ΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ. ηµχ = ηµθ χ=2κπ+θ ή χ=2κπ+π-θ, κ Z συνχ = συνθ χ=2κπ+θ ή χ=2κπ-θ, κ Z εφχ = εφθ χ=κπ+θ, κ Z σφχ = σφθ χ=κπ+θ, κ Z
|
|
- Ιωάννα Μεσσηνέζης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Τριγωοµετρικές εξισώσεις ηµχ = ηµθ χ=2κπ+θ ή χ=2κπ+π-θ, κ Z συχ = συθ χ=2κπ+θ ή χ=2κπ-θ, κ Z εφχ = εφθ χ=κπ+θ, κ Z σφχ = σφθ χ=κπ+θ, κ Z Βσικές τριγ. εξισώσεις ηµx = 0 x = κπ ηµx = x = 2κπ+π/2 ηµx = - x = 2κπ+3π/2 συx = 0 x = κπ+π/2 συx = x = 2κπ συx = - x = 2κπ+π εφx = 0 x = κπ σφx = 0 x = κπ+π/2 (κ Ζ) x x επίσης ισχύου : εφ x ηµ, σφ x συ συ x ηµ x = =, εφx σφx =, ηµ 2 x + συ 2 x = ΠΟΛΥΩΝΥΜΑ Γεική µορφή πολυωύµου: χ + - χ χ χ + 0, θετικός κέριος. Συτελεστές πολυωύµου :, -,, ο (µπορεί είι κι πρµετρικοί ) Όροι πολυωύµου : χ, - χ -,, χ, 0 Στθερός όρος : 0 (ό,τι δε πολλπλσιάζετι µε το χ ) Βθµός πολυωύµου : ( ο µεγλύτερος εκθέτης του χ ) Στθερό πολυώυµο: P(χ) = c, ( c στθερός ριθµός) είι µηδεικού βθµού c 0. Μηδεικό πολυώυµο: Ρ(χ) = 0, γι κάθε χ R. ε ορίζετι ο βθµός του. (το µηδεικό είι κι στθερό ) Αηγµέη µορφή : η τελική µορφή που πίρει το πολυώυµο ότ γίου όλες οι δυτές πράξεις. Αριθµητική τιµή : η τιµή που πίρει το πολυώυµο ότ τικτστθεί το χ µε έ ριθµό Ρίζ πολυωύµου : ο ριθµός που το µηδείζει Ίσ πολυώυµ : ότ οι συτελεστές τω οµοιόβθµω όρω τους είι ίσοι. Πολυώυµ σε γεική µορφή: ου βθµού : χ+β, 0. 2 ου βθµού : χ 2 +βχ+γ, 0. 3 ου βθµού : χ 3 +βχ 2 +γχ+δ, 0 κ.ο.κ. Τυτότητ διίρεσης (Τ..) : (χ) = δ(χ) π(χ) + υ(χ) Όπου (χ) ο διιρετέος, δ(χ) ο διιρέτης, π(χ) το πηλίκο κι υ(χ) το υπόλοιπο. Ο βθµός του υ(χ), δε είι το µηδεικό πολυώυµο, είι µικρότερος πό το βθµό του δ(χ) κι όχι πρίτητ πό το βθµό του π(χ). Το υπόλοιπο της διίρεσης Ρ(χ):(χ-ρ) είι το υ=ρ(ρ)
2 Πρδείγµτ: Βθµός Συτελεστές στθερός όρος Ρ(χ)= 4χ 5-6χ 2 + χ - 7/2 5 4, -6,, -7/2-7/2 Q(χ)=2χ 3 -(2-4)χ 2 + 3χ , -(2-4), 3, Φ(χ)= ΙΣΟ ΥΝΑΜΕΣ ΠΡΟΤΑΣΕΙΣ. Ρ(ρ)=0 2. το ρ είι ρίζ του Ρ(χ) 3. το χ-ρ είι πράγοτς του Ρ(χ) 4. το χ-ρ διιρεί το Ρ(χ) 5. το Ρ(χ) διιρείτι µε το χ-ρ 6. η διίρεση Ρ(χ):(χ-ρ) είι τέλει 7. το υπόλοιπο της διίρεσης Ρ(χ):(χ-ρ) είι 0 Οι πρπάω προτάσεις θ τικθιστούτι µε τη η : Ρ(ρ)=0 η οποί είι λγεβρική έκφρση κι µπορεί δουλευτεί. Αποδείξεις. Το υπόλοιπο της διίρεσης Ρ(χ):(χ-ρ) είι το υ=ρ(ρ) Από τη Τ.. έχω : Ρ(χ)=(χ-ρ) π(χ)+υ γι χ =ρ θ έχω: Ρ(ρ) = 0 π(ρ) + υ = υ 2. Το χ-ρ είι πράγοτς του Ρ(χ) κι µόο το ρ είι ρίζ του Ρ(χ) Ευθύ: Έστω ότι το χ-ρ είι πράγοτς του Ρ(χ),τότε θ ισχύει: Ρ(χ) = (χ-ρ) π(χ) άρ Ρ(ρ)=0 π(ρ) = 0 δηλ. το ρ είι ρίζ του Ρ(χ). Ατίστροφ: Έστω ότι το ρ είι ρίζ του Ρ(χ) τότε: Ρ(ρ) = 0 δηλ. υ=0 όπου υ το υπόλοιπο της διίρεσης Ρ(χ):(χ-ρ). Από τη Τ.. έχω : Ρ(χ)=(χ-ρ) π(χ)+υ δηλ. Ρ(χ)=(χ-ρ) π(χ) πό τη οποί φίετι ότι το χ-ρ είι πράγοτς του Ρ(χ). 3. Α µί πολυωυµική εξίσωση µε κέριους συτελεστές, έχει ρίζ έ κέριο ριθµό ρ 0, τότε ο ριθµός υτός είι διιρέτης του στθερού όρου. Έστω η πολυωυµική εξίσωση χ + - χ χ χ + 0 = 0 κι ρ 0 η κέριη ρίζ της. Τότε ρ + - ρ ρ ρ + 0 = 0 ( ρ ρ ρ )ρ + 0 =0 κ ρ + 0 = 0 ( όπου κ= ρ ρ ρ κέριος, σ άθροισµ κερίω) άρ 0 = -κρ. Η τελευτί ισότητ κερίω σηµίει ότι το ρ διιρεί το 0
3 Ορισµοί ΠΡΟΟ ΟΙ Ακολουθί πργµτικώ ριθµώ είι µί τιστοίχιση τω φυσικώ ριθµώ στους πργµτικούς ριθµούς -οστός ή γεικός όρος µις κολουθίς είι ο ριθµός στο οποίο τιστοιχεί ο φυσικός ριθµός κι συµβολίζετι µε Αριθµητική πρόοδος λέγετι µί κολουθί,στη οποί κάθε όρος της προκύπτει πό το προηγούµεο του µε πρόσθεση πάτοτε του ίδιου ριθµού. Αριθµητικός µέσος τω, γ λέγετι ές ριθµός β έτσι ώστε οι ριθµοί :, β, γ είι διδοχικοί όροι ριθµητικής προόδου, κι ισχύει: + γ β = 2 Γεωµετρική πρόοδος λέγετι µί κολουθί,στη οποί κάθε όρος της προκύπτει πό το προηγούµεο του µε πολλπλσισµό επί το ίδιο πάτοτε µη µηδεικό ριθµό. Γεωµετρικός µέσος τω µη µηδεικώ, γ λέγετι ο θετικός ριθµός β έτσι ώστε οι ριθµοί :, β, γ είι διδοχικοί όροι γεωµετρικής προόδου, κι ισχύει: β 2 = γ δηλ. β = γ τ ύ π ο ι 3 Αριθµητική συθήκη ορισµού + = +ω ή + - =ω Γεωµετρική + =.λ ή + / = λ (,, λ 0 ), β, γ διδοχικοί όροι 2β = +γ β 2 = γ -οστός όρος = +(-)ω =. λ - άθροισµ τω πρώτω όρω S ( a a ) [2 a ( ) ] 2 2 = + = + ω S a λ =, λ λ Αποδείξεις. Σε ρ. πρ..δ.ο. = +(-)ω Σύµφω µε το ορισµό της ριθµητικής πρ. έχουµε: = 2 = + ω 3 = 2 + ω 4 = 3 + ω.. - = -2 + ω = - + ω = (-)ω κι µετά τη διγρφή έχουµε: = +(-)ω προσθέτουµε κτά µέλη τις ισότητες κι έχουµε:
4 2. Σε γεωµ. πρ..δ.ο. =. λ - Σύµφω µε το ορισµό της γεωµετρικής πρ. έχουµε: 4 = 2 = λ 3 = 2 λ 4 = 3 λ.. - = -2 λ = - λ πολλπλσιάζουµε κτά µέλη τις ισότητες κι έχουµε: = λ - κι µετά τη διγρφή έχουµε: =. λ - 3. Ν.δ.ο. το άθροισµ τω πρώτω όρω µις γεωµετρικής πρ. µε λόγο λ δίετι πό το τύπο: S λ = a, λ λ Έχουµε: S = δηλ. S = + λ+ λ λ -2 + λ - () Πολλπλσιάζουµε τ µέλη τη: () µε το λόγο λ κι τότε έχουµε: λs = λ+ λ 2 + λ 3 + λ - + λ (2). Αφιρώτς πό τ µέλη της (2),τ µέλη της (), έχουµε τη πρκάτω ισότητ. λs - S = λ - (λ-)s = (λ -) άρ S λ = a ( διοτι λ ) λ Ορισµοί ΕΚΘΕΤΙΚΕΣ - ΛΟΓΑΡΙΘΜΟΙ µ a a µ = όπου: >0, µ κέριος κι θετικός κέριος. H f(x) = x ορίζετι στο R ( δηλ. έχει πεδίο ορισµού το R), ότ >0. Α > είι γ. ύξουσ, < είι γ. φθίουσ κι = είι στθερή στο R, f(x)=. Εκθετική συάρτηση µε βάση το είι η f(x) = x µε >0 κι πεδίο ορισµού : R σύολο τιµώ : (0,+ ). Σηµεί τοµής µε τους άξοες: τέµει µόο το ψ ψ στο ( 0, ) Μοοτοί: > είι γ. ύξουσ, < είι γ. φθίουσ Ασύµπτωτες: > είι ο ηµιάξος Οχ, < είι ο ηµιάξος Οχ Γρφική πράστση : ψ ψ > < 0 x 0 x
5 Ο ριθµός e : e= lim ( + ) 2,78 + Εκθετική συάρτηση λέγετι η f(x) = e x ( όµοι µε τη f(x) = x µε > ) 5 Λογάριθµος του θ µε βάση το όπου θ>0 κι >0 µε, οοµάζετι η µοδική λύση της εξίσωσης x =θ κι συµβολίζετι µε log θ δηλ. ισχύει η ισοδυµί: εκδικός λογάριθµος: logθ δηλ. ότ η βάση =0. άρ log 0 θ = logθ Νεπέρειος λογάριθµος: lnθ δηλ. ότ η βάση =e. άρ log e θ = lnθ x =θ x = log θ Άµεσες συέπειες του ορισµού του log θ (θ>0 κι >0 µε ) log = log x = x a log a θ = θ log a = 0 log0 = log0 x = x 0 logθ = θ λογ = 0 lne= lne x = x e lnθ = θ ln = 0 Ι ΙΟΤΗΤΕΣ ΛΟΓΑΡΙΘΜΩΝ (θ, θ,θ 2 >0 κι >0 µε, κ R ) log (θ θ 2 ) = log θ + log θ 2 log (θ /θ 2 ) = log θ - log θ 2 log θ κ = κ log θ ( * ειδικά θ 0 τότε: log θ 2κ = 2κ log θ ) log log θ = log logθ θ = θ Αλλγή βάσης : ( θ >0 κι,β >0 µε, β ) log logβθ θ = άρ θ έχουµε: log β lnθ logθ = κι ln0 logθ lnθ = log e
6 Λογριθµική συάρτηση είι η f(x) = log x µε >0 κι Πεδίο ορισµού: (0, + ) Σύολο τιµώ: R Σηµεί τοµής µε τους άξοες: τέµει µόο το χ χ στο (, 0) Συµµετρί: είι συµµετρική µε τη g(x) = x ως προς τη διχοτόµο ψ=χ της γωί χοψ. Μοοτοί: > είι γ. ύξουσ, < είι γ. φθίουσ Ασύµπτωτες: > είι ο ηµιάξος Οψ, < είι ο ηµιάξος Οψ Γρφική πράστση: ψ > ψ < 6 0 χ 0 χ \ Αποδείξεις:. Α θ,θ 2 >0 κι >0 µε,.δ.ο. log (θ θ 2 ) = log θ + log θ 2 Απόδειξη: x x2 Έστω log θ = x κι log θ 2 = x 2 (), τότε πό ορισµό έχουµε: = θ κι = θ Εποµέως : πο ορισµο λογριθµου 2 x x2 x+ x2 = θ θ = θ θ x + x = θ θ θ + θ = θ θ () log ( ) log log log ( ) 2. Α θ >0 κι >0 µε, κ R.δ.ο. log θ κ = κ log θ Απόδειξη: Έστω log θ = x () τότε : x =θ άρ κι ( x ) κ = θ κ xκ = θ κ κx = log θ κ ( πό ορισµό λογρίθµου) κ log θ = log θ κ ( πό τη () )
ΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ. ορισµοί. Ι ΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ (κεφ. 2 )
ΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ 1 ορισµοί Ι ΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ (κεφ. 2 ) Γησίως αύξουσα: σε έα διάστηµα του πεδίου ορισµού της λέγεται µια συάρτηση f ότα για κάθε χ 1,χ 2 µε χ 1
Διαβάστε περισσότεραΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ
1 ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1. ) Πότε µι συνάρτηση µε Πεδίο ορισµού το Α ονοµάζετι περιοδική; β) Ποιο είνι το πεδίο ορισµού κι η περίοδος των συνρτήσεων ηµx, συνx, εφx κι σφx;. Περιοδική ονοµάζετι
Διαβάστε περισσότεραα β α < β ν θετικός ακέραιος.
Τυτότητες ( ± ) ± ( ± ) ± ± ( ± ) m (γ) γ γγ - (-)() - (-)( ) - (-)( - - - - ) Α. Βσικές γώσεις ()( - ) ()( - - - - - - ) ΜΟΝΟ ΓΙΑ ΠΕΡΙΤΤΟ. γ --γ-γ [(-) (-γ) (γ-) ] γ -γ (γ)[(-) (-γ) (γ-) ] Αισώσεις. Οι
Διαβάστε περισσότεραπ.χ. 2, 3, π=3,14... Αναλογία λέγεται κάθε ισότητα κλασµάτων και έχουµε τις παρακάτω ιδιότητες : α = 4) β = δ και δ γ β
ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ) ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τ σύολ τω ριθµώ είι τ εξής : ) Οι φυσικοί ριθµοί : Ν {0,,,,... } ) Οι κέριοι ριθµοί : Ζ {...,,,, 0,,,,... } ) Οι ρητοί ριθµοί : Q ρ / κ ρ, κ Z, Z 0 4) Οι άρρητοι
Διαβάστε περισσότεραταυτότητες διάταξη α 2 +β 2 = (α+β) 2-2αβ (α+β) 2 = α 2 +β 2 +2αβ (α+β) 3 = α 3 +β 3 +3α 2 β+3αβ 2 =α 3 +β 3 +3αβ(α+β) α 3 +β 3 = (α+β) 3-3αβ(α+β)
οι άσεις στ µθηµτικά (www. sonom.gr) τυτότητες (+) + + (+) + + + + +(+) + (+) + (+) (+) (+)() + (+)( + ) ()( ++ ) (++γ) + +γ ++γ+γ + +γ γ (++γ)( () +(γ) +(γ) ) (++γ)( + +γ γγ) ()( + + + ) Ν + (+)( + +
Διαβάστε περισσότεραΓ. Ε. ΛΥΚΕΙΟ 2008 ΑΛΓΕΒΡΑ ΤΑΞΗ Β
Γ. Ε. ΛΥΚΕΙΟ 008 81 Γ. Ε. ΛΥΚΕΙΟ 008 8 Α. Ν ποδείξετε ότι ν συν( + β) 0, συν 0 κι συνβ 0 ισχύει: εφ + εφβ εφ( + β) = 1 εφ εφβ Β. Ν χρκτηρίσετε με Σ(σωστό) ή Λ(λάθος)κάθε μι πό τις πρκάτω προτάσεις:. Αν
Διαβάστε περισσότεραΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΤΑΞΗΣ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2003 ΕΚΦΩΝΗΣΕΙΣ
ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΤΑΞΗΣ ΠΕΜΠΤΗ ΜΑΪΟΥ 003 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α. Να αποδείξετε ότι ο ος όρος µιας αριθµητικής προόδου µε πρώτο όρο α 1 και διαφορά ω είαι α = α 1 + (-1)ω. Μοάδες 7 Β. Να γράψετε
Διαβάστε περισσότεραΟ μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:
Ο μθητής που έχει μελετήσει το κεφάλιο υτό θ πρέπει: Ν γωρίζει τις συρτήσεις f( )=, f( )= log, τις βσικές τους ιδιότητες κι μπορεί τις σχεδιάζει. Ν μπορεί επιλύει εκθετικές εξισώσεις, ισώσεις κι εκθετικά
Διαβάστε περισσότεραΦροντιστήρια 2001-ΟΡΟΣΗΜΟ
Φροτιστήρι -ΟΡΟΣΗΜΟ ΟΡΟΣΗΜΟ Άλγεβρ Β Λυκείου Επιμέλει: Σεμσίρης Αριστείδης -- Φροτιστήρι -ΟΡΟΣΗΜΟ - - Φροτιστήρι -ΟΡΟΣΗΜΟ Άλγεβρ Β Λυκείου Περιέχει Συοπτική Θεωρί Μεθοδολογί Ασκήσεω Λυμέες Ασκήσεις Λυμέ
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 ο. 1.1. Οι πράξεις πρόσθεση και πολλαπλασιασµός και οι ιδιότητές τους.
ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ - - ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ ο.. Οι πράξεις πρόσθεση κι πολλπλσισµός κι οι ιδιότητές τους. Πρόσθεση Πολλπλσισµός Ιδιότητ.. Ατιµετθετική (γ)()γ (γ)()γ Προσετιρική (γ)γ Επιµεριστική 0. Ουδέτερο
Διαβάστε περισσότεραΕΚΘΕΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ f (x)=α x,α>0 και α 1 λέγεται εκθετική συνάρτηση
ΔΥΝΑΜΕΙΣ ΜΕ ΕΚΘΕΤΗ ΡΗΤΟ - ΑΡΡΗΤΟ Αν >0, μ κέριος κι ν θετικός κέριος, τότε ορίζουμε: Επιπλέον, ν μ,ν θετικοί κέριοι, ορίζουμε: 0 =0. Πρδείγμτ: 4 4,, 5 5, 4 0 =0. Γενικότερ μπορούμε ν ορίσουμε δυνάμεις
Διαβάστε περισσότεραΜΑΡΙΑ ΓΚΟΥΝΤΑΡΟΠΟΥΛΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η διυσμτική κτί του θροίσμτος τω μιγδικώ i κι γ δi είι το άθροισμ τω διυσμτικώ κτίω τους Α M κι M γ δ είι οι εικόες τω i κι γ δi τιστοίχως
Διαβάστε περισσότεραΠαραδείγµατα στις ακολουθίες. 2. Να γράψετε τους 4 πρώτους όρους των ακολουθιών. 2ν +1. i) α. =, ii)α. = (-1) v. ΛΥΣΗ
ΑΚΟΛΟΥΘΙΕΣ - ΠΡΟΟ ΟΙ 6 Ακολουθίες Ορισµός Ακολουθί λέγετι κάθε συάρτηση, η οποί έχει πεδίο ορισµού το σύολο τω φυσικώ ριθµώ N *. Μί κολουθί συµβολίζετι συήθως µε το γράµµ όπου κάτω δεξιά βάζουµε το δείκτη,
Διαβάστε περισσότεραΗ θεωρία στα Μαθηματικά κατεύθυνσης
Η θεωρί στ Μθημτικά κτεύθυσης Σελίδ πό 3 Ορισμοί Ιδιότητες - Προτάσεις Θεωρήμτ Αποδείξεις Α Μιγδικοί ριθμοί Πότε δυο μιγδικοί είι ίσοι κι πότε ές μιγδικός είι ίσος με ; Δύο μιγδικοί ριθμοί i κι γ δi είι
Διαβάστε περισσότεραΛογάριθμοι. Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έννοια του λογάριθμου Έστω η εξίσωση αx
Λογάριθμοι Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έοι του λογάριθμου Έστω η εξίσωση θ, 0, θ 0. Η εξίσωση υτή έχει μοδική λύση φού η εκθετική συάρτηση f είι γησίως μοότοη κι το θ ήκει στο σύολο τιμώ της. Τη μοδική
Διαβάστε περισσότεραΘεωρήματα και προτάσεις με τις αποδείξεις τους
Θεωρήμτ κι προτάσεις με τις ποδείξεις τους Μιγδικοί Ιδιότητες συζυγώ: Α i κι i δ γ είι δυο μιγδικοί ριθμοί, τότε: 3 4 Αποδεικύοτι με εφρμογή του ορισμού κι πράξεις Γι πράδειγμ έχουμε: i δ γ δi γ i i i
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ ΤΗΣ Β. Προηγούµενες και απαραίτητες γνώσεις
Μαρτάκης Μάρτης Μαθηµατικός του 1 ου ΓΕΛ Ρόδου 1 ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β Προηγούµενες και απαραίτητες γνώσεις 1. σε ορθογώνιο τρίγωνο µε 30 ο, η απέναντι 30 ο κάθετη είναι το µισό της υποτείνουσας α και αντίστροφα.
Διαβάστε περισσότεραΘΕΩΡΗΜΑΤΑ (των οποίων πρέπει να ξέρουμε & τις αποδείξεις) από το σχολικό βιβλίο της ΤΕΧΝΟΛΟΓΙΚΗΣ & ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ Λυκείου
Θεωρήμτ θετικής-τεχολογικής κτεύθυσης ΘΕΩΡΗΜΑΤΑ (τω οποίω πρέπει ξέρουμε & τις ποδείξεις πό το σχολικό βιβλίο της ΤΕΧΝΟΛΟΓΙΚΗΣ & ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ Λυκείου υ υ όπου υ το υπόλοιπο της διίρεσης του με
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ
ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ Çëéáó Óêáñäáíáó - Ìáèçìáôéêïó. Στθερές. π = 03,459 6535 89793 3846 643... e = 0,788 884 59045 3536 087... e π = 3,4069 637 7969 006... π e =,4595 7783 6045 4734 75... e e = 5,546 44
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΩΡΗΜΑΤΑ ΠΡΟΤΑΣΕΙΣ µε ΑΠΟ ΕΙΞΕΙΣ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ µε ΑΠΑΝΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΤΟΥ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΚΑΙ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Αιστάι 30 Αµφιάλη 43890-43
Διαβάστε περισσότεραΕπομένως μια ακολουθία α είναι γεωμετρική πρόοδος αν και μόνο αν ισχύει α, δηλαδή το πηλίκο δύο διαδοχικών όρων είναι σταθερό.
Ε. 5. Γεωμετρική Πρόοδος Απρίτητες γώσεις Θεωρίς Γεωμετρική πρόοδος Γεωμετρική Πρόοδο (Γ.Π.) οομάζουμε μι κολουθί κάθε όρος της προκύπτει πό το προηγούμεό του με πολλπλσισμό επί το ίδιο πάτοτε μη μηδεικό
Διαβάστε περισσότεραΕ π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ
Ε π ι μ έ λ ε ι Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Σ Τ Α Τ Ι Σ Τ Ι Κ Η. Τι οομάζετι πληθυσμός μις σττιστικής έρευς; Οομάζετι το σύολο τω τικειμέω (έμψυχω ή άψυχω γι τ οποί συλλέγοτι στοιχεί.. Τι οομάζετι άτομο
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ
ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ Στθερές. π = 03,459 6535 89793 3846 643... e = 0,788 884 59045 3536 087... e π = 3,4069 637 7969 006... π e =,4595 7783 6045 4734 75... e e = 5,546 44 7964 90... = 0,44 3563 73095
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΑΠΑΝΤΗΣΕΙΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ε_.ΜλΓΑ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηία: Κυριακή Απριλίου ΘΕΜΑ A ΑΠΑΝΤΗΣΕΙΣ Α.. Θεωρία Σχολικό Βιλίο (έκδοση ) σελίδα 9. Α.. Θεωρία Σχολικό Βιλίο
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΑΠΑΝΤΗΣΕΙΣ
ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηία: Κυριακή Απριλίου ΑΠΑΝΤΗΣΕΙΣ Α.. Θεωρία Σχολικό Βιβλίο (έκδοση ) σελίδα 9. Α.. Θεωρία Σχολικό Βιβλίο (έκδοση
Διαβάστε περισσότεραΚ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ
Ε π ι μ έ λ ε ι Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Η Έοι του Ορίου Ορισμός Ότ οι τιμές μις συάρτησης f προσεγγίζου όσο θέλουμε έ πργμτικό ριθμό, κθώς το προσεγγίζει με οποιοδήποτε τρόπο το ριθμό, τότε γράφουμε:
Διαβάστε περισσότεραΠαρατηρήσεις. Παρατήρηση Ισχύουν οι επόµενες ισότητες: Προσέχουµε: Αν α 0και ν θετικός ακέραιος τότε η µη αρνητική ρίζα της εξίσωσης.
ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΟΡΙΣΜΟΣ Α κι θετικός κέριος τότε η µη ρητική ρίζ της εξίσωσης λέγετι ιοστή ρίζ του κι συµολίζετι. ηλδή = Γράφουµε: = = ( ) = κι = Πρτηρήσεις. Ο συµολισµός έχει όηµ µόο ότ. Στη πράστση
Διαβάστε περισσότεραη οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α 1, τότε έχουμε τη σταθερή συνάρτηση f x 1.
Εκθετική συνάρτηση Αν θετικός πργμτικός ριθμός, σε κάθε ντιστοιχεί η δύνμη. Έτσι ορίζετι η συνάρτηση : f : με f, 0 η οποί ονομάζετι εκθετική συνάρτηση με βάση. Αν, τότε έχουμε τη στθερή συνάρτηση f. Ας
Διαβάστε περισσότερα1o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΑ ΟΡΙΣΜΟΣ ( ) Αριθµητική τιµή του πολυώνυµου ( ) Το πολυώνυµο ( ) = = =.
ΠΟΛΥΩΝΥΜΑ ΟΡΙΣΜΟΣ Πλυώυµ τυ x λέγετι κάθε πράστση της µρφής : x + x ++ x+ όπυ,,,, είι στθερί πργµτικί ριθµί κι φυσικός ριθµός Τ πλυώυµ τυ x συµβλίζυµε: f( x ), g( x ), f x = x + x ++ x+ h x,, πότε γράφυµε:
Διαβάστε περισσότεραΕκθετική - Λογαριθµική συνάρτηση
Εκθετική - ογριθµική συνάρτηση Ορισµός δύνµης µε εκθέτη θετικό κέριο..., νν> ν 0 Ορίζουµε: ν πράγοντες,, γι 0., ν ν Αν ν θετικός κέριος, ορίζουµε: ν -ν. ν µ ν ν µ ν Αν >0, µ κέριος κι ν θετικός κέριος,
Διαβάστε περισσότεραΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΟΡΙΣΜΟΙ ΘΕΩΡΗΜΑΤΑ ΤΥΠΟΙ ΧΩΡΙΣ ΑΠΟΔΕΙΞΗ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ
ΟΡΙΣΜΟΙ ΘΕΩΡΗΜΑΤΑ ΤΥΠΟΙ ΧΩΡΙΣ ΑΠΟΔΕΙΞΗ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Το σύολο C τω μιγδικώ ριθμώ είι έ υπερσύολο του συόλου R τω πργμτικώ ριθμώ, στο οποίο: Επεκτείοτι οι πράξεις της πρόσθεσης κι του πολλπλσισμού έτσι,
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΤ/ΝΣΗΣ ΘΕΩΡΙΑ - ΑΠΟΔΕΙΞΕΙΣ
Επιμέλει - Κ Μυλωάκης Ν δείξετε ότι: ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΤ/ΝΣΗΣ ΘΕΩΡΙΑ - ΑΠΟΔΕΙΞΕΙΣ i γ δi γ δ δ γ i Γι το πολλπλσισμό δύο μιγδικώ i κι γ δi έχουμε: i γ δi γ δi i γ δi γ δi γi i δi γ δi γi δi γ δi γi δ γ δ
Διαβάστε περισσότεραΠ ρ ό λ ο γ ο ς. Το βιβλίο αυτό γράφτηκε με στόχο την πληρέστερη προετοιμασία των μαθητών μας.
Π ρ ό λ ο γ ο ς Το ιλίο υτό γράφτηκε με στόχο τη πληρέστερη προετοιμσί τω μθητώ μς. Περιέχει συοπτική θεωρί,πρωτότυπες σκήσεις λλά κι θέμτ εξετάσεω τω τελευτίω ετώ του σχολείου μς. Ελπίζουμε ποτελέσει
Διαβάστε περισσότεραΤΖΕΜΠΕΛΙΚΟΥ ΚΑΤΕΡΙΝΑ ΜΑΘΗΜΑΤΙΚΟΣ
ΘΕΜΑ Α, είι µιγδικοί ριθµοί, τότε κι κι επειδή η τελευτί σχέση ισχύει, θ ισχύει κι η ισοδύη ρχικική. Αάλογ ποδεικύετι κι η δεύτερη ιδιότητ ΘΕΜΑ Όριο πολυωυµικής συάρτησης Α -... P πολυώυµο του κι R, δείξετε
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Β ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο
ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Β ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ 1 ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο A. α) Αν α>0 και α 1,τότε για οποιουσδήποτε θ 1, θ >0 να δείξετε ότι log α (θ 1. θ )=log α θ 1 +log
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΓΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A Α.. Α.. Α.. A.4. Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηία:
Διαβάστε περισσότεραΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΛΛΟ ΕΠΑΝΑΛΗΨΗΣ 1
ΘΕΜΑ Α ΦΥΛΛΟ 1 Α1. Να αποδείξετε ότι το υπόλοιπο υ της διαίρεσης ενός πολυωνύμου P(x) με το x - ρ είναι ίσο με την τιμή του πολυωνύμου για x = ρ. Είναι δηλαδή υ = P(ρ). Α. Να χαρακτηρίσετε τις προτάσεις
Διαβάστε περισσότεραΟ μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:
Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Να γωρίζει τη έοια της ακολουθίας, τους τρόπους που ορίζεται, τις διαφορές της από μία συάρτηση. Να γωρίζει τους ορισμούς της αριθμητικής και γεωμετρικής
Διαβάστε περισσότεραΆλγεβρα και Στοιχεία Πιθανοτήτων Θεωρία & Σχόλια
Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Άλγερ κι Στοιχεί Πιθοτήτω Θεωρί & Σχόλι 014 015 ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ 1 ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ
Διαβάστε περισσότεραΔ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Ταυτότητες ΤΑΥΤΟΤΗΤΕΣ
Δ/ση Β /θµις Εκπ/σης Φλώρις Κέτρο ΠΛΗ.ΝΕ.Τ. Τυτότητες ΤΑΥΤΟΤΗΤΕΣ Τυτότητ ποκλείτι η ισότητ άµεσ σε δύο λγερικές πρστάσεις, η οποί ληθεύει γι όλες τις τιµές τω µετλητώ πό τις οποίες ε- ξρτώτι οι λγερικές
Διαβάστε περισσότεραΤΟ ΣΥΝΟΛΟ C ΤΩΝ ΜΙΓΑ ΙΚΩΝ
Μθηµτικά Κτεύθυσης Γ Λυκείου ΘΕΩΡΙΑ ΤΟ ΣΥΝΟΛΟ C ΤΩΝ ΜΙΓΑ ΙΚΩΝ Το σύολο C τω µιγδικώ ριθµώ είι έ υπερσύολο του συόλου R τω πργµτικώ ριθµώ, στο οποίο: Επεκτείοτι οι πράξεις της πρόσθεσης κι του πολλπλσισµού
Διαβάστε περισσότεραΟρισμος Μια ακολουθια ονομαζεται αριθμητικη προοδος, αν και μονο αν, υπαρχει ω, τετοιος ωστε για κάθε ν να ισχυει: α. ν ν
AΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Α κ ο λ ο υ θ ι ε ς Ορισμος. Ν δειχτει οτι + 0 0. Ποτε ισχυει το ισο; Κθε συρτηση. A :, β * θετικοι οομζετι, συγκριετι κολουθι τους ριθμους πργμτικω Α = ριθμω. + β, Β = β + β. * Η τιμη
Διαβάστε περισσότεραρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης
ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ρρ ΑΠΑΝΤΗΣΕΙΣ Επιµέλει: Οµάδ Μθηµτικώ της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ευτέρ, 7 Μ ου Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α A. Έστω f μι συεχής συάρτηση σε έ διάστημ [, β]. Α G είι μι πράγουσ
Διαβάστε περισσότερα+ 4 µε x >0. x = f(x) f(t) dt. Άρα από κριτήριο παρεµβολής lim f(t) dt = 4.
993 ΘΕΜΑΤΑ. ίετι η συάρτηση f() = + + µε >. ) Ν εξετάσετε τη µοοτοί της συάρτησης f. β) Ν υπολογίσετε το lim f(t) dt. + + ) Έχουµε f () = () + ( + ) ( + ) + = + (+ ) ( + ) = - 3 + + = - 3 . + +
Διαβάστε περισσότερα1o ΓΕ.Λ. Λιβαδειάς Μαθηματικά Προσανατολισμού Ορισμοί Θεωρήματα- Αποδείξεις- Γεωμετρικές ερμηνείες- Σχόλια Αντιπαραδείγματα - Παρατηρήσεις.
o ΓΕΛ Λιδειάς Μθημτικά Προστολισμού Ορισμοί Θεωρήμτ- Αποδείξεις- Γεωμετρικές ερμηείες- Σχόλι Ατιπρδείγμτ - Πρτηρήσεις* ΟΡΙΣΜΟΣ ος πργμτική συάρτησησελ5 Έστω Α έ υποσύολο του Οομάζουμε πργμτική συάρτηση
Διαβάστε περισσότεραΗ θεωρία στα Μαθηματικά κατεύθυνσης :
Σελίδ πό 45 Η θεωρί στ Μθημτικά κτεύθυσης : Ορισμοί Ιδιότητες - Προτάσεις Θεωρήμτ Αποδείξεις Α Μιγδικοί ριθμοί Πότε δυο μιγδικοί είι ίσοι κι πότε ές μιγδικός είι ίσος με ; Δύο μιγδικοί ριθμοί ισχύει: βi
Διαβάστε περισσότεραΟρισμοί των εννοιών Τύποι και ιδιότητες Βασική μεθοδολογία
Θάση Π. Ξέου Απρίτητο βοήθημ γι κάθε μθητή Λυκείου Ορισμοί τω εοιώ Τύποι κι ιδιότητες Βσική μεθοδολογί ΘΕΣΣΑΛΟΝΙΚΗ Πρόλογος Τ ο βιβλιράκι που κρτάς στ χέρι σου, μοδικό στη ελληική βιβλιογρφί, θ σου φεί
Διαβάστε περισσότεραΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ
ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. Δίνετι η εκθετική συνάρτηση: f a Γι ποιες τιμές του η ) γνησίως ύξουσ; β) γνησίως φθίνουσ; ( ) είνι:. Δίνοντι οι
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου].
ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: 3. 3.4 Μέρος Β του σχολικού ιλίου]. ΣΗΜΕΙΩΣΕΙΣ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ Εμδό προλικού χωρίου Έστω ότι θέλουμε ρούμε
Διαβάστε περισσότεραΗ θεωρία στα Μαθηματικά κατεύθυνσης :
Σελίδ πό 5 Η θεωρί στ Μθημτικά κτεύθυσης : Ορισμοί Ιδιότητες - Προτάσεις Θεωρήμτ Αποδείξεις Α Μιγδικοί ριθμοί Πότε δυο μιγδικοί είι ίσοι κι πότε ές μιγδικός είι ίσος με ; Δύο μιγδικοί ριθμοί ισχύει: βi
Διαβάστε περισσότεραΓ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ
Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Ορισμοί τω εοιώ κι θεωρήμτ χωρίς πόδειξη ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Πως ορίζετι το σύολο C τω μιγδικώ ριθμώ; Το σύολο C τω μιγδικώ ριθμώ είι έ υπερσύολο του συόλου R τω
Διαβάστε περισσότεραΗ Θεωρία σε 99 Ερωτήσεις
Μθημτικά Κτεύθυσης Γ Λυκείου Η Θεωρί σε 99 Ερωτήσεις Ορισμοί, Θεωρήμτ 4 Μθημτικά Κτεύθυσης Γ Λυκείου Ερωτήσεις Θεωρίς Ορισιμοί θεωρήμτ με πτήσεις Μ Ππγρηγοράκης Μθημτικά Κτεύθυσης Γ Λυκείου Ερωτήσεις Θεωρίς
Διαβάστε περισσότεραΣΑΜΑΡΑΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΚΩΣΤΑΚΗΣ ΛΑΜΠΡΟΣ
Ρίζες πργμτικώ ριθμώ Τετργωική ρίζ πργμτικού ριθμού Ορισμός: Η τετργωική ρίζ εός μη ρητικού ριθμού είι ο μη ρητικός ριθμός β που ότ υψωθεί στο τετράγωο μς δίει το, δηλδή: = β β =,, β Πρτήρηση: Η ορίζετι
Διαβάστε περισσότεραΟΡΙΑ - ΣΥΝΕΧΕΙΑ. Πόσα είδη ορίων υπάρχουν; Τι είναι το +, - ; Τι ονοµάζουµε γειτονιά ή περιοχή του x o ; Τι ονοµάζουµε γειτονιά του +, - ;
ΟΡΙΑ - ΣΥΝΕΧΕΙΑ Πόσ είδη ορίω υπάρχου; Υπάρχει όριο στο κι είι πργµτικός ριθµός (πεπερσµέο) Υπάρχει όριο στο κι είι, - (µη πεπερσµέο) Υπάρχει όριο στο ή - κι είι πργµτικός ριθµός. Υπάρχει όριο στο ή -
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ. Σύνολο τιμών της f λέμε το σύνολο που έχει για στοιχεία του τις τιμές της f σε όλα τα.
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ Β Γενικό μέρος των συνρτήσεων Τι λέμε σύνολο τιμών μις συνάρτησης με πεδίο ορισμού το σύνολο A ; Σύνολο τιμών της λέμε το σύνολο που έχει γι στοιχεί του τις τιμές
Διαβάστε περισσότεραΟρισμός : Ακολουθία ονομάζεται κάθε συνάρτηση με πεδίο ορισμού το σύνολο Ν* των θετικών ακεραίων και παίρνει τιμές στο R. a: Ν* R
64 Aκοουθίες Ορισμός : Ακοουθί οομάζετι κάθε συάρτηση με πεδίο ορισμού το σύοο Ν* τω θετικώ κερίω κι πίρει τιμές στο R. a: Ν* R H τιμή μί κοουθίς στο συμβοίζετι με Αδρομικός Τύπος Ακοουθίς: Οομάζετι μί
Διαβάστε περισσότερα3. Να δειχτει οτι α α. Ποτε ισχυει το ισον;
ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ Ο ρ ι σ μ ο ς Μι κολουθι οομζετι γεωμετρικη προοδος, κι μοο, υπρχει λ, τετοιος ωστε. γι A κθε, β θετικοι, συγκριετι τους ριθμους Α = + β, Β = β + β + + = λ η = λ * 3. Ν δειχτει οτι +
Διαβάστε περισσότεραΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΛΥΚΕΙΟΥ 2004 ΕΚΦΩΝΗΣΕΙΣ. log x2
ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ1ο Α. Αν > 0 µε 1, θ > 0 κι k R, ν δείξετε ότι ισχύει: log θ k klog θ. Μονάδες 9 Β. Ν χρκτηρίσετε τις ροτάσεις ου κολουθούν γράφοντς στο τετράδιό σς
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
3 ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ Α ΘΕΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ Βγγέλης Α Νικολκάκης Μθημτικός ΛΙΓΑ ΛΟΓΙΑ Η προύσ εργσί μµου δε στοχεύει πλά στο κυήγι του 5,δηλδή τω μµοάδω του
Διαβάστε περισσότεραΘΕΩΡΙΑ ΠΙΝΑΚΩΝ τοποθετημένους σε μ γραμμές και v στήλες. Το σύμβολο. λέγεται πίνακας διάστασης μ x ν. α α
ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ Θεωρούμε μ ριθμούς ij, i,,, μ κι j,,, τοποθετημέους σε μ γρμμές κι v στήλες Το σύμολο μ μ λέγετι πίκς διάστσης μ Οι ριθμοί ij λέγοτι στοιχεί του πίκ Α Ο πίκς Α μπορεί συμολιστεί ως Α[ [
Διαβάστε περισσότεραΕπαναληπτικά θέµατα Θεωρίας Γ Λυκείου
Επληπτικά θέµτ Θεωρίς Γ Λυκείου Α i κι γ δi είι δυο µιγδικοί ριθµοί τότε: 3 4 Οι ιδιότητες υτές µπορού ποδειχτού µε εκτέλεση τω πράξεω Γι πράδειγµ έχουµε: i γ δi γ δ i γ δ i i γδi Οι πρπάω ιδιότητες κι
Διαβάστε περισσότεραQwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj
Qwφιertuiopasdfghjklzερυυξnmηq σwωψertuςiopasdρfghjklzcvbn mqwertuiopasdfghjklzcvbnφγιmλι qπςπζwωeτrtuτioρμpκaλsdfghςj ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ klzcvλοπbnmqwertuiopasdfghjklz ΤΗΣ Γ ΛΥΚΕΙΟΥ ΑΠΟΔΕΙΞΕΙΣ
Διαβάστε περισσότερα1 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 2008
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 008 α). Να αποδείξετε ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου Ρ(x) με το πρωτοβάθμιο πολυώνυμο x ρ ισούται με την αριθμητική τιμή του Ρ(x) για x =
Διαβάστε περισσότεραΟ μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση:
Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει α είαι σε θέση: 1 Να μπορεί α βρίσκει απο τη γραφική παράσταση μιας συάρτησης το πεδίο ορισμού της το σύολο τιμώ της τη τιμή της σε έα σημείο x 2
Διαβάστε περισσότεραΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. Υπάρχει ένα στοιχείο i τέτοιο, ώστε i 1, Κάθε στοιχείο z του γράφεται κατά μοναδικό τρόπο με τη μορφή i, όπου,
ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Ποιο είι το Σύολο τω Μιγδικώ Αριθμώ; Το σύολο τω μιγδικώ ριθμώ είι έ υπερσύολο του συόλου τω πργμτικώ ριθμώ, στο οποίο: Επεκτείοτι οι πράξεις της πρόσθεσης κι του πολλπλσισμού έτσι, ώστε
Διαβάστε περισσότερα1.6 ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ x
ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 7 6 ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ Στο σχήμ 4 έχουμε τη γρφιή πράστση μις συάρτησης οτά στο Πρτηρούμε ότι, θώς το ιούμεο με οποιοδήποτε τρόπο πάω στο άξο πλησιάζει το πργμτιό ριθμό, οι
Διαβάστε περισσότεραα+ βi, όπου α, ii) Ο µιγαδικός α+ βi είναι ίσος µε το µηδέν αν και µόνο αν α= 0 και β = 0
Επιµέλει: Βιτσξής Μιχάλης ΑΠΟΔΕΙΞΕΙΣ- ΕΡΩΤΗΣΕΙΣ ΤΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Περίοδος: - Τι οοµάζουµε µιγδικό ριθµό Μιγδικός ριθµός είι κάθε ριθµός που έχει τη µορφή + i, όπου, R κι i Τι λέγετι πργµτικό κι τι φτστικό
Διαβάστε περισσότεραΟρισμοί των εννοιών και θεωρήματα χωρίς απόδειξη
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ http://ddethr Ορισμοί τω εοιώ κι θεωρήμτ χωρίς πόδειξη ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Τι είι το σύολο τω μιγδικώ ριθμώ; Το σύολο τω μιγδικώ ριθμώ είι έ υπερσύολο του συόλου τω πργμτικώ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Θεωρία & Σχόλια
Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θετικής & Τεχολογικής Κτεύθυσης ΜΑΘΗΜΑΤΙΚΑ Θεωρί & Σχόλι 4 5 ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Ορισμοί τω εοιώ κι θεωρήμτ χωρίς πόδειξη ΜΙΓΑΔΙΚΟΙ
Διαβάστε περισσότερα( ) x 3 + ( λ 3 1) x 2 + λ 1
Επαναληπτικό Διαγώνισµα Άλγεβρα Β Λυκείου Θέµα Α Α1. Έστω η πολυωνυµική εξίσωσης α ν χ ν + α ν 1 χ ν 1 +... + α 1 χ + α 0 = 0, µε ακέραιους συντελεστές. Να αποδείξετε ότι αν ο ακέραιος ρ 0 είναι ρίζα της
Διαβάστε περισσότεραΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ
ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΡΑΓΩΓΟΙ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ [f(x) + g(x)] = f (x) + g (x) (fg) (x) = f (x)g(x) + f(x)g (x) 3 f g (x) = f (x)g(x) f(x)g (x) [g(x)] ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ Έστω f φ(x) τότε:
Διαβάστε περισσότεραΓιώργος Νάνος Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΠΑΡΑΤΗΡΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ. Άλγεβρα. Ενιαίου Λυκείου
Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΠΑΡΑΤΗΡΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ Άλγεβρ Β Ενιίου Λυκείου Άλγεβρ B Λυκείου Περιεχόμεν ΚΕΦΑΛΑΙΟ : Τριγωνομετρί Η θεωρί με Ερωτήσεις Ασκήσεις & Προβλήμτ ΚΕΦΑΛΑΙΟ : Πολυώνυμ
Διαβάστε περισσότεραν παραγοντες 1 ( ) β β α β α α α γ + β γ = α+ γ γ
B ΓΥΜΝΑΣΙΟΥ υάµεις Ορισµός =... πργοτες 1 = = 1µε Ιδιότητες µ = µ : = µ ( ) = = = ( ) µ µ + µ = µε µε, Αλγερικές πρστάσεις Επιµεριστική ιδιότητ γωγή οµοίω όρω. γ + γ = + γ ( ) Χρήσιµες ιδιότητες τω πράξεω
Διαβάστε περισσότεραβ ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a,
ΕΡΩΤΗΣΕΙΣ Σ Λ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΑΔΙΚΩΝ - Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς στο τετράδιό σς την ένδειξη σωστό ή λάθος δίπλ στο γράμμ που ντιστοιχεί σε κάθε πρότση
Διαβάστε περισσότερα1.1.Οι πράξεις και οι ιδιότητές τους ΙΔΙΟΤΗΤΕΣ ΔΥΝΑΜΕΩΝ
Ζωοδόχου Πηγς Σλμί Τηλ 466- /4644..Οι πράξεις ι οι ιδιότητές τους i Στο προομστεός λάσμτος ΑΠΑΓΟΡΕΥΕΤΑΙ έχουμε το μηδέ γιτί το λάσμ δε ορίζετι.,.π.χ: δε ορίζετι i Ότ ο ριθμητς εός λάσμτος είι ίσος με το
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΩΡΙΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ Όλη η θεωρί γι τις πελλήιες Εξετάσεις Κ Κρτάλη 28 με Δημητριάδος Τηλ 242 32 598 Περιεχόμε ΚΕΦΑΛΑΙΟ 2 Ο ΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 2 2 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 2
Διαβάστε περισσότερα1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ
5 ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονί συνάρτησης Οι έννοιες γνησίως ύξουσ συνάρτηση, γνησίως φθίνουσ συνάρτηση είνι γνωστές πό προηγούμενη τάξη Συγκεκριμέν,
Διαβάστε περισσότεραΘΕΩΡΙΑ ΚΕΦΑΛΑΙΟ 1 Ο. Παράγραφος 1.1. Ποιο πείραμα λέγεται αιτιοκρατικό και ποιο πείραμα τύχης;
ΘΕΩΡΙΑ ΚΕΦΑΛΑΙΟ 1 Ο Πράγρφος 1.1 Ποιο πείρμ λέγετι ιτιοκρτικό κι ποιο πείρμ τύχης; Τι οομάζουμε χώρο εός πειράμτος τύχης; Τι λέμε εδεχόμεο εός πειράμτος τύχης; Ποιο εδεχόμεο λέγετι πλό κι ποιο σύθετο;
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Κυριακή 7 Απριλίου 2013 ιάρκεια Εξέτασης: 2 ώρες ΑΠΑΝΤΗΣΕΙΣ
ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνί: Κυρική 7 Απριλίου ιάρκει Εξέτσης: ώρες ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α.. Βλέπε πόδειξη () σελ.75 σχολικού βιβλίου Α.. ) Βλέπε τον ορισµό στη σελίδ
Διαβάστε περισσότεραΆλγεβρα Γενικής Παιδείας Β Λυκείου 2001
Άλγεβρα Γενικής Παιδείας Β Λυκείου 00 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο Α.. Α.. Έστω η πολυωνυµική εξίσωση α ν x ν + α ν- x ν- +... + α x + α 0 0, µε ακέραιους συντελεστές. Αν ο ακέραιος ρ 0 είναι ρίζα της εξίσωσης,
Διαβάστε περισσότεραΣΗΜΕΙΩΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ
ΚΑΛΟΚΑΙΡΙΝΟ ΜΑΘΗΜΑΤΙΚΟ ΣΧΟΛΕΙΟ ΕΜΕ ΛΕΠΤΟΚΑΡΥΑ ΠΙΕΡΙΑΣ 0 ΣΗΜΕΙΩΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Αργύρης Φελλούρης Απληρωτής Κθηγητής ΕΜΠ ΚΕΦΑΛΑΙΟ Ι ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Στο Κεφάλιο υτό θεωρούμε γωστές τις σικές
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ
ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 0 ΙΟΥΝΙΟΥ 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
Διαβάστε περισσότεραςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός
ςες ΤΕΤΡΑΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παραπάνω φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια κυρίως στους μαθητές
Διαβάστε περισσότεραΕΦΑΡΜΟΓΕΣ. είναι ακέραιος.
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ ΕΦΑΡΜΟΓΕΣ Αν ο είνι κέριος κι ο ( ) είνι κέριος ΑΠΟΔΕΙΞΗ Επειδή τ δυντά υπόλοιπ του με τον είνι 0,,, ο κέριος έχει μί πό τις μορφές κ ή κ, κ Z Αν κ, κ Z ) κ (κ ) κ(9κ
Διαβάστε περισσότεραΘΕΜΑΤΑ. συνα ημ2α = ημα Μονάδες συν2α Β. Να λυθεί η εξίσωση: 2ημx = συν2x 1
ΓΕΛ ΑΛΓΕΒΡΑ Α 1 ΓΕΛ ΑΛΓΕΒΡΑ Β 55 Α. Αν συν( + β) 0, συν 0 κι συνβ 0 ν δείξετε ότι εφ( + β) = εφ + εφβ 1 εφ εφβ Β. Ν χρκτηρίσετε ως Σ(σωστό) ή ως Λ(Λάθς) τις πρκάτω πρτάσεις:. Ισχύει: συν( + β) = ημ ημβ
Διαβάστε περισσότεραΑλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. α Rκαι. Rτότε
Αλγεβρ Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΤΥΠΟΙ Ι ΙΟΤΗΤΕΣ ΥΝΑΜΕΩΝ I. ν... ν πράγοντες, ν, ν ν> ν Rκι ν Ν II. ν, ν µ, ν Ν µ ν ν µ, >, µ Ζ, µ ν ν Ν κι εάν Ορισµός : Αν > κι
Διαβάστε περισσότεραΑ. ΕΞΙΣΩΣΕΙΣ ΣΥΣΤΗΜΑΤΑ = Γ. β1 = β2
Α. ΕΞΙΣΩΣΕΙΣ ΣΥΣΤΗΜΑΤΑ ΕΙΔΗ ΕΞΙΣΩΣΗΣ ( ΔΙΕΡΕΥΝΗΣΗ ΕΞΙΣΩΣΗΣ): i. αχ=β µε α 0 έχει µία λύση ii. 0χ=β µε β 0 αδύατη εξίσωση ( καµία λύση ) iii. 0χ=0 αόριστη εξίσωση ( άπειρες λύσεις ) ΕΙΔΗ ΣΥΣΤΗΜΑΤΟΣ (ΔΙΕΡΕΥΝΗΣΗ
Διαβάστε περισσότεραBbs. ΑΛΓΕΒΡΑ ΣΥΝΟΛΑ Σύνολο Φυσικών αριθμών: N = {0,1,2, } Σύνολο Ακέραιων αριθμών: Z = {,-2,-1,0,1,2, } Σύνολο Ρητών αριθμών: Q = {
ΑΛΓΕΒΡΑ ΣΥΝΟΛΑ Σύνολο Φυσικών αριθμών: N = {0,1,2, } Σύνολο Ακέραιων αριθμών: Z = {,-2,-1,0,1,2, } Σύνολο Ρητών αριθμών: Q = { Άρρητοι αριθμοί A: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών αριθμών R=
Διαβάστε περισσότερα2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i.
. Πολυώνυμ η Μορφή Ασκήσεων: Ασκήσεις στις βσικές έννοιες του πολυωνύμου. Ποιες πό τις πρκάτω πρστάσεις είνι πολυώνυμ του i. ii. iii. iv. v. vi. 5 Σύμφων με τον ορισμό πολυώνυμ του είνι οι πρστάσεις i,
Διαβάστε περισσότεραf (x) = g(x) p(x) = q(x). ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ
ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ ΓΕΝΙΚΑ ΠΕΡΙ ΕΞΙΣΩΣΕΩΝ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ Έστω f (x), g(x) είνι δύο πρστάσεις µις µετβλητής x πού πίρνει τιµές στο σύνολο Α. Εξίσωση µε ένν άγνωστο λέγετι κάθε ισότητ της µορφής f (x) =
Διαβάστε περισσότεραΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ
Γι μθητές Β & Γ Λυκείου ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΧΩΡΙΣ ΤΗ ΧΡΗΣΗ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΧΩΡΙΣ ΤΗ ΧΡΗΣΗ ΤΗΣ ΠΑΡΑΓΩΓΟΥ Πολλές συνρτήσεις μπορούν ν πρστθούν γρφικά, χωρίς τη
Διαβάστε περισσότερα( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης:
Πγκόσμιο χωριό γνώσης.3. ΣΥΝΑΡΤΗΣΕΙΣ.3.1. Ορισμός συνάρτησης: 6 Ο ΜΑΘΗΜΑ Συνάρτηση f / A B, ονομάζετι η διδικσί (νόμος ) που ντιστοιχίζει κάθε στοιχείο του συνόλου Α ( πεδίο ορισμού ) σε έν μόνο στοιχείο
Διαβάστε περισσότεραΕΚΘΕΤΙΚΗΣΥΝΑΡΤΗΣΗ-ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ
Εκθετική συνάρτηση Αν θετικός πργμτικός ριθμός, σε κάθε ντιστοιχεί η δύνμη. Έτσι ορίζετι η συνάρτηση : f : με f, 0 η οποί ονομάζετι εκθετική συνάρτηση με βάση. Αν, τότε έχουμε τη στθερή συνάρτηση f. Ας
Διαβάστε περισσότεραΤΡΙΓΩΝΟΜΕΤΡΙΑ ΘΕΜΑ 1. ημ x. 1 σφx 1 σφx 4 ΘΕΜΑ γ ε. 2 δ. 1
1 ΤΡΙΓΩΝΟΜΕΤΡΙΑ 1. Να αποδείξετε ότι: 1 σφ 1 σφ ΘΕΜΑ 1. Nα λύσετε την εξίσωση: ημ 1 σφ 1σφ 4 ΘΕΜΑ Α. Να βρεθούν οι παρακάτω τριγωνομετρικοί αριθμοί: α. συν330 ο = β. συν (-300 ο ) = γ. συν (-10 ο ) = δ.
Διαβάστε περισσότεραΜαθηματικά Θετικής - Τεχνολογική Κατεύθυνσης
o Γεικό Λύκειο Χίω 8-9 Γ τάξη Τμήμ Μθημτικά Θετικής - Τεχολογική Κτεύθυσης γ Ασκήσεις γι λύση Μ Πγρηγοράκης Γ ΛΥΚΕΙΟΥ - ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μ ΠΑΠΑΓΡΗΓΟΡΑΚΗΣ 56 Α) Ν υολογίσετε τ:
Διαβάστε περισσότεραAΠΟΔΕΙΞΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΦΟΡΙΚΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ
Αποδείξεις Θεωρίς Γ Λυκείου Κτεύθυσης Θέμ 1 ο [σελ 167 σχ. Βιβλίου] P 1 Έστω το πολυώυμο Έχουμε 1 1 1 lim P lim... AΠΟΔΕΙΞΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΦΟΡΙΚΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ
Διαβάστε περισσότεραΔ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Λογάριθµοι ΛΟΓΑΡΙΘΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΛΟΓΑΡΙΘΜΟΥΣ
ΛΟΓΑΡΙΘΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΛΟΓΑΡΙΘΜΟΥΣ Παραθέτουµε αρχικά τις βασικές ιδιότητες των δυνάµεων µε βάση έ- ναν θετικό πραγµατικό αριθµό και εκθέτη έναν ρητό αριθµό. α x.α y = α x+y (α.β) x = α x.β x α x :α
Διαβάστε περισσότεραΑ2. Πότε μία συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα του πεδίου ορισμού της; Μονάδες 3
Βθμός: /25 Τεστ Μθημτικών Εξετζόμενος-η: Προσντολισμού, Γ Λυκείου Θεωρί 1 Κθηγητής: Ιορδάνης Χτζηνικολάου Συνρτήσεις Θέμ Α Α1. Ν ποδείξετε ότι οι γρφικές πρστάσεις C κι C των συνρτήσεων f κι f 1 είνι συμμετρικές
Διαβάστε περισσότεραΘ Ε Ω Ρ Ι Α. Κ Α Τ Ε Υ Θ Υ Ν Σ Η Σ της Β τάξης
1 Θ Ε Ω Ρ Ι Α Κ Α Τ Ε Υ Θ Υ Ν Σ Η Σ της Β τάξης Ο Ρ Ι Σ Μ Ο Ι Τ Υ Π Ο Ι Ι Ι Ο Τ Η Τ Ε Σ Ι Α Ν Υ Σ Μ Α Τ Α Μηδενικό διάνυσµ: AA= 0 µε οποιδήποτε κτεύθυνση Μονδιίο διάνυσµ: AB = 1 Αντίθετ δινύσµτ: ντίθετη
Διαβάστε περισσότεραΤαυτότητες. α 2 β 2 = (α β)(α + β) "διαφορά τετραγώνων" α 3 β 3 = (α β)(α 2 + αβ + β 2 ) "διαφορά κύβων"
Ταυτότητες (α β) α αβ β " αναπτύγματα τετραγώνων " (α β) αβ β (α β) α α β αβ β " αναπτύγματα κύβων " (α β) α α β αβ β " παραγοντοποίηση τριωνύμου " (α β) αβ ( α)( β) (α β) αβ ( α)( β) α β = (α β)(α + β)
Διαβάστε περισσότερα