ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου].
|
|
- Κρέων Ζωγράφου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού ιλίου]. ΣΗΜΕΙΩΣΕΙΣ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ Εμδό προλικού χωρίου Έστω ότι θέλουμε ρούμε το εμδό του χωρίου Ω που περικλείετι πό τη γρφική πράστση της συάρτησης f() =, το άξο τω κι τις ευθείες = κι =. = = Ω v v... v v Σχήμ Σχήμ Μι μέθοδος προσεγγίσουμε το ζητούμεο εμδό είι η εξής: Χωρίζουμε το διάστημ [,] σε ισομήκη υποδιστήμτ, μήκους =, με άκρ τ σημεί: =, =, =,, =, = =. Σχημτίζουμε τ ορθογώι με άσεις τ υποδιστήμτ υτά κι ύψη τη ελάχιστη τιμή της f σε κθέ πό υτά (Σχήμ ). Μι προσέγγιση του εμδού που ζητάμε είι το άθροισμ, ε, τω εμδώ τω πρπάω ορθογωίω. Δηλδή, το:
2 ε = f () + f + f + + f = [ ( ) ] 3 = ( ) ( ) 3+ = = Α, τώρ, σχημτίσουμε τ ορθογώι με άσεις τ πρπάω υποδιστήμτ κι ύψη τη μέγιστη τιμή της f σε (Σχήμ 3) κθέ π υτά τότε το άθροισμ = Ε = f + f + + f τω εμδώ τω ορθογωίω υτώ είι μι κόμη προσέγγιση του ζητούμεου εμδού. Είι όμως, v v... v v Ε = f + f + + f Σχήμ 3 = ( ) 3 = ( )( ) = = Το ζητούμεο, όμως, εμδό Ε ρίσκετι μετξύ τω ε Ε Ε, οπότε ε κι E. Δηλδή ισχύει lim ε Ε lim Ε.
3 Επειδή lim ε = lim Ε =, έχουμε 3 Ε=. 3 Α, τώρ, σχημτίσουμε τ ορθογώι με άσεις τ πρπάω υποδιστήμτ [ κ, κ ], κ=,,..., κι ύψη τη τιμή της συάρτησης σε οποιοδήποτε εδιάμεσο σημείο ξ κ, κ=,,...,3,...,, κθεός διστήμτος, (Σχήμ 4), τότε το άθροισμ f(ξ k ) = S = f( ξ ) + f( ξ ) + + f( ξ) ξ ξ... ξ k Σχήμ 4... ξ v τω εμδώ τω ορθογωίω υτώ είι μι κόμη προσέγγιση του ζητούμεου εμδού. Επειδή f( κ ) f( ξκ) f( κ) γι κ=,,...,, θ είι f( κ ) f( ξκ) f( κ), οπότε θ ισχύει ε S Ε. Είι όμως, lim ε = lim E ισχύει lims = Ε. + =Ε. Άρ θ 3
4 Ορισμός εμδού Έστω f μι συεχής συάρτηση σε έ διάστημ [, ], με f() γι κάθε =f() [, ] κι Ω το χωρίο που ορίζετι πό τη γρφική πράστση της f, το άξο τω κι τις ευθείες =, =. f(ξ ) f(ξ ) Ω f(ξ k ) f(ξ ) Γι ορίσουμε το εμδό του χωρίου Ω (Σχήμ 5) εργζόμστε όπως στο προηγούμεο πράδειγμ. Δηλδή: = ξ... k... = ξ k- ξ k Δ = a v - ξ Σχήμ 5 Χωρίζουμε το διάστημ [, ] σε ισομήκη υποδιστήμτ, μήκους =, με τ σημεί = < < <... < =. Σε κάθε υποδιάστημ [ κ, κ ] επιλέγουμε υθίρετ έ σημείο ξ κ κι σχημτίζουμε τ ορθογώι που έχου άση κι ύψη τ f( ξ κ). Το άθροισμ τω εμδώ τω ορθογωίω υτώ είι S = f( ξ ) + f( ξ ) + + f( ξ ) = [f( ξ ) + + f( ξ )]. Yπολογίζουμε το lim S +. Αποδεικύετι ότι το lim S υπάρχει στο κι είι εξάρτητο πό τη επιλογή + τω σημείω ξ κ. Το όριο υτό οομάζετι εμδό του επίπεδου χωρίου Ω κι συμολίζετι με E( Ω ). Είι φερό ότι ΕΩ ( ). 4
5 Η έοι του ορισμέου ολοκληρώμτος =f() a= ξ ξ ξ k v- ξ v v Σχήμ 6 Έστω μι συάρτηση f συεχής στο [, ]. Με τ σημεί = < < <... < = χωρίζουμε το διάστημ [, ] σε ισομήκη υποδιστήμτ μήκους =. Στη συέχει επιλέγουμε υθίρετ έ ξκ [ κ, κ], γι κάθε κ {,,..., }, κι σχημτίζουμε το άθροισμ S = f( ξ ) + f( ξ ) + + f( ξ ) + + f( ξ ) κ το οποίο συμολίζετι, σύτομ, ως εξής: Αποδεικύετι ότι, S = f( ξκ). κ= Το όριο του θροίσμτος S, δηλδή το lim f ξκ ( ) () υπάρχει στο κι κ= είι εξάρτητο πό τη επιλογή τω εδιάμεσω σημείω ξ κ. Το πρπάω όριο () οομάζετι ορισμέο ολοκλήρωμ της συεχούς συάρτησης f πό το στο, συμολίζετι με το στο. Δηλδή f ()d = lim f ξκ ( ) κ= Οι ριθμοί κι οομάζοτι άκρ της ολοκλήρωσης. f ()d κι διάζετι ολοκλήρωμ της f πό Είι, όμως, χρήσιμο επεκτείουμε το πρπάω ορισμό κι γι τις περιπτώσεις που είι > ή =, ως εξής: 5
6 f ()d = f ()d f ()d = Από τους ορισμούς του εμδού κι του ορισμέου ολοκληρώμτος προκύπτει ότι: =f() Α f() γι κάθε, [, ] τότε το ολοκλήρωμ f ()d δίει το εμδό E( Ω ) του χωρίου Ω που περικλείετι πό τη γρφική πράστση της f το άξο κι τις ευθείες = κι = (Σχήμ 7). Ω Σχήμ 7 Δηλδή, f ()d = E( Ω). Επομέως, Α f(), τότε f ()d. 6
7 Ιδιότητες του ορισμέου ολοκληρώμτος Με τη οήθει του ορισμού του ορισμέου ολοκληρώμτος ποδεικύοτι τ πρκάτω θεωρήμτ ΘΕΩΡΗΜΑ ο Έστωf,gσυεχείς συρτήσεις στο [, ] κι λ, µ.τότε ισχύου λ f ()d =λ f ()d [f() + g()]d = f()d + g()d Κι γεικά [ λ f() +µ g()]d =λ f()d +µ g()d ΘΕΩΡΗΜΑ o Α η f είι συεχής σε διάστημ Δ κι,, γ, τότε ισχύει γ f ()d = f ()d + f ()d γ Γι πράδειγμ, 3 f ()d = 3 κι 4 f ()d = 7, τότε f ()d = f ()d + f ()d = f ()d + f ()d = = ΣΗΜΕΙΩΣΗ Α f() κι <γ< (Σχήμ 8), η πρπάω ιδιότητ δηλώει ότι: ΕΩ ( ) =ΕΩ ( ) +ΕΩ ( ) =f() Αφού Ω Ω γ ( ) f ()d ΕΩ =, κι ΕΩ ( ) = f ()d. ΕΩ ( ) = f ()d γ γ Σχήμ 8 7
8 ΘΕΩΡΗΜΑ 3o Έστω f μι συεχής συάρτηση σε έ διάστημ [, ].Α f() γι κάθε [, ] κι η συάρτηση f δε είι πτού μηδέ στο διάστημ υτό, τότε f ()d >. 8
9 Η ΣΥΝΑΡΤΗΣΗ ΟΛΟΚΛΗΡΩΜΑ Ο υπολογισμός του ολοκληρώμτος f ()d με τη διδικσί που λύσμε πρπάω είι συήθως μι πολύπλοκη διδικσί. Γι το λόγο υτό στη συέχει θ ορίσουμε μι συάρτηση που οομάζετι συάρτηση ολοκλήρωμ, με τη οήθει της οποίς θ διτυπώσουμε κι θ ποδείξουμε το Θεμελιώδες Θεώρημ του Ολοκληρωτικού Λογισμού,με τη χρήση του οποίου θ είι δυτό υπολογιστού τ πρπάω ολοκληρώμτ. ΘΕΩΡΗΜΑ Α f είι μι συεχής συάρτηση σε έ διάστημ κι είι έ σημείο του, τότε η συάρτηση F() = f(t)dt,, είι μι πράγουσ της f στο. Δηλδή ισχύει: f(t)dt = f(), γι κάθε. ( ) Γι πράδειγμ ( ημ tdt ) = ημ κι ( ) Γεωμετρική ερμηεί ln tdt = ln 9
10 + h + h + h ( Ω ) = ( ) = ( ) + ( ) = ( ) ( ) = ( + ) ( ) E f t dt f t dt f t dt f t dt f t dt F h F Το εμδό του χωρίου Ω είι περίπου ίσο με E( Ω) f( ) h γι πολύ μικρά h > Άρ θ έχουμε F( + h) F( ) f( ) h ή Οπότε ( ) ( + ) ( ) F h F F = lim = f h h ( ) ( + ) ( ) F h F h ( ) f Με τη συάρτηση ολοκλήρωμ θ σχοληθούμε διεξοδικότερ στη επόμεη εότητ.
11 ΘΕΩΡΗΜΑ (Θεμελιώδες θεώρημ του ολοκληρωτικού λογισμού) Έστω f μι συεχής συάρτηση σ έ διάστημ [, ]. Α G είι μι πράγουσ της f στο [, ], τότε f(t)dt = G( ) G( ) ΑΠΟΔΕΙΞΗ: Η συάρτηση F() = f(t)dt είι μι πράγουσ της f στο [, ]. Επειδή κι η G είι μι πράγουσ της f στο [, ], θ υπάρχει c τέτοιο, ώστε G() = F() + c. () Από τη (), γι =, έχουμε G( ) = F( ) + c= f(t)dt+ c= c, οπότε c = G( ). Επομέως, οπότε, γι =, έχουμε κι άρ G() = F() + G( ), G( ) = F( ) + G( ) = f(t)dt + G( ) f(t)dt = G( ) G( ). Πολλές φορές, γι πλοποιήσουμε τις εκφράσεις μς, συμολίζουμε τη διφορά G( ) G( ) με [G()].
12 Σημτικές πρτηρήσεις. Το ορισμέο ολοκλήρωμ μις συάρτησης είι ριθμός. Γι το λόγο υτό συμπερίουμε ( f()d) =.. To ορισμέο ολοκλήρωμ είι εξάρτητο της επιλογής της πράγουσς Π.χ d = [ ] = = κι d = [ + ] = = 3. Κάθε συάρτηση f συεχής σε έ διάστημ [, ] είι ολοκληρώσιμη σε υτό. 4. Από το θεμελιώδες θεώρημ του ολοκληρωτικού λογισμού προκύπτου τ κόλουθ συμπεράσμτ. i. f ()d = f( ) f( ) ii. f ()d= f( ) f( ) 5. Α f,g συρτήσεις οι οποίες είι συεχείς στο [, ] με f() g() τότε : f() g() κι f() g() συεχής συάρτηση ως διφορά συεχώ, Άρ [f() g()]d f()d g()d f ()d g()d 6. Το ορισμέο ολοκλήρωμ f ()d είι ές πργμτικός ριθμός που εξρτάτι πό τ άκρ ολοκλήρωσης κι κι πό τις τιμές της f στο κλειστό διάστημ με άκρ κι κι όχι πό το γράμμ που πριστάει τη εξάρτητη μετλητή της f. Έτσι π.χ f ()d = f (t)dt = f ()d.
13 Μέθοδοι ολοκλήρωσης ΟΛΟΚΛΗΡΩΣΗ ΚΑΤΑ ΠΑΡΑΓΟΝΤΕΣ Πολλές φορές γι το υπολογισμό εός ολοκληρώμτος προσπθούμε το φέρουμε στη μορφή f ()g ()d κι εφρμόσουμε το πρκάτω τύπο που είι γωστός ως τύπος της πργοτικής ολοκλήρωσης. f ()g ()d = [f ()g()] f ()g()d, όπου f,g είι συεχείς συρτήσεις στο [, ]. Γι πράδειγμ, ς υπολογίσουμε το ολοκλήρωμ e d : Έχουμε e d = (e ) d = [e ] () e d = [e ] e d = [e ] [e ] = e (e ) = Με τη μέθοδο της ολοκλήρωσης κτά πράγοτες είι δυτό υπολογισθού οι πρκάτω μορφές ολοκληρωμάτω i. + P()e d όπου P() πολυώυμο του κι * κι ii. P() ηµ ( + )d όπου P() πολυώυμο του κι * κι iii. P() συ( + )d όπου P() πολυώυμο του κι * κι iv. P() ln( +)d όπου P() πολυώυμο του κι * κι με +> v. e + ηµ ( γ + δ)d με *, γ κι, δ vi. e + συ( γ + δ)d με *, γ κι, δ 3
14 ΜΕΘΟΔΟΣ ΑΝΤΙΚΑΤΑΣΤΑΣΗΣ Με τη μέθοδο υτή υπολογίζουμε ολοκληρώμτ που έχου ή μπορού πάρου τη μορφή f (g())g ()d κι ο τύπος υπολογισμού υτού του είδους ολοκληρωμάτω είι ο κόλουθος: u f (g())g ()d = f (u)du, u όπου f,g είι συεχείς συρτήσεις, u = g(), du = g ()d κι u = g( ), u = g( ). Γι πράδειγμ, ς υπολογίσουμε το ολοκλήρωμ π ηµ συe d : Θέτουμε ηµ = u () τότε ( ηµ ) d = du άρ συ d = du () π Κι τ έ άκρ ολοκλήρωσης θ είι u = ηµ = κι u = ηµ = (3) Τότε το ρχικό ολοκλήρωμ λόγω τω (),(),(3) ισούτι με u u e du = [e ] = e. 4
15 Υπολογισμός ολοκληρώμτος της μορφής f ()d Γι το υπολογισμό εός ολοκληρώμτος της πρπάω μορφής,εφόσο δε είι δυτό υπολογίσουμε τη συάρτηση f εργζόμστε ως εξής : Θέτουμε = f (u) () Τότε d = f (u)du () Τ έ άκρ ολοκλήρωσης είι u κι u τίστοιχ (3) όπου u κι u οι τιμές που ληθεύου τις σχέσεις f (u ) = κι f (u ) = οι οποίες είι μοδικές,φού η συάρτηση f είι -. Άρ το ολοκλήρωμ γίετι λόγω τω (),(),(3) u u (f (f (u)) f (u)du = u f (u)du το οποίο υπολογίζουμε. u u Πράδειγμ Ν υπολογιστεί το f ()d με 5 3 f() = +. Θέτουμε f (u) = () τότε d = f (u)du () Κι τ έ άκρ ολοκλήρωσης είι οι λύσεις τω εξισώσεω f(u) = κι f (u) = Έχουμε 5 3 f(u) = u + u = u 3 (u + ) = u 3 = u = κι 5 3 f(u) = u + u = που έχει τη προφή λύση u = η οποί είι μοδική φού η συάρτηση f είι -. Συεπώς τ έ άκρ ολοκλήρωσης είι u = κι u = (3) Τότε λόγω τω σχέσεω (),(),(3) το ολοκλήρωμ πίρει τη μορφή: 4 f ()d = f (f (u))f (u)du = uf (u)du = u(5u + 3u )du = u u = (5u + 3u )du = = + = 6 4 Ημερομηί τροποποίησης: 5/9/ 5
Qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj
Qwφιertuiopasdfghjklzερυυξnmηq σwωψertuςiopasdρfghjklzcvbn mqwertuiopasdfghjklzcvbnφγιmλι qπςπζwωeτrtuτioρμpκaλsdfghςj ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ klzcvλοπbnmqwertuiopasdfghjklz ΤΗΣ Γ ΛΥΚΕΙΟΥ ΑΠΟΔΕΙΞΕΙΣ
Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ
Ε π ι μ έ λ ε ι Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Αρχική Συνάρτηση Ορισμός Έστω f μι συνάρτηση ορισμένη σε έν διάστημ Δ. Αρχική συνάρτηση ή πράγουσ της f στο Δ ονομάζετι κάθε συνάρτηση F που είνι πργωγίσιμη στο
ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. Υπάρχει ένα στοιχείο i τέτοιο, ώστε i 1, Κάθε στοιχείο z του γράφεται κατά μοναδικό τρόπο με τη μορφή i, όπου,
ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Ποιο είι το Σύολο τω Μιγδικώ Αριθμώ; Το σύολο τω μιγδικώ ριθμώ είι έ υπερσύολο του συόλου τω πργμτικώ ριθμώ, στο οποίο: Επεκτείοτι οι πράξεις της πρόσθεσης κι του πολλπλσισμού έτσι, ώστε
Επαναληπτικά θέµατα Θεωρίας Γ Λυκείου
Επληπτικά θέµτ Θεωρίς Γ Λυκείου Α i κι γ δi είι δυο µιγδικοί ριθµοί τότε: 3 4 Οι ιδιότητες υτές µπορού ποδειχτού µε εκτέλεση τω πράξεω Γι πράδειγµ έχουµε: i γ δi γ δ i γ δ i i γδi Οι πρπάω ιδιότητες κι
ΜΑΡΙΑ ΓΚΟΥΝΤΑΡΟΠΟΥΛΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η διυσμτική κτί του θροίσμτος τω μιγδικώ i κι γ δi είι το άθροισμ τω διυσμτικώ κτίω τους Α M κι M γ δ είι οι εικόες τω i κι γ δi τιστοίχως
1o ΓΕ.Λ. Λιβαδειάς Μαθηματικά Προσανατολισμού Ορισμοί Θεωρήματα- Αποδείξεις- Γεωμετρικές ερμηνείες- Σχόλια Αντιπαραδείγματα - Παρατηρήσεις.
o ΓΕΛ Λιδειάς Μθημτικά Προστολισμού Ορισμοί Θεωρήμτ- Αποδείξεις- Γεωμετρικές ερμηείες- Σχόλι Ατιπρδείγμτ - Πρτηρήσεις* ΟΡΙΣΜΟΣ ος πργμτική συάρτησησελ5 Έστω Α έ υποσύολο του Οομάζουμε πργμτική συάρτηση
Θεωρήματα και προτάσεις με τις αποδείξεις τους
Θεωρήμτ κι προτάσεις με τις ποδείξεις τους Μιγδικοί Ιδιότητες συζυγώ: Α i κι i δ γ είι δυο μιγδικοί ριθμοί, τότε: 3 4 Αποδεικύοτι με εφρμογή του ορισμού κι πράξεις Γι πράδειγμ έχουμε: i δ γ δi γ i i i
qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui
qwertyuiopasdfghjklzcvbnmq wertyuiopasdfghjklzcvbnmqw ertyuiopasdfghjklzcvbnmqwer tyuiopasdfghjklzcvbnmqwerty ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ uiopasdfghjklzcvbnmqwertyui ΟΛΟΚΛΗΡΩΤ ΙΚΟΣ ΛΟΓΙΣΜΟΣ
γ λυκειου κεφαλαιο 3 κεφαλαιο 3 κεφαλαιο 3 κεφαλαιο 3 κεφαλαιο 3 κεφαλαιο3 ολοκληρωτικος λογισμος επιμελεια : τακης τσακαλακος T Ш τ
γ λυκειου ` κεφλιο κεφλιο κεφλιο κεφλιο κεφλιο κεφλιο ολοκληρωτικος λογισμος ειμελει : τκης τσκλκος T Ш τ 017 ... ρχικη συρτηση... ορισμεο ολοκληρωμ... η συρτηση F()=... εμδο ειεδου χωριου T Ш τ ΟΡΙΣΜΕΝΟ
ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ
ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ Το ορισμένο ολοκλήρωμ ή ολοκλήρωμ Riema μις πργμτικής συνάρτησης f με διάστημ ολοκλήρωσης το πεπερσμένο διάστημ [, ], υπάρχει ότν: η f είνι συνεχής στο διάστημ υτό, κθώς
Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ
Ε π ι μ έ λ ε ι Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Σ Τ Α Τ Ι Σ Τ Ι Κ Η. Τι οομάζετι πληθυσμός μις σττιστικής έρευς; Οομάζετι το σύολο τω τικειμέω (έμψυχω ή άψυχω γι τ οποί συλλέγοτι στοιχεί.. Τι οομάζετι άτομο
ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΤ/ΝΣΗΣ ΘΕΩΡΙΑ - ΑΠΟΔΕΙΞΕΙΣ
Επιμέλει - Κ Μυλωάκης Ν δείξετε ότι: ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΤ/ΝΣΗΣ ΘΕΩΡΙΑ - ΑΠΟΔΕΙΞΕΙΣ i γ δi γ δ δ γ i Γι το πολλπλσισμό δύο μιγδικώ i κι γ δi έχουμε: i γ δi γ δi i γ δi γ δi γi i δi γ δi γi δi γ δi γi δ γ δ
ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΟΡΙΣΜΟΙ ΘΕΩΡΗΜΑΤΑ ΤΥΠΟΙ ΧΩΡΙΣ ΑΠΟΔΕΙΞΗ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ
ΟΡΙΣΜΟΙ ΘΕΩΡΗΜΑΤΑ ΤΥΠΟΙ ΧΩΡΙΣ ΑΠΟΔΕΙΞΗ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Το σύολο C τω μιγδικώ ριθμώ είι έ υπερσύολο του συόλου R τω πργμτικώ ριθμώ, στο οποίο: Επεκτείοτι οι πράξεις της πρόσθεσης κι του πολλπλσισμού έτσι,
1.6 ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ x
ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 7 6 ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ Στο σχήμ 4 έχουμε τη γρφιή πράστση μις συάρτησης οτά στο Πρτηρούμε ότι, θώς το ιούμεο με οποιοδήποτε τρόπο πάω στο άξο πλησιάζει το πργμτιό ριθμό, οι
Η Θεωρία σε 99 Ερωτήσεις
Μθημτικά Κτεύθυσης Γ Λυκείου Η Θεωρί σε 99 Ερωτήσεις Ορισμοί, Θεωρήμτ 4 Μθημτικά Κτεύθυσης Γ Λυκείου Ερωτήσεις Θεωρίς Ορισιμοί θεωρήμτ με πτήσεις Μ Ππγρηγοράκης Μθημτικά Κτεύθυσης Γ Λυκείου Ερωτήσεις Θεωρίς
Η θεωρία στα Μαθηματικά κατεύθυνσης
Η θεωρί στ Μθημτικά κτεύθυσης Σελίδ πό 3 Ορισμοί Ιδιότητες - Προτάσεις Θεωρήμτ Αποδείξεις Α Μιγδικοί ριθμοί Πότε δυο μιγδικοί είι ίσοι κι πότε ές μιγδικός είι ίσος με ; Δύο μιγδικοί ριθμοί i κι γ δi είι
ολοκληρωτικος λογισμος
γ λυκειου ` κεφλιο κεφλιο κεφλιο κεφλιο κεφλιο κεφλιο ολοκληρωτικος λογισμος επιμελει : τκης τσκλκος 7 ... ρχικη συνρτηση... ορισμενο ολοκληρωμ... η συνρτηση F()= f()d... εμδον επιπεδου χωριου γιτι...
α+ βi, όπου α, ii) Ο µιγαδικός α+ βi είναι ίσος µε το µηδέν αν και µόνο αν α= 0 και β = 0
Επιµέλει: Βιτσξής Μιχάλης ΑΠΟΔΕΙΞΕΙΣ- ΕΡΩΤΗΣΕΙΣ ΤΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Περίοδος: - Τι οοµάζουµε µιγδικό ριθµό Μιγδικός ριθµός είι κάθε ριθµός που έχει τη µορφή + i, όπου, R κι i Τι λέγετι πργµτικό κι τι φτστικό
Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ
Ε π ι μ έ λ ε ι Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Η Έοι του Ορίου Ορισμός Ότ οι τιμές μις συάρτησης f προσεγγίζου όσο θέλουμε έ πργμτικό ριθμό, κθώς το προσεγγίζει με οποιοδήποτε τρόπο το ριθμό, τότε γράφουμε:
ΘΕΩΡΗΜΑΤΑ (των οποίων πρέπει να ξέρουμε & τις αποδείξεις) από το σχολικό βιβλίο της ΤΕΧΝΟΛΟΓΙΚΗΣ & ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ Λυκείου
Θεωρήμτ θετικής-τεχολογικής κτεύθυσης ΘΕΩΡΗΜΑΤΑ (τω οποίω πρέπει ξέρουμε & τις ποδείξεις πό το σχολικό βιβλίο της ΤΕΧΝΟΛΟΓΙΚΗΣ & ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ Λυκείου υ υ όπου υ το υπόλοιπο της διίρεσης του με
Επομένως μια ακολουθία α είναι γεωμετρική πρόοδος αν και μόνο αν ισχύει α, δηλαδή το πηλίκο δύο διαδοχικών όρων είναι σταθερό.
Ε. 5. Γεωμετρική Πρόοδος Απρίτητες γώσεις Θεωρίς Γεωμετρική πρόοδος Γεωμετρική Πρόοδο (Γ.Π.) οομάζουμε μι κολουθί κάθε όρος της προκύπτει πό το προηγούμεό του με πολλπλσισμό επί το ίδιο πάτοτε μη μηδεικό
1.7 OΡΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ
ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΡΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ Στ πράτω σχήμτ έχουμε τις γρφιές πρστάσεις τριώ συρτήσεω, g, h σε έ διάστημ της μορφής, 8 l a C g C g h γ C h Πρτηρούμε ότι θώς το υξάετι περιόριστ με
ΟΡΙΑ - ΣΥΝΕΧΕΙΑ. Πόσα είδη ορίων υπάρχουν; Τι είναι το +, - ; Τι ονοµάζουµε γειτονιά ή περιοχή του x o ; Τι ονοµάζουµε γειτονιά του +, - ;
ΟΡΙΑ - ΣΥΝΕΧΕΙΑ Πόσ είδη ορίω υπάρχου; Υπάρχει όριο στο κι είι πργµτικός ριθµός (πεπερσµέο) Υπάρχει όριο στο κι είι, - (µη πεπερσµέο) Υπάρχει όριο στο ή - κι είι πργµτικός ριθµός. Υπάρχει όριο στο ή -
ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ
ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ..7 Μέρος Β του σχολικού ιλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. Ν ρεθεί το εμδόν του χωρίου Ω που περικλείετι πό τη γρφική πράστση
Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ
Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Ορισμοί τω εοιώ κι θεωρήμτ χωρίς πόδειξη ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Πως ορίζετι το σύολο C τω μιγδικώ ριθμώ; Το σύολο C τω μιγδικώ ριθμώ είι έ υπερσύολο του συόλου R τω
ΜΑΘΗΜΑΤΙΚΑ Θεωρία & Σχόλια
Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θετικής & Τεχολογικής Κτεύθυσης ΜΑΘΗΜΑΤΙΚΑ Θεωρί & Σχόλι 4 5 ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Ορισμοί τω εοιώ κι θεωρήμτ χωρίς πόδειξη ΜΙΓΑΔΙΚΟΙ
ΟΛΟΚΛΗΡΩΜΑΤΑ-ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ
εθοδολογί Πρδείγµτ σκήσεις πιµέλει.: άτσιος ηµήτρης ΡΩ-Ρ ΡΩ διότητες: Ρ Πρδείγµτ:. υπολογίσετε τ πρκάτω ολοκληρώµτ: 5 d d συν π ( + ) d 4 Π ΡΩ ΡΩΩ. d c 6. d. d. d 4. d 5. συνd f '( ) d f ( ) + c. ηµ συν
ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β
ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : Η ΣΥΝΑΡΤΗΣΗ F( = (d [Kεφ:.5 H Συνάρτηση F( = (d Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. lim e d. Ν υπολογίσετε το όριο: ( Έχουμε ( e d
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΩΡΙΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ Όλη η θεωρί γι τις πελλήιες Εξετάσεις Κ Κρτάλη 28 με Δημητριάδος Τηλ 242 32 598 Περιεχόμε ΚΕΦΑΛΑΙΟ 2 Ο ΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 2 2 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 2
ΤΖΕΜΠΕΛΙΚΟΥ ΚΑΤΕΡΙΝΑ ΜΑΘΗΜΑΤΙΚΟΣ
ΘΕΜΑ Α, είι µιγδικοί ριθµοί, τότε κι κι επειδή η τελευτί σχέση ισχύει, θ ισχύει κι η ισοδύη ρχικική. Αάλογ ποδεικύετι κι η δεύτερη ιδιότητ ΘΕΜΑ Όριο πολυωυµικής συάρτησης Α -... P πολυώυµο του κι R, δείξετε
Η θεωρία στα Μαθηματικά κατεύθυνσης :
Σελίδ πό 45 Η θεωρί στ Μθημτικά κτεύθυσης : Ορισμοί Ιδιότητες - Προτάσεις Θεωρήμτ Αποδείξεις Α Μιγδικοί ριθμοί Πότε δυο μιγδικοί είι ίσοι κι πότε ές μιγδικός είι ίσος με ; Δύο μιγδικοί ριθμοί ισχύει: βi
Ορισμοί των εννοιών και θεωρήματα χωρίς απόδειξη
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ http://ddethr Ορισμοί τω εοιώ κι θεωρήμτ χωρίς πόδειξη ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Τι είι το σύολο τω μιγδικώ ριθμώ; Το σύολο τω μιγδικώ ριθμώ είι έ υπερσύολο του συόλου τω πργμτικώ
AΠΟΔΕΙΞΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΦΟΡΙΚΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ
Αποδείξεις Θεωρίς Γ Λυκείου Κτεύθυσης Θέμ 1 ο [σελ 167 σχ. Βιβλίου] P 1 Έστω το πολυώυμο Έχουμε 1 1 1 lim P lim... AΠΟΔΕΙΞΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΦΟΡΙΚΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ
ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης
ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ρρ ΑΠΑΝΤΗΣΕΙΣ Επιµέλει: Οµάδ Μθηµτικώ της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ευτέρ, 7 Μ ου Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α A. Έστω f μι συεχής συάρτηση σε έ διάστημ [, β]. Α G είι μι πράγουσ
Άλγεβρα και Στοιχεία Πιθανοτήτων Θεωρία & Σχόλια
Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Άλγερ κι Στοιχεί Πιθοτήτω Θεωρί & Σχόλι 014 015 ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ 1 ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
3 ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ Α ΘΕΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ Βγγέλης Α Νικολκάκης Μθημτικός ΛΙΓΑ ΛΟΓΙΑ Η προύσ εργσί μµου δε στοχεύει πλά στο κυήγι του 5,δηλδή τω μµοάδω του
ΤΟ ΣΥΝΟΛΟ C ΤΩΝ ΜΙΓΑ ΙΚΩΝ
Μθηµτικά Κτεύθυσης Γ Λυκείου ΘΕΩΡΙΑ ΤΟ ΣΥΝΟΛΟ C ΤΩΝ ΜΙΓΑ ΙΚΩΝ Το σύολο C τω µιγδικώ ριθµώ είι έ υπερσύολο του συόλου R τω πργµτικώ ριθµώ, στο οποίο: Επεκτείοτι οι πράξεις της πρόσθεσης κι του πολλπλσισµού
Η θεωρία στα Μαθηματικά κατεύθυνσης :
Σελίδ πό 5 Η θεωρί στ Μθημτικά κτεύθυσης : Ορισμοί Ιδιότητες - Προτάσεις Θεωρήμτ Αποδείξεις Α Μιγδικοί ριθμοί Πότε δυο μιγδικοί είι ίσοι κι πότε ές μιγδικός είι ίσος με ; Δύο μιγδικοί ριθμοί ισχύει: βi
π.χ. 2, 3, π=3,14... Αναλογία λέγεται κάθε ισότητα κλασµάτων και έχουµε τις παρακάτω ιδιότητες : α = 4) β = δ και δ γ β
ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ) ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τ σύολ τω ριθµώ είι τ εξής : ) Οι φυσικοί ριθµοί : Ν {0,,,,... } ) Οι κέριοι ριθµοί : Ζ {...,,,, 0,,,,... } ) Οι ρητοί ριθµοί : Q ρ / κ ρ, κ Z, Z 0 4) Οι άρρητοι
Π ρ ό λ ο γ ο ς. Το βιβλίο αυτό γράφτηκε με στόχο την πληρέστερη προετοιμασία των μαθητών μας.
Π ρ ό λ ο γ ο ς Το ιλίο υτό γράφτηκε με στόχο τη πληρέστερη προετοιμσί τω μθητώ μς. Περιέχει συοπτική θεωρί,πρωτότυπες σκήσεις λλά κι θέμτ εξετάσεω τω τελευτίω ετώ του σχολείου μς. Ελπίζουμε ποτελέσει
Λογάριθμοι. Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έννοια του λογάριθμου Έστω η εξίσωση αx
Λογάριθμοι Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έοι του λογάριθμου Έστω η εξίσωση θ, 0, θ 0. Η εξίσωση υτή έχει μοδική λύση φού η εκθετική συάρτηση f είι γησίως μοότοη κι το θ ήκει στο σύολο τιμώ της. Τη μοδική
1) Ποια είναι η αρχική ή παράγουσα; Τι σχέση έχει µε την f. 3) Υπάρχει µια παράγουσα για κάθε συνάρτηση ή περισσότερες;
ΛΟΓΙΣΜΟΣ ) Ποι είνι η ρχική ή πράγουσ; Τι σχέση έχει µε την f. Έστω f µι συνάρτηση ορισµένη σ έν διάστηµ. Αρχική ή πράγουσ της f στο θ ονοµάζετι κάθε συνάρτηση F που είνι πργωγίσιµη στο κι ισχύει F ()
( ) = ( ) για κάθε. Θέμα Δ. x 2. Δίνονται οι συναρτήσεις f x
ΔΙΑΓΩΝΙΣΜΑΤΑ Διγώνισμ Θέμ Α Α Ν ποδειχθεί ότι η συνάρτηση f = ln,, είνι πργωγίσιμη στο κι ισχύει f = Μονάδες 7 Α Πότε μί συνάρτηση f λέμε ότι είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της; Α Πότε
Ε 1. Διαφορικός λογισμός (Κανόνες παραγώγισης)
Ε Διαφορικός λογισμός Καόες παραγώγισης Σελίδα από Πότε μια συάρτηση λέγεται παραγωγίσιμη στο σημείο του πεδίου ορισμού της ; Μια συάρτηση λέμε ότι είαι παραγωγίσιμη σ έα σημείο του πεδίου ορισμού της,
ΣΗΜΕΙΩΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ
ΚΑΛΟΚΑΙΡΙΝΟ ΜΑΘΗΜΑΤΙΚΟ ΣΧΟΛΕΙΟ ΕΜΕ ΛΕΠΤΟΚΑΡΥΑ ΠΙΕΡΙΑΣ 0 ΣΗΜΕΙΩΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Αργύρης Φελλούρης Απληρωτής Κθηγητής ΕΜΠ ΚΕΦΑΛΑΙΟ Ι ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Στο Κεφάλιο υτό θεωρούμε γωστές τις σικές
ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο)
ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 6 Α) Αν η συνάρτηση f είνι πργωγίσιµη σε έν σηµείο του πεδίου ορισµού της, ν γρφεί η εξίσωση της εφπτοµένης της γρφ πρ/σης της f στο σηµείο A(,f ( )) Α) Ν ποδείξετε ότι ν µι συνάρτηση f
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. Ενότητα 6 ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ
ΜΙΓΑ ΙΚΟΙ Ενότητ 6 ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΟΛΟΚΛΗΡΩΜΑΤΩΝ Ορισµό ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ Έστω f µί συνάρτηση ορισµένη σε έν διάστηµ. Αρχιή συνάρτηση ή πράουσ f στο ονοµάζετι άθε συνάρτηση F που είνι πρωίσιµη στο ι ισχύει
+ 4 µε x >0. x = f(x) f(t) dt. Άρα από κριτήριο παρεµβολής lim f(t) dt = 4.
993 ΘΕΜΑΤΑ. ίετι η συάρτηση f() = + + µε >. ) Ν εξετάσετε τη µοοτοί της συάρτησης f. β) Ν υπολογίσετε το lim f(t) dt. + + ) Έχουµε f () = () + ( + ) ( + ) + = + (+ ) ( + ) = - 3 + + = - 3 . + +
ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ
ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ -8 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑ Αν η συνάρτηση f είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της, ν γρφεί η εξίσωση της εφπτομένης της γρφικής πράστσης της f στο σημείο Α(,f( ))
Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας
Μθηµτικά Κτεύθυνσης Γ Λυκείου Θέµτ Θεωρίς ΑΠΟΔΕΙΞΕΙΣ. N ποδείξετε ότι οι γρφικές πρστάσεις C κι C των συνρτήσεων κι - είνι συµµετρικές ως προς την ευθεί y που διχοτοµεί τις γωνίες Oy κι Oy Aς πάρουµε µι
Τάξη Γ. Κεφάλαιο. Εμβαδόν Επιπέδου Χωρίου Θεωρία-Μεθοδολογία-Ασκήσεις. Ολοκληρωτικός Λογισμός
Τάξη Γ Κεφάλιο Ολοκληρωτικός Λογισμός Θεωρί-Μεθοδολογί-Ασκήσεις Κεφάλιο 3 Ολοκληρωτικός Λογισμός Σε κάθε μί πό τις πρκάτω περιπτώσεις ορίζετι πό τη γρφική πράστση μις τουλάχιστον συνάρτησης κι πό κάποιες
Μαθηματικά Θετικής - Τεχνολογική Κατεύθυνσης
o Γεικό Λύκειο Χίω 8-9 Γ τάξη Τμήμ Μθημτικά Θετικής - Τεχολογική Κτεύθυσης γ Ασκήσεις γι λύση Μ Πγρηγοράκης Γ ΛΥΚΕΙΟΥ - ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μ ΠΑΠΑΓΡΗΓΟΡΑΚΗΣ 56 Α) Ν υολογίσετε τ:
ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου].
ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: 3. 3.4 Μέρος Β του σχολικού ιλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Πράδειγμ. Ν υολογισθούν τ ορισμέν ολοκληρώμτ: ΘΕΜΑ Β i. ii. (
f(x) dx ή f(x) dx f(x) dx
ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Ορισμός. Αν η f είνι ολοκληρώσιμη στο διάστημ [ a, ) ή στο διάστημ (,], τότε ονομάζουμε γενικευμένο ολοκλήρωμ είδους το ολοκλήρωμ της μορφής f() d ή - f() d Ορισμός. Το σημείο
Επανάληψη Τελευταίας Στιγμής
Επάληψη Τελευτίς Στιγμής kanellopoulos@otmailcom 5/4/ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Θεωρί γι τις εξετάσεις Ορισμοί εοιώ & Θεωρήμτ χωρίς πόδειξη Μ Ι Γ Α Δ Ι Κ Ο Ι Πότε δύο μιγδικοί ριθμοί i κι γ δi είι
ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ
1 ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1.1 ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ (Επλήψεις Συμπληρώσεις) Εισγωγή Στο Γυμάσιο μάθμε ότι οι πργμτικοί ριθμοί ποτελούτι πό τους ρητούς κι τους άρρητους ριθμούς κι πριστάοτι με
ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 6 Α) Αν η συνάρτηση f είνι πργωγίσιµη σε έν σηµείο του πεδίου ορισµού της, ν γρφεί η εξίσωση της εφπτοµένης της γρφ πρ/σης της f στο σηµείο A(,f ( )) Α)
Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ
Ε π ι μ έ λ ε ι Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Κεφάλιο ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ο Ρ Ι Σ Μ Ο Σ Τι ονομάζετι ορισμένο ολοκλήρωμ μις συνεχούς συνάρτησης f: [, ] πό το έως κι το κι πώς συμολίζετι ; Αν F είνι πράγουσ
Παραδείγµατα στις ακολουθίες. 2. Να γράψετε τους 4 πρώτους όρους των ακολουθιών. 2ν +1. i) α. =, ii)α. = (-1) v. ΛΥΣΗ
ΑΚΟΛΟΥΘΙΕΣ - ΠΡΟΟ ΟΙ 6 Ακολουθίες Ορισµός Ακολουθί λέγετι κάθε συάρτηση, η οποί έχει πεδίο ορισµού το σύολο τω φυσικώ ριθµώ N *. Μί κολουθί συµβολίζετι συήθως µε το γράµµ όπου κάτω δεξιά βάζουµε το δείκτη,
Φροντιστήρια 2001-ΟΡΟΣΗΜΟ
Φροτιστήρι -ΟΡΟΣΗΜΟ ΟΡΟΣΗΜΟ Άλγεβρ Β Λυκείου Επιμέλει: Σεμσίρης Αριστείδης -- Φροτιστήρι -ΟΡΟΣΗΜΟ - - Φροτιστήρι -ΟΡΟΣΗΜΟ Άλγεβρ Β Λυκείου Περιέχει Συοπτική Θεωρί Μεθοδολογί Ασκήσεω Λυμέες Ασκήσεις Λυμέ
, µε α και β, πραγµατικούς αριθµούς. Τα στοιχεία του C λέγονται µιγαδικοί αριθµοί και το C σύνολο των µιγαδικών αριθµών. Εποµένως:
ΘΕΩΡΙΑ ΤΟ ΣΥΝΟΛΟ C ΤΩΝ ΜΙΓΑ ΙΚΩΝ Γωρίζουµε ότι η δευτεροάθµι εξίσωση µε ρητική δικρίουσ δε έχει λύση στο σύολο R τω πργµτικώ ριθµώ Ειδικότερ η εξίσωση = δε έχει λύση στο σύολο R τω πργµτικώ ριθµώ, φού
ΟΛΟΚΛΗΡΩΜΑ ΚΑΙ ΙΑΤΑΞΗ
ΟΛΟΚΛΗΡΩΜΑ ΚΑΙ ΙΑΤΑΞΗ ΘΕΩΡΗΜΑ : Α µι συάρτηση f είι ορισµέη κι συεχής στο διάστηµ [, ] µε f() γι κάθε [, ] τότε: f()d ΘΕΩΡΗΜΑ : Α f, g είι συρτήσεις ορισµέες κι συεχείς στο [, ] κι f() g(), γι κάθε [,
ΣΑΜΑΡΑΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΚΩΣΤΑΚΗΣ ΛΑΜΠΡΟΣ
Ρίζες πργμτικώ ριθμώ Τετργωική ρίζ πργμτικού ριθμού Ορισμός: Η τετργωική ρίζ εός μη ρητικού ριθμού είι ο μη ρητικός ριθμός β που ότ υψωθεί στο τετράγωο μς δίει το, δηλδή: = β β =,, β Πρτήρηση: Η ορίζετι
Ορισμός : Ακολουθία ονομάζεται κάθε συνάρτηση με πεδίο ορισμού το σύνολο Ν* των θετικών ακεραίων και παίρνει τιμές στο R. a: Ν* R
64 Aκοουθίες Ορισμός : Ακοουθί οομάζετι κάθε συάρτηση με πεδίο ορισμού το σύοο Ν* τω θετικώ κερίω κι πίρει τιμές στο R. a: Ν* R H τιμή μί κοουθίς στο συμβοίζετι με Αδρομικός Τύπος Ακοουθίς: Οομάζετι μί
γραπτή εξέταση στo μάθημα ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΦΡΟΝΤΙΣΤΗΡΙΑ δυδικό η εξετστική περίοδος πό 9/0/5 έως 9/04/5 γρπτή εξέτση στo μάθημ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ ΛΥΚΕΙΟΥ Τμήμ: Βθμός: Ονομτεπώνυμο: Κθηγητές: Θ Ε Μ Α Α Α. Έστω μι συνάρτηση
Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α
Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ 4 Ν υπολογίσετε το ολοκλήρωµ: 5 + d (988) 4 Αν I v π 4 v = εϕ d, ν Ν*, τότε: ) Ν ποδείξετε ότι γι κάθε ν>, ισχύει: Iv = Iv v β) Ν υπολογίσετε το Ι 5 (99) 4 Ν βρεθεί
Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:
Ο μθητής που έχει μελετήσει το κεφάλιο υτό θ πρέπει ν είνι σε θέση:. Ν γνωρίζει τις έννοιες πράγουσ ή ρχική συνάρτηση, όριστο ολοκλήρωμ κι ν μπορεί ν υπολογίζει πλά όριστ ολοκληρώμτ με τη οήθει των μεθόδων
ΚΕΦΑΛΑΙΟ 1 ο. 1.1. Οι πράξεις πρόσθεση και πολλαπλασιασµός και οι ιδιότητές τους.
ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ - - ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ ο.. Οι πράξεις πρόσθεση κι πολλπλσισµός κι οι ιδιότητές τους. Πρόσθεση Πολλπλσισµός Ιδιότητ.. Ατιµετθετική (γ)()γ (γ)()γ Προσετιρική (γ)γ Επιµεριστική 0. Ουδέτερο
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ Ατί προλόγου: Το προτειόμεο Κριτήριο Αξιολόγησης δε φέρετι στη θεωρί που πιτείτι στο ο κι ο θέμ, λλά φορού τ θέμτ διβθμισμέης
β ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a,
ΕΡΩΤΗΣΕΙΣ Σ Λ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΑΔΙΚΩΝ - Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς στο τετράδιό σς την ένδειξη σωστό ή λάθος δίπλ στο γράμμ που ντιστοιχεί σε κάθε πρότση
Μαθηματικά Γ Λυκείου 2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑ ΙΚΟΥ ΑΡΙΘΜΟΥ. Το Σύνολο των Μιγαδικών Αριθµών
Μθημτικά Γ Λυκείου Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑ ΙΚΟΥ ΑΡΙΘΜΟΥ Το Σύολο τω Μιγδικώ Αριθµώ Το σύολο τω µιγδικώ ριθµώ είι έ υπερσύολο του συόλου τω πργµτικώ ριθµώ, στο οποίο: Επεκτείοτι οι πράξεις της πρόσθεσης κι του
Ορισμος Μια ακολουθια ονομαζεται αριθμητικη προοδος, αν και μονο αν, υπαρχει ω, τετοιος ωστε για κάθε ν να ισχυει: α. ν ν
AΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Α κ ο λ ο υ θ ι ε ς Ορισμος. Ν δειχτει οτι + 0 0. Ποτε ισχυει το ισο; Κθε συρτηση. A :, β * θετικοι οομζετι, συγκριετι κολουθι τους ριθμους πργμτικω Α = ριθμω. + β, Β = β + β. * Η τιμη
ΠΕΡΙΚΛΗΣ Γ. ΚΑΤΣΙΜΑΓΚΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ ΠΡΩΤΟ ΘΕΜΑ ΕΚΔΟΣΕΙΣ ΟΡΟΣΗΜΟ ΖΩΓΡΑΦΟΥ
ΠΕΡΙΚΛΗΣ Γ ΚΑΤΣΙΜΑΓΚΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ ΠΡΩΤΟ ΘΕΜΑ ΕΚΔΟΣΕΙΣ ΚΕΝΤΡΙΚΗ ΔΙΑΘΕΣΗ Τρυλντώνη 8, 577 Ζωγράφου Τηλ: 747344 747395 email:info@orosimoeu wwworosimoeu ISBN: 978-68-873--4 ΕΚΔΟΣΕΙΣ
just ( u) Πατρόκλου 66 Ίλιον
just f ( u) du it Πτρόκλου 66 Ίλιον 637345 6944 www.group group-aei aei.gr Νίκος Σούρµπης - - Γιώργος Βρδούκς Ν χρκτηρίσετε τ πρκάτω, σηµειώνοντς Σ (σωστό) ή Λ (λάθος). Αν z, z C, τοτε zz = zz. Η εξίσωση
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΥΝΕΧΕΙΑ ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΚΕΝΤΡΙΚΟ Ν. ΣΜΥΡΝΗΣ
Φ4 ΣΥΝΕΧΕΙΑ ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΛΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΥ ΚΕΝΤΡΙΚ 3ο ΓΕΝΙΚ ΛΥΚΕΙ Ν. ΣΜΥΡΝΗΣ ΘΕΩΡΙΑ ΣΩΣΤ-ΛΑΘΣ ΠΛΛΑΠΛΗΣ ΕΠΙΛΓΗΣ ΣΥΜΠΛΗΡΩΣΗΣ ΚΕΝΥ ΠΑΡΑΤΗΡΗΣΕΙΣ ΑΣΚΗΣΕΙΣ Α &
ν παραγοντες 1 ( ) β β α β α α α γ + β γ = α+ γ γ
B ΓΥΜΝΑΣΙΟΥ υάµεις Ορισµός =... πργοτες 1 = = 1µε Ιδιότητες µ = µ : = µ ( ) = = = ( ) µ µ + µ = µε µε, Αλγερικές πρστάσεις Επιµεριστική ιδιότητ γωγή οµοίω όρω. γ + γ = + γ ( ) Χρήσιµες ιδιότητες τω πράξεω
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 23
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ Αν η συνάρτηση f είνι συνεχής στο, πργωγίσιμη στο κι γι κάθε ισχύει f f ( ) d = e e e Α) Ν ποδείξετε ότι: f = e i) η f είνι πργωγίσιμη στο κι ισχύει ii) f() = e Β)
Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto.
1 Τ πρκάτω είνι τ κυριότερ θεωρήμτ κι ορισμοί πό το σχολικό βιβλίο κολουθούμεν πό δικά μς σχόλι. 1 ο ΠΡΩΤΟ 2 Συνρτήσεις Γνησίως μονότονη συνάρτηση Μι γνησίως ύξουσ ή γνησίως φθίνουσ συνάρτηση λέμε ότι
Θεωρήματα, Προτάσεις, Εφαρμογές
Θεωρήμτ, Προτάσεις, Εφρμογές Μιγδικοί Ιδιότητες συζυγών: Αν z i κι z γ δi είνι δυο μιγδικοί ριθμοί, τότε: Μέτρο: z z z z z z z z 3 z z z z 4 z z z z Αν z, z είνι μιγδικοί ριθμοί, τότε z z z z z z z z 3
4o Επαναληπτικό Διαγώνισμα 2016
wwwaskisopolisgr ΘΕΜΑ A 4o Επνληπτικό Διγώνισμ 6 Διάρκει: ώρες Α Έστω μι συνάρτηση f πργωγίσιμη σ έν διάστημ,, με εξίρεση ίσως έν σημείο του f διτηρεί πρόσημο στο,,, ν,στο οποίο όμως η f είνι συνεχής Αν
Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:
Ο μθητής που έχει μελετήσει το κεφάλιο υτό θ πρέπει: Ν γωρίζει τις συρτήσεις f( )=, f( )= log, τις βσικές τους ιδιότητες κι μπορεί τις σχεδιάζει. Ν μπορεί επιλύει εκθετικές εξισώσεις, ισώσεις κι εκθετικά
ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009.
ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 9. ΘΕΜΑ ο Α. Έστω, Δ. Δικρίνουμε τις περιπτώσεις: Αν =, τότε f( ) = f( ). Αν
Μαθηματικά για την Α τάξη του Λυκείου
Μθημτιά Α Λυείου Μθημτιά γι τη Α τάξη του Λυείου Α Νιοστή ρίζ πργμτιού ριθμού. Κρδμίτσης Σπύρος ΟΡΙΣΜΟΣ Η ιοστή ρίζ θετιός έριος εός μη ρητιού ριθμού συμολίζετι με ι είι ο μη ρητιός ριθμός που ότ υψωθεί
[ ] ( ) [( ) ] ( ) υ
ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ) Α Θέτω στη συάρτηση ι οπότε έχω () ( ) Η εξίσωση γίετι η Α η Α δε ισχύει η Α ι ( ) ( ) ( ) τότε ( ) [ ] ( ) Διρίω τις περιπτώσεις άρ δε ισχύει τότε ( ) άρ
ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ. Αόριστο ολοκλήρωμα. Ερωτήσεις θεωρίας
ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Αόριστο ολοκλήρωμ Ερωτήσεις θεωρίς Ποι ρολήμτ οδήγησν στην νάγκη ορισμού της ρχικής συνάρτησης ; Δώστε τον ορισμό της ρχικής συνάρτησης ή ράγουσς f στο Δ κι έν ράδειγμ Πολλές φορές
Α2. Πότε μία συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα του πεδίου ορισμού της; Μονάδες 3
Βθμός: /25 Τεστ Μθημτικών Εξετζόμενος-η: Προσντολισμού, Γ Λυκείου Θεωρί 1 Κθηγητής: Ιορδάνης Χτζηνικολάου Συνρτήσεις Θέμ Α Α1. Ν ποδείξετε ότι οι γρφικές πρστάσεις C κι C των συνρτήσεων f κι f 1 είνι συμμετρικές
1.1.Οι πράξεις και οι ιδιότητές τους ΙΔΙΟΤΗΤΕΣ ΔΥΝΑΜΕΩΝ
Ζωοδόχου Πηγς Σλμί Τηλ 466- /4644..Οι πράξεις ι οι ιδιότητές τους i Στο προομστεός λάσμτος ΑΠΑΓΟΡΕΥΕΤΑΙ έχουμε το μηδέ γιτί το λάσμ δε ορίζετι.,.π.χ: δε ορίζετι i Ότ ο ριθμητς εός λάσμτος είι ίσος με το
ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΩΡΗΜΑΤΑ ΠΡΟΤΑΣΕΙΣ µε ΑΠΟ ΕΙΞΕΙΣ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ µε ΑΠΑΝΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΤΟΥ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΚΑΙ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Αιστάι 30 Αµφιάλη 43890-43
ΜΑΘΗΜΑ 52 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 8 η ΕΚΑ Α
ΜΑΘΗΜΑ 5 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 8 η ΕΚΑ Α 7. Έστω συνάρτηση f : R R, η οποί είνι πργωγίσιµη κι κυρτή στο R µε f() κι f () i) Ν ποδείξετε ότι f() γι κάθε R f (t)dt Ν ποδείξετε ότι ηµ Αν επιπλέον ισχύει f () (f()
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (27 /5/ 2004)
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (7 /5/ 4) ΘΕΜΑ ο Α. Έστω μι συνάρτηση f ορισμένη σ' έν διάστημ Δ κι έν εσωτερικό σημείο του Δ. Αν η f προυσιάζει τοπικό κρόττο στο κι είνι πργωγίσιμη
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΤΟ Α ΘΕΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΤΥΠΟΛΟΓΙΑ.
5-6 ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ Α ΘΕΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΤΥΠΟΛΟΓΙΑ http://cutemathswordpresscom/ Βγγέλης Α Νικολκάκης Μθημτικός ΛΙΓΑ ΛΟΓΙΑ Η προύσ εργσί μµου δε στοχεύει
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο : Έστω z, z C με (z ) = κι (z ) = Αν f() ( z )( z )( z )( z ) = κι f(i ) = 64 8i, τότε ν ποδείξετε ότι: ) f( i )
Α) Να αποδείξετε ότι η νιοστή παράγωγος της συνάρτησης f µπορεί να πάρει. )e όπου α ν, β ν είναι συντελεστές
. ίνετι η συνάρτηση f() e. Α) Ν ποδείξετε ότι η νιοστή πράγωγος της συνάρτησης f µπορεί ν πάρει τη µορφή (ν) f () ( + ν + ν )e όπου ν ν είνι συντελεστές εξρτηµένοι πό το ν τους οποίους κι ν υπολογίσετε.
α β α < β ν θετικός ακέραιος.
Τυτότητες ( ± ) ± ( ± ) ± ± ( ± ) m (γ) γ γγ - (-)() - (-)( ) - (-)( - - - - ) Α. Βσικές γώσεις ()( - ) ()( - - - - - - ) ΜΟΝΟ ΓΙΑ ΠΕΡΙΤΤΟ. γ --γ-γ [(-) (-γ) (γ-) ] γ -γ (γ)[(-) (-γ) (γ-) ] Αισώσεις. Οι
Βασικό θεώρηµα της παράγουσας Θ.Θ του ολοκληρωτικού λογισµού Μέθοδοι ολοκλήρωσης
ΜΑΘΗΜΑ.5 Η ΣΥΝΑΡΤΗΣΗ F() ΘΕΩΡΙΑ. Θεώρηµ f ()d Βσικό θεώρηµ της πράγουσς Θ.Θ του ολοκληρωτικού λογισµού Μέθοδοι ολοκλήρωσης Θεωρί - Σχόλι - Μέθοδοι Ασκήσεις Αν η f είνι µι συνεχής συνάρτηση σε διάστηµ κι
ΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ. ηµχ = ηµθ χ=2κπ+θ ή χ=2κπ+π-θ, κ Z συνχ = συνθ χ=2κπ+θ ή χ=2κπ-θ, κ Z εφχ = εφθ χ=κπ+θ, κ Z σφχ = σφθ χ=κπ+θ, κ Z
ΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Τριγωοµετρικές εξισώσεις ηµχ = ηµθ χ=2κπ+θ ή χ=2κπ+π-θ, κ Z συχ = συθ χ=2κπ+θ ή χ=2κπ-θ, κ Z εφχ = εφθ χ=κπ+θ, κ Z σφχ = σφθ χ=κπ+θ, κ Z Βσικές τριγ. εξισώσεις ηµx = 0
ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου].
ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ:..4 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β Άσκηση. Ν υολογίσετε το ολοκλήρωμ ( + ) d. Εειδή ( ) ( + ) =
( 0) = lim. g x - 1 -
ν ν ΘΕΜΑ Η πολυωνυµική συνάρτηση ν + ν + + + έχει όριο στο R κι ισχύει lim ν ν Έχουµε lim + + + lim ν ν ν ν lim ν + lim ν + ν ν ν lim + ν lim + + lim + lim ν ν ν + ν + + Εποµένως, lim ΘΕΜΑ Η ρητή συνάρτηση
ίνονται οι πραγµατικές συναρτήσεις f, g που έχουν πεδίο ορισµού το σύνολο
996 ΘΕΜΑΤΑ. ίνοντι οι πργµτικές συνρτήσεις f, g που έχουν πεδίο ορισµού το σύνολο. Αν οι f κι g έχουν συνεχείς πρώτες πργώγους κι συνδέοντι µετξύ τους µε τις σχέσεις f = g, g = - f τότε ν ποδείξετε ότι:
ΘΕΩΡΙΑ ΚΕΦΑΛΑΙΟ 1 Ο. Παράγραφος 1.1. Ποιο πείραμα λέγεται αιτιοκρατικό και ποιο πείραμα τύχης;
ΘΕΩΡΙΑ ΚΕΦΑΛΑΙΟ 1 Ο Πράγρφος 1.1 Ποιο πείρμ λέγετι ιτιοκρτικό κι ποιο πείρμ τύχης; Τι οομάζουμε χώρο εός πειράμτος τύχης; Τι λέμε εδεχόμεο εός πειράμτος τύχης; Ποιο εδεχόμεο λέγετι πλό κι ποιο σύθετο;