

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή.

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή. Η Αριθµητική Ανάλυση χρησιµοποιεί απλές αριθµητικές πράξεις για την επίλυση σύνθετων µαθηµατικών προβληµάτων. Τις περισσότερες φορές τα προβλήµατα αυτά είναι ή πολύ περίπλοκα ή δεν έχουν ακριβή αναλυτική

Διαβάστε περισσότερα