Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ
|
|
- Ἀβιούδ Ζυγομαλάς
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Ε π ι μ έ λ ε ι Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ
2 Η Έοι του Ορίου Ορισμός Ότ οι τιμές μις συάρτησης f προσεγγίζου όσο θέλουμε έ πργμτικό ριθμό, κθώς το προσεγγίζει με οποιοδήποτε τρόπο το ριθμό, τότε γράφουμε: f() κι διβάζουμε: " το όριο της f(), ότ το τείει στο, είι " ή " το όριο της f() στο είι " Γι ζητήσουμε το όριο της f στο, πρέπει η f ορίζετι όσο θέλουμε "κοτά στο ", δηλδή η f είι ορισμέη σ' έ σύολο της μορφής: (, ) (, β) ή (, ) ή (, β) Το μπορεί ήκει στο πεδίο ορισμού της συάρτησης ή μη ήκει σ' υτό. Η τιμή της f στο, ότ υπάρχει, μπορεί είι ίση με το όριό της στο o ή διφορετική πό υτό. Α μι συάρτηση έχει όριο στο, τότε υτό είι μοδικό. Αυστηρότερ, διτυπώουμε το πρκάτω ορισμό: Ορισμός Έστω συάρτηση f ορισμέη σε έ σύολο της μορφής (, )(, β). Θ λέμε ότι το όριο της f, ότ το τείει στο, είι κι θ γράφουμε: f() κι μόο, γι κάθε ε > υπάρχει δ > τέτοιος, ώστε γι κάθε (, )(, β), με < < δ ισχύει: f() f() < ε
3 y = f() + ε + ε Ο -δ +δ Μεθοδολογί Γεικά, προκειμέου υπολογίσουμε τη τιμή εός ορίου, τικθιστούμε όπου = κι προχωρούμε στη εκτέλεση τω πράξεω. Στη φάση υτή, πιθόττ δημιουργηθού διάφορ προβλήμτ υπολογισμού, τ οποί κλούτι μορφές προσδιοριστίς κι τις οποίες θ εξετάσουμε ργότερ.
4 Πλευρικά Όρι Ορισμός Ότ οι τιμές μις συάρτησης f προσεγγίζου όσο θέλουμε έ πργμτικό ριθμό, κθώς το προσεγγίζει το πό μικρότερες τιμές ( < ), τότε γράφουμε: κι διβάζουμε: f() "το όριο της f(), ότ το τείει στο πό τ ριστερά, είι " κι λόγως Ότ οι τιμές μις συάρτησης f προσεγγίζου όσο θέλουμε έ πργμτικό ριθμό, κθώς το προσεγγίζει το πό μεγλύτερες τιμές ( > ), τότε γράφουμε: κι διβάζουμε: f() "το όριο της f(), ότ το τείει στο πό τ δεξιά, είι " Τους ριθμούς f() κι f() τους οομάζουμε πλευρικά όρι της f στο κι συγκεκριμέ το ριστερό όριο της f στο, εώ το δεξιό όριο της f στο. Προκειμέου υπάρχει το όριο μις συάρτησης f στο, θ πρέπει όχι μόο υπάρχου τ πλευρικά όριο στο λλά κι τυτίζοτι. Συεπώς, ισχύει η πρκάτω ισοδυμί: f() f() f()
5 Α μι συάρτηση f ορίζετι μόο δεξιά ή μόο ριστερά του, τότε το όριό της στο τυτίζετι με το δεξί ή το ριστερό όριο, τίστοιχ. Πιο συγκεκριμέ: Α η f ορίζετι σ' έ διάστημ (, β), λλά όχι στο (, ) τότε: f() f() Α η f ορίζετι σ' έ διάστημ (, ), λλά όχι στο (, β) τότε: Μεθοδολογί f() f() Τ πλευρικά όρι, συήθως, τ χρειζόμστε στις συρτήσεις, οι οποίες λλάζου τύπο, δεξιά ή ριστερά του σημείου. f() f () f() Γι <, υπολογίζουμε το Γι >, υπολογίζουμε το Α Α f() είι: f(),, f(). f(). f() τότε υπάρχει το όριο της f στο κι. f() f() τότε δε υπάρχει το όριο της f στο.
6 Ιδιότητες τω Ορίω Με τη βοήθει του ορισμού ποδεικύοτι τ πρκάτω:. f() [f() ]. f() f( h) 3. c c 4. h όριο στθερής συάρτησης όριο τυτοτικής συάρτησης 5. Όρι & πράξεις Επιπλέο, υπάρχου τ όρι τω συρτήσεω f κι g στο, τότε: 6. [f() g()] f() g() Γεικά: [f () f ()... f ()] f () f ()... f 7. [κ f()] κ f() 8. [f() g()] f() g() 9. Γεικά: [f () f ()... f ()] f () f ()... f f() g() f(), με g() g(). f() f() () ()
7 . κ f() κ f(), με f() κοτά στο. [f()] f(), με * Κι κόμ, γεικά ισχύει: f () f() Ισχύου, επίσης, τ πρκάτω θεωρήμτ: Θεώρημ f() Γι κάθε πολυωυμική συάρτηση Ρ() = ,, ισχύει: P() P( ), γι κάθε Θεώρημ Α Ρ(), Q() πολυώυμ του, τότε ισχύει: P() Q() P( Q( ), γι κάθε με Q(). ) Μεθοδολογί Προσοχή! Συχά, ότ στις σκήσεις εργζόμστε με δύο ή περισσότερες συρτήσεις, εφρμόζουμε τις ιδιότητες τω ορίω δίχως ιδιίτερη περίσκεψη. Θ πρέπει θυμόμστε, συεχώς, ότι οι ιδιότητες εφρμόζοτι μόο ότ υπάρχου τ επιμέρους όρι τω συρτήσεω. Θ πρέπει λοιπό, ωρίτερ, εξετάζουμε τη ύπρξή τους.
8 Όριο κι Διάτξη Θεώρημ Α η συάρτηση f έχει όριο στο, τότε: Α f(), τότε είι κι f() >, κοτά στο. Α f(), τότε είι κι f() <, κοτά στο. Θεώρημ Α οι συρτήσεις f, g έχου όριο στο κι ισχύει f() g() κοτά στο, τότε ισχύει f() g(). Στη περίπτωση που f() < g() ΔΕΝ συεπάγετι πρίτητ ότι f() < g(). Με τη προϋπόθεση ότι υπάρχου τ όρι στο τότε f() g() Κριτήριο Πρεμβολής Έστω οι συρτήσεις f, g, h. τότε: h() f() g() κοτά στο o κι h() = g() =, f()
9 Μεθοδολογί Το κριτήριο της πρεμβολής χρησιμοποιείτι, συήθως, ότ μς δίετι μι ισοτική σχέση. Στη περίπτωση υτή, πιθόττ χρειάζετι κάποιος μετσχημτισμός. Θ πρέπει, ωστόσο, προσέχουμε, κτά τη διάρκει τω μετσχημτισμώ, κθότι συχά πιτείτι πολλπλσισμός ή διίρεση τω μελώ με κάποιο ριθμό. Δηλδή, ο ριθμός υτός είι θετικός ή ρητικός, οπότε θ επηρεάσει κι τη φορά της ισότητς. Έτσι, είοτε, ότ δε γωρίζουμε το πρόσημο, είμστε υποχρεωμέοι πίρουμε ξεχωριστές περιπτώσεις, υπολογίζοτς πλευρικά όρι. Χρήσιμες είι κι οι πρκάτω διδικσίες: β β β β β κι β β β β
10 Τριγωομετρικά Όρι Γι τ όρι τω τριγωομετρικώ συρτήσεω, σε έ σημείο, ποδεικύοτι οι εξής σχέσεις: ημ, γι κάθε ( η ισότητ ισχύει μόο γι = ) ημ ημ συ συ ημ συ - Μεθοδολογί ημ(κ) Ότ τιμετωπίζουμε όρι της μορφής, τότε θέτουμε κ = u, οπότε ότ θ είι κι u. Έτσι, ημ(κ) ημ(κ) ημ(u) έχουμε: κ κ κ κ. κ u u Ότ τιμετωπίζουμε όρι της μορφής ημ() ή συ(), τότε εφρμόζουμε το κριτήριο πρεμβολής, με τη βοήθει τω πρκάτω σχέσεω: ημ ημ κι συ συ
11 Όριο Σύθετης Συάρτησης Αποδεικύετι ότι το όριο της σύθεσης fog, δύο συρτήσεω f κι g, σε έ σημείο είι: f(g()) u f(u) u όπου: u = g() u = g() g() u κοτά στο Μεθοδολογί Γι υπολογίσουμε το όριο μις σύθετης συάρτησης fog σ' έ σημείο, κολουθούμε τη πρκάτω διδικσί: Θέτουμε g() = u κι λύουμε ως προς. Υπολογίζουμε το g(), υπάρχει, έστω u. o Υπολογίζουμε το f(u), υπάρχει, έστω. uu o Το τελευτίο είι κι το ζητούμεο όριο.
12 Μη Πεπερσμέο Όριο στο o Ορισμός Έστω μι συάρτηση f, που είι ορισμέη σε έ σύολο της μορφής (, )(, β). Ορίζουμε: f(), ότ γι κάθε Μ > υπάρχει δ > τέτοιο, ώστε γι κάθε (, )(, β), με < < δ ισχύει: f() > M f(), ότ γι κάθε Μ > υπάρχει δ > τέτοιο, ώστε γι κάθε (, )(, β), με < < δ ισχύει: f() < M Ισχύου οι πρκάτω ισοδυμίες: Μεθοδολογί f() f() f() f() f() f() Οι πρκάτω προτάσεις είι, επίσης, πολύ χρήσιμες. Ωστόσο, χρειάζετι σε κάθε περίπτωση ποδεικύοτι, κθώς δε περιλμβάοτι στη διδκτέ ύλη: Μη πεπερσμέο όριο & διάτξη Α. Α ισχύει ότι f() g() κοτά στο κι g(), τότε: f()
13 Β. Α ισχύει ότι f() g() κοτά στο κι g(), τότε: Απόδειξη Α. Επειδή g() f(), άρ g() >, κοτά στο. Όμως, f() g() άρ είι κι f() >, κοτά στο. Συεπώς, κοτά στο, είι: f() g(). f() g() Επειδή, τότε π' το κριτήριο πρεμβολής θ g() έχουμε ότι κι. f() f() άρ f() f() κοτά στο f() Β. Επειδή g(), άρ g() <, κοτά στο. Όμως, f() g() άρ είι κι f() <, κοτά στο. Συεπώς, κοτά στο, είι: f() g(). f() g() Επειδή, τότε π' το κριτήριο πρεμβολής θ g() έχουμε ότι κι. f() f() άρ f() f() κοτά στο f()
14 Ιδιότητες Μη Πεπερσμέω Ορίω Με τη βοήθει του ορισμού ποδεικύοτι τ πρκάτω:. f() f() κοτά στο f() f() κοτά στο. f() f() f() 3. f() ή f() f() f() 4. f() κι f() > κοτά στο f() κι f() < κοτά στο 5. f() ή f() 6. f() κ f() f() f() f()
15 Όριο Αθροίσμτος & Γιομέου f + + g f + g + + ; ; f > < > < + + g f g + ; ; + + Οι περιπτώσεις, που προυσιάζοτι με ερωτημτικό, υποοού ότι το όριο σε κάθε περίπτωση ( υπάρχει), εξρτάτι πό τις δοθέτες συρτήσεις κι δε υπάρχει γεική πάτηση. Απροσδιόριστες μορφές θροίσμτος & γιομέου (+) + () () Απροσδιόριστες μορφές διφοράς & πηλίκου (+) (+) () ()
16 Απροσδιόριστες Μορφές / & / Απροσδιόριστη Μορφή / f() Α το όριο, που θέλουμε υπολογίσουμε, είι της μορφής:, g() λλά συμβίει είι: f() g(), τότε προχωρούμε σε πργοτοποίηση τω πρστάσεω. Ζητούμεο της πργοτοποίησης είι εμφιστεί, σε ριθμητή κι προομάστη, πράγοτς της μορφής ( ), ο οποίος είι υπεύθυος γι τη προσδιοριστί. Στη συέχει, το πλοποιούμε ίροτς έτσι τη προσδιοριστί. Σχημτικά, έχουμε: f() g() ( ( ) P() ) Q() P() Q() Απροσδιόριστη Μορφή / με ρίζες Α το όριο, που θέλουμε υπολογίσουμε, είι της προηγούμεης μορφής, λλά περιλμβάει επιπλέο κι ρίζες, τότε η πργοτοποίηση δε είι, συήθως, εφικτή. Δικρίουμε τις εξής δύο περιπτώσεις: Α τ υπόρριζ δε μηδείζοτι στο, τότε πολλπλσιάζουμε ριθμητή κι προομστή με τη συζυγή πράστση, υτού που περιέχει τη ρίζ. Είοτε, πολλπλσιάζουμε με τις συζυγείς πρστάσεις κι του ριθμητή κι του προομστή. Εδεικτικά, πρθέτουμε τις συζυγείς πρστάσεις τω πιο συηθισμέω τυτοτήτω, προσρμοσμέες στη λογική τω ριζικώ: β β β β β β β β β
17 Α τ υπόρριζ μηδείζοτι στο, τότε η μέθοδος τω συζυγώ πρστάσεω δε είι, συήθως, χρήσιμη. Στη περίπτωση υτή, προχωρούμε σε τυπική πργοτοποίηση, εκμετλλευόμεες τις ιδιότητες τω ριζώ. Απροσδιόριστη Μορφή / με πόλυτες τιμές Α κμί πόλυτη τιμή δε μηδείζετι στο τότε: Βρίσκουμε το πρόσημο τω πρστάσεω, που βρίσκοτι μέσ στ πόλυτ, κοτά στο. Αυτό μπορεί γίει είτε κτσκευάζοτς πίκ προσήμω, είτε υπολογίζοτς το όριο της πράστσης, ότ. Βγάζουμε τις πόλυτες τιμές. Συεχίζουμε, κτά τ γωστά, κάοτς πργοτοποίηση κι πλοποίηση. Α τουλάχιστο μί πόλυτη τιμή μηδείζετι στο τότε: Α λλάζου τ πρόσημ δεξιά κι ριστερά του, χρειάζετι υπολογίσουμε τ πλευρικά όρι. Σε κάθε περίπτωση, προχωρούμε με το τρόπο, που περιγράφτηκε ωρίτερ. Απροσδιόριστη Μορφή / Δικρίουμε τις εξής περιπτώσεις: Όρι της μορφής / Εφρμόζουμε τις ιδιότητες: Α f() κι f() > κοτά στο, τότε Α f() κι f() < κοτά στο, τότε f() f() Συχά, γι υπολογίσουμε το πρόσημο του προομστή, χρειάζετι εξετάσουμε τ πλευρικά όρι στο.
18 Όρι της μορφής / Πργοτοποιούμε το προομστή. Χωρίζουμε το κλάσμ σε δύο πράγοτες έτσι, ώστε η πράστση που μηδείζει το προομστή βρεθεί μόη της, σε πράγοτ της μορφής /p(). Υπολογίζουμε το πρόσημό της, δηλδή είι + ή. Υπολογίζουμε το όριο του δεύτερου πράγοτ, με πλή τικτάστση. Συθέτουμε τη πάτησή μς, με πλούς κόες προσήμω.
19 Όριο Συάρτησης στο Άπειρο Γι ζητήσουμε το όριο μις συάρτησης f στο + ή στο, τότε πρέπει η f είι ορισμέη σε έ διάστημ της μορφής (, +) ή (, ), τίστοιχ. Βσικά Όρι (*) άρτιος περιττός Όριο Πολυωυμικής κι Ρητής Συάρτησης Γι τη πολυωυμική συάρτηση Ρ() = , με ισχύει: P() ( ) κι P() ( ) Γι τη ρητή συάρτηση f() = β κ β..., με κ κ... β β, βκ ισχύει: f() ( ) κι f() ( ) κ κ β β κ κ
20 Όριο Εκθετικής κι Λογριθμικής Συάρτησης Α > τότε: (log ) (log ) Α < < τότε: (log ) (log ) Συμβουλή : Σε κμί περίπτωση, δε χρειάζετι ποστηθίσουμε μηχικά τ προηγούμε. Αρκεί έχουμε στο ου μς τις γρφικές πρστάσεις τω συρτήσεω. Αυτές τ λέε όλ. < < > > Ο Ο < < Πεπερσμέο Όριο Ακολουθίς Ορισμός Ακολουθί οομάζετι κάθε πργμτική συάρτηση : *
21 Η εικό () της κολουθίς συμβολίζετι ως. Η κολουθί συμβολίζετι ως (). Ορισμός Θ λέμε ότι η κολουθί () έχει όριο το κι θ γράφουμε, ότ γι κάθε ε >, υπάρχει * τέτοιο, ώστε γι κάθε > ισχύει: < ε Μεθοδολογί Απόλυτες τιμές Α τ όρι περιέχου πρστάσεις με πόλυτες τιμές, τότε πιθόττ μπορούμε πλλγούμε πό τ πόλυτ. Α το +, τότε μπορούμε περιορίσουμε το σε οποιοδήποτε διάστημ της μορφής (Μ, +), όπου Μ >. Α, πάλι, το, τότε μπορούμε λόγως περιορίσουμε το σε οποιοδήποτε διάστημ της μορφής (, Μ), όπου Μ >. Σε κάθε περίπτωση, μπορούμε "βγάλουμε" τις πόλυτες τιμές, με το άλογο πρόσημο. Άρρητες συρτήσεις Γι το υπολογισμό ορίω στο ± μις άρρητης συάρτησης, κολουθούμε τη εξής διδικσί: Βγάζουμε κοιό πράγοτ το μεγιστοβάθμιο όρο του υπόρριζου. Χωρίζουμε τις ρίζες. Υπολογίζουμε το όριο του γιομέου. Α, πρ' όλ υτά, κτλήξουμε σε προσδιόριστη μορφή, τότε πολλπλσιάζουμε κι διιρούμε με τη συζυγή της άρρητης πράστσης, που "ευθύετι" γι τη προσδιοριστί.
22 Ότ η προσδιοριστί φορά σε κυβικές ρίζες, τότε κάουμε χρήση της τυτότητς: ( β)( + β + β ) = 3 β 3 Εκθετικές συρτήσεις Γι τη άρση της προσδιοριστίς, ότ υπολογίζουμε όρι εκθετικώ συρτήσεω: περιέχου δυάμεις της μορφής, > βγάζουμε κοιό πράγοτ τη μεγλύτερη εκθετική δύμη της μορφής. Έτσι, σχημτίζοτι εκθετικές συρτήσεις της μορφής β, με β > < κι συεπώς. β β περιέχου δυάμεις της μορφής, > βγάζουμε κοιό πράγοτ τη μικρότερη εκθετική δύμη της μορφής. Έτσι, σχημτίζοτι εκθετικές συρτήσεις της μορφής β β β, με β > > κι συεπώς.
23 Συέχει Συάρτησης Ορισμός Έστω μι συάρτηση f κι έ σημείο του πεδίου ορισμού της. Θ λέμε ότι η f είι συεχής στο o, ότ: f() f() Μι συάρτηση f, που είι συεχής σε όλ τ σημεί του πεδίου ορισμού της, θ λέγετι, πλά, συεχής συάρτηση. Σύμφω με το ορισμό, είι προφές ότι μι συάρτηση ΔΕΝ ΕΙΝΑΙ συεχής σε έ σημείο του πεδίου ορισμού της ότ:. δε υπάρχει το όριό της στο. β. υπάρχει το όριό της στο, λλά είι διφορετικό πό τη τιμή της f(). Βσικές Συεχείς Συρτήσεις Κάθε πολυωυμική συάρτηση είι συεχής. Λογικό, φού γι κάθε ισχύει: P() P( ) Κάθε ρητή συάρτηση Q P είι, επίσης, συεχής, φού γι κάθε του πεδίου ορισμού της ισχύει: P() Q() P( Q( Οι τριγωομετρικές συρτήσεις f() = ημ κι g() = συ είι συεχείς, φού γι κάθε ισχύει: ημ ημ ) ) κι συ συ Η εκθετική συάρτηση f() =, <, είι συεχής. Η λογριθμική συάρτηση f() = log, <, είι συεχής.
24 Πράξεις Συεχώ Συρτήσεω Θεώρημ Α οι συρτήσεις f κι g είι συεχείς στο, τότε είι συεχείς στο κι οι συρτήσεις: f + g, c f (c), f g, f / g, f, f με τη προϋπόθεση ότι ορίζοτι σε έ διάστημ, που περιέχει το. Μι άμεση συέπει του πρπάω θεωρήμτος είι ότι οι τριγωομετρικές συρτήσεις f() = εφ κι g() = σφ είι, επίσης, συεχείς, ως πηλίκ συεχώ συρτήσεω. Θεώρημ Α η συάρτηση f είι συεχής στο κι η συάρτηση g είι συεχής στο f(), τότε κι η σύθεσή τους gof είι συεχής στο.
Η θεωρία στα Μαθηματικά κατεύθυνσης
Η θεωρί στ Μθημτικά κτεύθυσης Σελίδ πό 3 Ορισμοί Ιδιότητες - Προτάσεις Θεωρήμτ Αποδείξεις Α Μιγδικοί ριθμοί Πότε δυο μιγδικοί είι ίσοι κι πότε ές μιγδικός είι ίσος με ; Δύο μιγδικοί ριθμοί i κι γ δi είι
Διαβάστε περισσότεραΘεωρήματα και προτάσεις με τις αποδείξεις τους
Θεωρήμτ κι προτάσεις με τις ποδείξεις τους Μιγδικοί Ιδιότητες συζυγώ: Α i κι i δ γ είι δυο μιγδικοί ριθμοί, τότε: 3 4 Αποδεικύοτι με εφρμογή του ορισμού κι πράξεις Γι πράδειγμ έχουμε: i δ γ δi γ i i i
Διαβάστε περισσότερα1.6 ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ x
ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 7 6 ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ Στο σχήμ 4 έχουμε τη γρφιή πράστση μις συάρτησης οτά στο Πρτηρούμε ότι, θώς το ιούμεο με οποιοδήποτε τρόπο πάω στο άξο πλησιάζει το πργμτιό ριθμό, οι
Διαβάστε περισσότεραπ.χ. 2, 3, π=3,14... Αναλογία λέγεται κάθε ισότητα κλασµάτων και έχουµε τις παρακάτω ιδιότητες : α = 4) β = δ και δ γ β
ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ) ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τ σύολ τω ριθµώ είι τ εξής : ) Οι φυσικοί ριθµοί : Ν {0,,,,... } ) Οι κέριοι ριθµοί : Ζ {...,,,, 0,,,,... } ) Οι ρητοί ριθµοί : Q ρ / κ ρ, κ Z, Z 0 4) Οι άρρητοι
Διαβάστε περισσότεραΟΡΙΑ - ΣΥΝΕΧΕΙΑ. Πόσα είδη ορίων υπάρχουν; Τι είναι το +, - ; Τι ονοµάζουµε γειτονιά ή περιοχή του x o ; Τι ονοµάζουµε γειτονιά του +, - ;
ΟΡΙΑ - ΣΥΝΕΧΕΙΑ Πόσ είδη ορίω υπάρχου; Υπάρχει όριο στο κι είι πργµτικός ριθµός (πεπερσµέο) Υπάρχει όριο στο κι είι, - (µη πεπερσµέο) Υπάρχει όριο στο ή - κι είι πργµτικός ριθµός. Υπάρχει όριο στο ή -
Διαβάστε περισσότεραΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΟΡΙΣΜΟΙ ΘΕΩΡΗΜΑΤΑ ΤΥΠΟΙ ΧΩΡΙΣ ΑΠΟΔΕΙΞΗ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ
ΟΡΙΣΜΟΙ ΘΕΩΡΗΜΑΤΑ ΤΥΠΟΙ ΧΩΡΙΣ ΑΠΟΔΕΙΞΗ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Το σύολο C τω μιγδικώ ριθμώ είι έ υπερσύολο του συόλου R τω πργμτικώ ριθμώ, στο οποίο: Επεκτείοτι οι πράξεις της πρόσθεσης κι του πολλπλσισμού έτσι,
Διαβάστε περισσότεραΜΑΡΙΑ ΓΚΟΥΝΤΑΡΟΠΟΥΛΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η διυσμτική κτί του θροίσμτος τω μιγδικώ i κι γ δi είι το άθροισμ τω διυσμτικώ κτίω τους Α M κι M γ δ είι οι εικόες τω i κι γ δi τιστοίχως
Διαβάστε περισσότερα1.7 OΡΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ
ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΡΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ Στ πράτω σχήμτ έχουμε τις γρφιές πρστάσεις τριώ συρτήσεω, g, h σε έ διάστημ της μορφής, 8 l a C g C g h γ C h Πρτηρούμε ότι θώς το υξάετι περιόριστ με
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου].
ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: 3. 3.4 Μέρος Β του σχολικού ιλίου]. ΣΗΜΕΙΩΣΕΙΣ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ Εμδό προλικού χωρίου Έστω ότι θέλουμε ρούμε
Διαβάστε περισσότερα1o ΓΕ.Λ. Λιβαδειάς Μαθηματικά Προσανατολισμού Ορισμοί Θεωρήματα- Αποδείξεις- Γεωμετρικές ερμηνείες- Σχόλια Αντιπαραδείγματα - Παρατηρήσεις.
o ΓΕΛ Λιδειάς Μθημτικά Προστολισμού Ορισμοί Θεωρήμτ- Αποδείξεις- Γεωμετρικές ερμηείες- Σχόλι Ατιπρδείγμτ - Πρτηρήσεις* ΟΡΙΣΜΟΣ ος πργμτική συάρτησησελ5 Έστω Α έ υποσύολο του Οομάζουμε πργμτική συάρτηση
Διαβάστε περισσότεραΣΑΜΑΡΑΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΚΩΣΤΑΚΗΣ ΛΑΜΠΡΟΣ
Ρίζες πργμτικώ ριθμώ Τετργωική ρίζ πργμτικού ριθμού Ορισμός: Η τετργωική ρίζ εός μη ρητικού ριθμού είι ο μη ρητικός ριθμός β που ότ υψωθεί στο τετράγωο μς δίει το, δηλδή: = β β =,, β Πρτήρηση: Η ορίζετι
Διαβάστε περισσότεραΗ θεωρία στα Μαθηματικά κατεύθυνσης :
Σελίδ πό 45 Η θεωρί στ Μθημτικά κτεύθυσης : Ορισμοί Ιδιότητες - Προτάσεις Θεωρήμτ Αποδείξεις Α Μιγδικοί ριθμοί Πότε δυο μιγδικοί είι ίσοι κι πότε ές μιγδικός είι ίσος με ; Δύο μιγδικοί ριθμοί ισχύει: βi
Διαβάστε περισσότεραΗ Θεωρία σε 99 Ερωτήσεις
Μθημτικά Κτεύθυσης Γ Λυκείου Η Θεωρί σε 99 Ερωτήσεις Ορισμοί, Θεωρήμτ 4 Μθημτικά Κτεύθυσης Γ Λυκείου Ερωτήσεις Θεωρίς Ορισιμοί θεωρήμτ με πτήσεις Μ Ππγρηγοράκης Μθημτικά Κτεύθυσης Γ Λυκείου Ερωτήσεις Θεωρίς
Διαβάστε περισσότεραΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. Υπάρχει ένα στοιχείο i τέτοιο, ώστε i 1, Κάθε στοιχείο z του γράφεται κατά μοναδικό τρόπο με τη μορφή i, όπου,
ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Ποιο είι το Σύολο τω Μιγδικώ Αριθμώ; Το σύολο τω μιγδικώ ριθμώ είι έ υπερσύολο του συόλου τω πργμτικώ ριθμώ, στο οποίο: Επεκτείοτι οι πράξεις της πρόσθεσης κι του πολλπλσισμού έτσι, ώστε
Διαβάστε περισσότεραΕ π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ
Ε π ι μ έ λ ε ι Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Σ Τ Α Τ Ι Σ Τ Ι Κ Η. Τι οομάζετι πληθυσμός μις σττιστικής έρευς; Οομάζετι το σύολο τω τικειμέω (έμψυχω ή άψυχω γι τ οποί συλλέγοτι στοιχεί.. Τι οομάζετι άτομο
Διαβάστε περισσότεραΦροντιστήρια 2001-ΟΡΟΣΗΜΟ
Φροτιστήρι -ΟΡΟΣΗΜΟ ΟΡΟΣΗΜΟ Άλγεβρ Β Λυκείου Επιμέλει: Σεμσίρης Αριστείδης -- Φροτιστήρι -ΟΡΟΣΗΜΟ - - Φροτιστήρι -ΟΡΟΣΗΜΟ Άλγεβρ Β Λυκείου Περιέχει Συοπτική Θεωρί Μεθοδολογί Ασκήσεω Λυμέες Ασκήσεις Λυμέ
Διαβάστε περισσότεραΗ θεωρία στα Μαθηματικά κατεύθυνσης :
Σελίδ πό 5 Η θεωρί στ Μθημτικά κτεύθυσης : Ορισμοί Ιδιότητες - Προτάσεις Θεωρήμτ Αποδείξεις Α Μιγδικοί ριθμοί Πότε δυο μιγδικοί είι ίσοι κι πότε ές μιγδικός είι ίσος με ; Δύο μιγδικοί ριθμοί ισχύει: βi
Διαβάστε περισσότεραQwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj
Qwφιertuiopasdfghjklzερυυξnmηq σwωψertuςiopasdρfghjklzcvbn mqwertuiopasdfghjklzcvbnφγιmλι qπςπζwωeτrtuτioρμpκaλsdfghςj ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ klzcvλοπbnmqwertuiopasdfghjklz ΤΗΣ Γ ΛΥΚΕΙΟΥ ΑΠΟΔΕΙΞΕΙΣ
Διαβάστε περισσότεραΓ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ
Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Ορισμοί τω εοιώ κι θεωρήμτ χωρίς πόδειξη ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Πως ορίζετι το σύολο C τω μιγδικώ ριθμώ; Το σύολο C τω μιγδικώ ριθμώ είι έ υπερσύολο του συόλου R τω
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΤ/ΝΣΗΣ ΘΕΩΡΙΑ - ΑΠΟΔΕΙΞΕΙΣ
Επιμέλει - Κ Μυλωάκης Ν δείξετε ότι: ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΤ/ΝΣΗΣ ΘΕΩΡΙΑ - ΑΠΟΔΕΙΞΕΙΣ i γ δi γ δ δ γ i Γι το πολλπλσισμό δύο μιγδικώ i κι γ δi έχουμε: i γ δi γ δi i γ δi γ δi γi i δi γ δi γi δi γ δi γi δ γ δ
Διαβάστε περισσότεραΘΕΩΡΗΜΑΤΑ (των οποίων πρέπει να ξέρουμε & τις αποδείξεις) από το σχολικό βιβλίο της ΤΕΧΝΟΛΟΓΙΚΗΣ & ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ Λυκείου
Θεωρήμτ θετικής-τεχολογικής κτεύθυσης ΘΕΩΡΗΜΑΤΑ (τω οποίω πρέπει ξέρουμε & τις ποδείξεις πό το σχολικό βιβλίο της ΤΕΧΝΟΛΟΓΙΚΗΣ & ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ Λυκείου υ υ όπου υ το υπόλοιπο της διίρεσης του με
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΩΡΙΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ Όλη η θεωρί γι τις πελλήιες Εξετάσεις Κ Κρτάλη 28 με Δημητριάδος Τηλ 242 32 598 Περιεχόμε ΚΕΦΑΛΑΙΟ 2 Ο ΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 2 2 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 2
Διαβάστε περισσότεραΤΟ ΣΥΝΟΛΟ C ΤΩΝ ΜΙΓΑ ΙΚΩΝ
Μθηµτικά Κτεύθυσης Γ Λυκείου ΘΕΩΡΙΑ ΤΟ ΣΥΝΟΛΟ C ΤΩΝ ΜΙΓΑ ΙΚΩΝ Το σύολο C τω µιγδικώ ριθµώ είι έ υπερσύολο του συόλου R τω πργµτικώ ριθµώ, στο οποίο: Επεκτείοτι οι πράξεις της πρόσθεσης κι του πολλπλσισµού
Διαβάστε περισσότεραΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ. ηµχ = ηµθ χ=2κπ+θ ή χ=2κπ+π-θ, κ Z συνχ = συνθ χ=2κπ+θ ή χ=2κπ-θ, κ Z εφχ = εφθ χ=κπ+θ, κ Z σφχ = σφθ χ=κπ+θ, κ Z
ΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Τριγωοµετρικές εξισώσεις ηµχ = ηµθ χ=2κπ+θ ή χ=2κπ+π-θ, κ Z συχ = συθ χ=2κπ+θ ή χ=2κπ-θ, κ Z εφχ = εφθ χ=κπ+θ, κ Z σφχ = σφθ χ=κπ+θ, κ Z Βσικές τριγ. εξισώσεις ηµx = 0
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
3 ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ Α ΘΕΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ Βγγέλης Α Νικολκάκης Μθημτικός ΛΙΓΑ ΛΟΓΙΑ Η προύσ εργσί μµου δε στοχεύει πλά στο κυήγι του 5,δηλδή τω μµοάδω του
Διαβάστε περισσότεραΟ μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:
Ο μθητής που έχει μελετήσει το κεφάλιο υτό θ πρέπει: Ν γωρίζει τις συρτήσεις f( )=, f( )= log, τις βσικές τους ιδιότητες κι μπορεί τις σχεδιάζει. Ν μπορεί επιλύει εκθετικές εξισώσεις, ισώσεις κι εκθετικά
Διαβάστε περισσότεραΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ
1 ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1.1 ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ (Επλήψεις Συμπληρώσεις) Εισγωγή Στο Γυμάσιο μάθμε ότι οι πργμτικοί ριθμοί ποτελούτι πό τους ρητούς κι τους άρρητους ριθμούς κι πριστάοτι με
Διαβάστε περισσότεραΕπομένως μια ακολουθία α είναι γεωμετρική πρόοδος αν και μόνο αν ισχύει α, δηλαδή το πηλίκο δύο διαδοχικών όρων είναι σταθερό.
Ε. 5. Γεωμετρική Πρόοδος Απρίτητες γώσεις Θεωρίς Γεωμετρική πρόοδος Γεωμετρική Πρόοδο (Γ.Π.) οομάζουμε μι κολουθί κάθε όρος της προκύπτει πό το προηγούμεό του με πολλπλσισμό επί το ίδιο πάτοτε μη μηδεικό
Διαβάστε περισσότεραα+ βi, όπου α, ii) Ο µιγαδικός α+ βi είναι ίσος µε το µηδέν αν και µόνο αν α= 0 και β = 0
Επιµέλει: Βιτσξής Μιχάλης ΑΠΟΔΕΙΞΕΙΣ- ΕΡΩΤΗΣΕΙΣ ΤΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Περίοδος: - Τι οοµάζουµε µιγδικό ριθµό Μιγδικός ριθµός είι κάθε ριθµός που έχει τη µορφή + i, όπου, R κι i Τι λέγετι πργµτικό κι τι φτστικό
Διαβάστε περισσότερα, µε α και β, πραγµατικούς αριθµούς. Τα στοιχεία του C λέγονται µιγαδικοί αριθµοί και το C σύνολο των µιγαδικών αριθµών. Εποµένως:
ΘΕΩΡΙΑ ΤΟ ΣΥΝΟΛΟ C ΤΩΝ ΜΙΓΑ ΙΚΩΝ Γωρίζουµε ότι η δευτεροάθµι εξίσωση µε ρητική δικρίουσ δε έχει λύση στο σύολο R τω πργµτικώ ριθµώ Ειδικότερ η εξίσωση = δε έχει λύση στο σύολο R τω πργµτικώ ριθµώ, φού
Διαβάστε περισσότεραΛογάριθμοι. Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έννοια του λογάριθμου Έστω η εξίσωση αx
Λογάριθμοι Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έοι του λογάριθμου Έστω η εξίσωση θ, 0, θ 0. Η εξίσωση υτή έχει μοδική λύση φού η εκθετική συάρτηση f είι γησίως μοότοη κι το θ ήκει στο σύολο τιμώ της. Τη μοδική
Διαβάστε περισσότεραΕπαναληπτικά θέµατα Θεωρίας Γ Λυκείου
Επληπτικά θέµτ Θεωρίς Γ Λυκείου Α i κι γ δi είι δυο µιγδικοί ριθµοί τότε: 3 4 Οι ιδιότητες υτές µπορού ποδειχτού µε εκτέλεση τω πράξεω Γι πράδειγµ έχουµε: i γ δi γ δ i γ δ i i γδi Οι πρπάω ιδιότητες κι
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ. Γ Τάξης Ενιαίου Λυκείου Θετική Κατεύθυνση
ΜΑΘΗΜΑΤΙΚΑ Γ Τάξης Ειίου Λυκείου Θετική Κτεύθυση ΣΥΓΓΡΑΦΕΙΣ Αδρεδάκης Στυλιός Κτσργύρης Βσίλειος Μέτης Στέφος Μπρουχούτς Κω/ος Ππστυρίδης Στύρος Πολύζος Γεώργιος Κθηγητής Πεπιστημίου Αθηώ Κθηγητής Β/θμις
Διαβάστε περισσότερα1.5 ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΟΡΙΩΝ
ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 57 5 ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΟΡΙΩΝ Όριο κι διάτξη Γι το όριο κι τη διάτξη οδεικύετι ότι ισχύου τ ρκάτω θεωρήμτ ΘΕΩΡΗΜΑ ο Α >, τότε > κοτά στο Σχ 8 Α
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 ο. 1.1. Οι πράξεις πρόσθεση και πολλαπλασιασµός και οι ιδιότητές τους.
ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ - - ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ ο.. Οι πράξεις πρόσθεση κι πολλπλσισµός κι οι ιδιότητές τους. Πρόσθεση Πολλπλσισµός Ιδιότητ.. Ατιµετθετική (γ)()γ (γ)()γ Προσετιρική (γ)γ Επιµεριστική 0. Ουδέτερο
Διαβάστε περισσότεραα β α < β ν θετικός ακέραιος.
Τυτότητες ( ± ) ± ( ± ) ± ± ( ± ) m (γ) γ γγ - (-)() - (-)( ) - (-)( - - - - ) Α. Βσικές γώσεις ()( - ) ()( - - - - - - ) ΜΟΝΟ ΓΙΑ ΠΕΡΙΤΤΟ. γ --γ-γ [(-) (-γ) (γ-) ] γ -γ (γ)[(-) (-γ) (γ-) ] Αισώσεις. Οι
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Θεωρία & Σχόλια
Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θετικής & Τεχολογικής Κτεύθυσης ΜΑΘΗΜΑΤΙΚΑ Θεωρί & Σχόλι 4 5 ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Ορισμοί τω εοιώ κι θεωρήμτ χωρίς πόδειξη ΜΙΓΑΔΙΚΟΙ
Διαβάστε περισσότεραΠ ρ ό λ ο γ ο ς. Το βιβλίο αυτό γράφτηκε με στόχο την πληρέστερη προετοιμασία των μαθητών μας.
Π ρ ό λ ο γ ο ς Το ιλίο υτό γράφτηκε με στόχο τη πληρέστερη προετοιμσί τω μθητώ μς. Περιέχει συοπτική θεωρί,πρωτότυπες σκήσεις λλά κι θέμτ εξετάσεω τω τελευτίω ετώ του σχολείου μς. Ελπίζουμε ποτελέσει
Διαβάστε περισσότεραΟρισμοί των εννοιών και θεωρήματα χωρίς απόδειξη
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ http://ddethr Ορισμοί τω εοιώ κι θεωρήμτ χωρίς πόδειξη ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Τι είι το σύολο τω μιγδικώ ριθμώ; Το σύολο τω μιγδικώ ριθμώ είι έ υπερσύολο του συόλου τω πργμτικώ
Διαβάστε περισσότεραΟρισμοί των εννοιών Τύποι και ιδιότητες Βασική μεθοδολογία
Θάση Π. Ξέου Απρίτητο βοήθημ γι κάθε μθητή Λυκείου Ορισμοί τω εοιώ Τύποι κι ιδιότητες Βσική μεθοδολογί ΘΕΣΣΑΛΟΝΙΚΗ Πρόλογος Τ ο βιβλιράκι που κρτάς στ χέρι σου, μοδικό στη ελληική βιβλιογρφί, θ σου φεί
Διαβάστε περισσότεραΤΖΕΜΠΕΛΙΚΟΥ ΚΑΤΕΡΙΝΑ ΜΑΘΗΜΑΤΙΚΟΣ
ΘΕΜΑ Α, είι µιγδικοί ριθµοί, τότε κι κι επειδή η τελευτί σχέση ισχύει, θ ισχύει κι η ισοδύη ρχικική. Αάλογ ποδεικύετι κι η δεύτερη ιδιότητ ΘΕΜΑ Όριο πολυωυµικής συάρτησης Α -... P πολυώυµο του κι R, δείξετε
Διαβάστε περισσότεραΣΗΜΕΙΩΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ
ΚΑΛΟΚΑΙΡΙΝΟ ΜΑΘΗΜΑΤΙΚΟ ΣΧΟΛΕΙΟ ΕΜΕ ΛΕΠΤΟΚΑΡΥΑ ΠΙΕΡΙΑΣ 0 ΣΗΜΕΙΩΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Αργύρης Φελλούρης Απληρωτής Κθηγητής ΕΜΠ ΚΕΦΑΛΑΙΟ Ι ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Στο Κεφάλιο υτό θεωρούμε γωστές τις σικές
Διαβάστε περισσότεραΠαραδείγµατα στις ακολουθίες. 2. Να γράψετε τους 4 πρώτους όρους των ακολουθιών. 2ν +1. i) α. =, ii)α. = (-1) v. ΛΥΣΗ
ΑΚΟΛΟΥΘΙΕΣ - ΠΡΟΟ ΟΙ 6 Ακολουθίες Ορισµός Ακολουθί λέγετι κάθε συάρτηση, η οποί έχει πεδίο ορισµού το σύολο τω φυσικώ ριθµώ N *. Μί κολουθί συµβολίζετι συήθως µε το γράµµ όπου κάτω δεξιά βάζουµε το δείκτη,
Διαβάστε περισσότεραΜαθηματικά Γ Λυκείου 2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑ ΙΚΟΥ ΑΡΙΘΜΟΥ. Το Σύνολο των Μιγαδικών Αριθµών
Μθημτικά Γ Λυκείου Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑ ΙΚΟΥ ΑΡΙΘΜΟΥ Το Σύολο τω Μιγδικώ Αριθµώ Το σύολο τω µιγδικώ ριθµώ είι έ υπερσύολο του συόλου τω πργµτικώ ριθµώ, στο οποίο: Επεκτείοτι οι πράξεις της πρόσθεσης κι του
Διαβάστε περισσότεραΠαρατηρήσεις. Παρατήρηση Ισχύουν οι επόµενες ισότητες: Προσέχουµε: Αν α 0και ν θετικός ακέραιος τότε η µη αρνητική ρίζα της εξίσωσης.
ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΟΡΙΣΜΟΣ Α κι θετικός κέριος τότε η µη ρητική ρίζ της εξίσωσης λέγετι ιοστή ρίζ του κι συµολίζετι. ηλδή = Γράφουµε: = = ( ) = κι = Πρτηρήσεις. Ο συµολισµός έχει όηµ µόο ότ. Στη πράστση
Διαβάστε περισσότεραΜαθηματικά για την Α τάξη του Λυκείου
Μθημτιά Α Λυείου Μθημτιά γι τη Α τάξη του Λυείου Α Νιοστή ρίζ πργμτιού ριθμού. Κρδμίτσης Σπύρος ΟΡΙΣΜΟΣ Η ιοστή ρίζ θετιός έριος εός μη ρητιού ριθμού συμολίζετι με ι είι ο μη ρητιός ριθμός που ότ υψωθεί
Διαβάστε περισσότεραΚεφάλαιο 1ο 55 Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Σ) αν είναι σωστές ή με (Λ) αν είναι λανθασμένες:
Κεφάλιο ο Ερωτήσεις Κτόησης Ν χρκτηρίσετε τις πρκάτω προτάσεις με (Σ) είι σωστές ή με (Λ) είι λθσμέες: ) Γι κάθε ριθμό ισχύει + + + 4 β) Γι κάθε ριθμό ισχύει 4 γ) Οι ριθμοί (-) 6 κι - 6 είι τίθετοι δ)
Διαβάστε περισσότεραΆλγεβρα και Στοιχεία Πιθανοτήτων Θεωρία & Σχόλια
Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Άλγερ κι Στοιχεί Πιθοτήτω Θεωρί & Σχόλι 014 015 ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ 1 ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ
Διαβάστε περισσότερα! ΑΠΟΛΥΤΗ ΤΙΜΗ ΠΡΑΓΜΑΤΙΚΟΥ ΑΡΙΘΜΟΥ
! ΑΠΟΛΥΤΗ ΤΙΜΗ ΠΡΑΓΜΑΤΙΚΟΥ ΑΡΙΘΜΟΥ ΟΡΙΣΜΟΣ: 0 < 0 ΙΔΙΟΤΗΤΕΣ ΑΠΟΛΥΤΩΝ ΤΙΜΩΝ 1. 0 Όλες οι πόλυς τιμές είι θετικές ή μηδέ ( 0 0). 3.. Οι τίθετοι ριθμοί (ποσότης) έχου τη ίδι πόλυτη τιμή. 5. 6. θ ±θ με θ >
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΤΟ Α ΘΕΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΤΥΠΟΛΟΓΙΑ.
5-6 ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ Α ΘΕΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΤΥΠΟΛΟΓΙΑ http://cutemathswordpresscom/ Βγγέλης Α Νικολκάκης Μθημτικός ΛΙΓΑ ΛΟΓΙΑ Η προύσ εργσί μµου δε στοχεύει
Διαβάστε περισσότεραlim f (x) = +. ΣΗΜΕΙΩΣΕΙΣ Μη πεπερασμένο όριο στο x 0 R
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ R - ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ - ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΑΚΟΛΟΥΘΙΑΣ [Κεφ..6: Μη Πεπερασμέο Όριο στο R - Κεφ..7: Όρια Συάρτησης
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)
θ) (5 + ) + 5 = (...).(...) ι) + (5 ) 5 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 5 0 (Μονάδες ) β) Ν λύσετε την εξίσωση 7 = (0 + ) (Μονάδες,5) Θέμ ο Ν πργοντοποιήσετε τις πρστάσεις
Διαβάστε περισσότεραρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης
ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ρρ ΑΠΑΝΤΗΣΕΙΣ Επιµέλει: Οµάδ Μθηµτικώ της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ευτέρ, 7 Μ ου Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α A. Έστω f μι συεχής συάρτηση σε έ διάστημ [, β]. Α G είι μι πράγουσ
Διαβάστε περισσότεραΟρισμος Μια ακολουθια ονομαζεται αριθμητικη προοδος, αν και μονο αν, υπαρχει ω, τετοιος ωστε για κάθε ν να ισχυει: α. ν ν
AΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Α κ ο λ ο υ θ ι ε ς Ορισμος. Ν δειχτει οτι + 0 0. Ποτε ισχυει το ισο; Κθε συρτηση. A :, β * θετικοι οομζετι, συγκριετι κολουθι τους ριθμους πργμτικω Α = ριθμω. + β, Β = β + β. * Η τιμη
Διαβάστε περισσότεραΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ
ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ Το ορισμένο ολοκλήρωμ ή ολοκλήρωμ Riema μις πργμτικής συνάρτησης f με διάστημ ολοκλήρωσης το πεπερσμένο διάστημ [, ], υπάρχει ότν: η f είνι συνεχής στο διάστημ υτό, κθώς
Διαβάστε περισσότεραΕπανάληψη Τελευταίας Στιγμής
Επάληψη Τελευτίς Στιγμής kanellopoulos@otmailcom 5/4/ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Θεωρί γι τις εξετάσεις Ορισμοί εοιώ & Θεωρήμτ χωρίς πόδειξη Μ Ι Γ Α Δ Ι Κ Ο Ι Πότε δύο μιγδικοί ριθμοί i κι γ δi είι
Διαβάστε περισσότεραν παραγοντες 1 ( ) β β α β α α α γ + β γ = α+ γ γ
B ΓΥΜΝΑΣΙΟΥ υάµεις Ορισµός =... πργοτες 1 = = 1µε Ιδιότητες µ = µ : = µ ( ) = = = ( ) µ µ + µ = µε µε, Αλγερικές πρστάσεις Επιµεριστική ιδιότητ γωγή οµοίω όρω. γ + γ = + γ ( ) Χρήσιµες ιδιότητες τω πράξεω
Διαβάστε περισσότεραΕ π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ
Ε π ι μ έ λ ε ι Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Κεφάλιο ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ο Ρ Ι Σ Μ Ο Σ Τι ονομάζετι ορισμένο ολοκλήρωμ μις συνεχούς συνάρτησης f: [, ] πό το έως κι το κι πώς συμολίζετι ; Αν F είνι πράγουσ
Διαβάστε περισσότεραwww.fr-anodos.gr (, )
ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ. Το lim f ( ) έχει όηµα σε γειτοικά σηµεία µε το δηλαδή ότα ( a, ) (, β ) a. Δε µε εδιαφέρει α το ίδιο το αήκει η όχι στο πεδίο ορισµού της f αλλά µε εδιαφέρει α υπάρχου στο πεδίο ορισµού
Διαβάστε περισσότεραa lim x 1.7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( x ) ΒΑΣΙΚΑ ΟΡΙΑ , a R * ΠΑΡΑΤΗΡΗΣΗ : Ενώ αν f(x) < g(x) κοντά στο x 0, τότε lim f(x) lim g(x)
7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( ) ΒΑΣΙΚΑ ΟΡΙΑ + - - a v α άρτιος α περιττός 0 ar * ΠΑΡΑΤΗΡΗΣΗ : Εώ α f() < g() κοτά στο 0 τότε f() g() ότα + εώ f()
Διαβάστε περισσότεραταυτότητες διάταξη α 2 +β 2 = (α+β) 2-2αβ (α+β) 2 = α 2 +β 2 +2αβ (α+β) 3 = α 3 +β 3 +3α 2 β+3αβ 2 =α 3 +β 3 +3αβ(α+β) α 3 +β 3 = (α+β) 3-3αβ(α+β)
οι άσεις στ µθηµτικά (www. sonom.gr) τυτότητες (+) + + (+) + + + + +(+) + (+) + (+) (+) (+)() + (+)( + ) ()( ++ ) (++γ) + +γ ++γ+γ + +γ γ (++γ)( () +(γ) +(γ) ) (++γ)( + +γ γγ) ()( + + + ) Ν + (+)( + +
Διαβάστε περισσότεραΘΕΩΡΙΑ ΚΕΦΑΛΑΙΟ 1 Ο. Παράγραφος 1.1. Ποιο πείραμα λέγεται αιτιοκρατικό και ποιο πείραμα τύχης;
ΘΕΩΡΙΑ ΚΕΦΑΛΑΙΟ 1 Ο Πράγρφος 1.1 Ποιο πείρμ λέγετι ιτιοκρτικό κι ποιο πείρμ τύχης; Τι οομάζουμε χώρο εός πειράμτος τύχης; Τι λέμε εδεχόμεο εός πειράμτος τύχης; Ποιο εδεχόμεο λέγετι πλό κι ποιο σύθετο;
Διαβάστε περισσότερα1.1.Οι πράξεις και οι ιδιότητές τους ΙΔΙΟΤΗΤΕΣ ΔΥΝΑΜΕΩΝ
Ζωοδόχου Πηγς Σλμί Τηλ 466- /4644..Οι πράξεις ι οι ιδιότητές τους i Στο προομστεός λάσμτος ΑΠΑΓΟΡΕΥΕΤΑΙ έχουμε το μηδέ γιτί το λάσμ δε ορίζετι.,.π.χ: δε ορίζετι i Ότ ο ριθμητς εός λάσμτος είι ίσος με το
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)
θ) x (5 + 3)x + 5 3 = (...).(...) ι) x + (5 3)x 5 3 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 3 0x (Μονάδες 3) β) Ν λύσετε την εξίσωση 7x 3 = (10x + x 3 ) (Μονάδες 3,5) Θέμ 3ο Ν πργοντοποιήσετε
Διαβάστε περισσότερα2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i.
. Πολυώνυμ η Μορφή Ασκήσεων: Ασκήσεις στις βσικές έννοιες του πολυωνύμου. Ποιες πό τις πρκάτω πρστάσεις είνι πολυώνυμ του i. ii. iii. iv. v. vi. 5 Σύμφων με τον ορισμό πολυώνυμ του είνι οι πρστάσεις i,
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ. Γ Τάξης Ενιαίου Λυκείου Θετική & Τεχνολογική Κατεύθυνση
ΜΑΘΗΜΑΤΙΚΑ Γ Τάξης Ειίου Λυκείου Θετική & Τεχολογική Κτεύθυση ΣΥΓΓΡΑΦΕΙΣ Αδρεδάκης Στυλιός Κτσργύρης Βσίλειος Μέτης Στέφος Μπρουχούτς Κω/ος Ππστυρίδης Στύρος Πολύζος Γεώργιος Κθηγητής Πεπιστημίου Αθηώ
Διαβάστε περισσότεραΛύσεις των θεμάτων ΤΕΤΑΡΤΗ 20 MAΪΟΥ 2015 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΕΤΑΡΤΗ 0 MAΪΟΥ 01 Λύσεις τω θεμάτω Έκδοση
Διαβάστε περισσότεραΘΕΩΡΙΑ ΠΙΝΑΚΩΝ τοποθετημένους σε μ γραμμές και v στήλες. Το σύμβολο. λέγεται πίνακας διάστασης μ x ν. α α
ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ Θεωρούμε μ ριθμούς ij, i,,, μ κι j,,, τοποθετημέους σε μ γρμμές κι v στήλες Το σύμολο μ μ λέγετι πίκς διάστσης μ Οι ριθμοί ij λέγοτι στοιχεί του πίκ Α Ο πίκς Α μπορεί συμολιστεί ως Α[ [
Διαβάστε περισσότεραΤα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto.
1 Τ πρκάτω είνι τ κυριότερ θεωρήμτ κι ορισμοί πό το σχολικό βιβλίο κολουθούμεν πό δικά μς σχόλι. 1 ο ΠΡΩΤΟ 2 Συνρτήσεις Γνησίως μονότονη συνάρτηση Μι γνησίως ύξουσ ή γνησίως φθίνουσ συνάρτηση λέμε ότι
Διαβάστε περισσότερα+ 4 µε x >0. x = f(x) f(t) dt. Άρα από κριτήριο παρεµβολής lim f(t) dt = 4.
993 ΘΕΜΑΤΑ. ίετι η συάρτηση f() = + + µε >. ) Ν εξετάσετε τη µοοτοί της συάρτησης f. β) Ν υπολογίσετε το lim f(t) dt. + + ) Έχουµε f () = () + ( + ) ( + ) + = + (+ ) ( + ) = - 3 + + = - 3 . + +
Διαβάστε περισσότερα( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης:
Πγκόσμιο χωριό γνώσης.3. ΣΥΝΑΡΤΗΣΕΙΣ.3.1. Ορισμός συνάρτησης: 6 Ο ΜΑΘΗΜΑ Συνάρτηση f / A B, ονομάζετι η διδικσί (νόμος ) που ντιστοιχίζει κάθε στοιχείο του συνόλου Α ( πεδίο ορισμού ) σε έν μόνο στοιχείο
Διαβάστε περισσότεραΚ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ
Ε π ι μ έ λ ε ι Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Αρχική Συνάρτηση Ορισμός Έστω f μι συνάρτηση ορισμένη σε έν διάστημ Δ. Αρχική συνάρτηση ή πράγουσ της f στο Δ ονομάζετι κάθε συνάρτηση F που είνι πργωγίσιμη στο
Διαβάστε περισσότεραΑΚΟΛΟΥΘΙΕΣ 1. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ. α,α,,α, ή συνοπτικά με. * n. α α λ, για κάθε. n και υπάρχει. (αντ. αn αn 1
ΑΚΟΛΟΥΘΙΕΣ ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ Ακολουθί στοιχείων ενός συνόλου Ε ονομάζετι κάθε πεικόνιση : Ε Στην πεικόνιση υτή η εικόν του θ σηιώνετι κι θ ονομάζετι γενικός ή -οστός όρος της κολουθίς Η κολουθί υτή θ σηιώνετι
Διαβάστε περισσότεραΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ
1 ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1. ) Πότε µι συνάρτηση µε Πεδίο ορισµού το Α ονοµάζετι περιοδική; β) Ποιο είνι το πεδίο ορισµού κι η περίοδος των συνρτήσεων ηµx, συνx, εφx κι σφx;. Περιοδική ονοµάζετι
Διαβάστε περισσότεραΗ έννοια της συνάρτησης
Η έννοι της συνάρτησης Τι ονομάζουμε πργμτική συνάρτηση; Έστω Α έν υποσύνολο του R Ονομάζουμε πργμτική συνάρτηση με πεδίο ορισμού το Α μι διδικσί (κνόν), με την οποί κάθε στοιχείο A ντιστοιχίζετι σε έν
Διαβάστε περισσότεραΟρισμός : Ακολουθία ονομάζεται κάθε συνάρτηση με πεδίο ορισμού το σύνολο Ν* των θετικών ακεραίων και παίρνει τιμές στο R. a: Ν* R
64 Aκοουθίες Ορισμός : Ακοουθί οομάζετι κάθε συάρτηση με πεδίο ορισμού το σύοο Ν* τω θετικώ κερίω κι πίρει τιμές στο R. a: Ν* R H τιμή μί κοουθίς στο συμβοίζετι με Αδρομικός Τύπος Ακοουθίς: Οομάζετι μί
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΠΟ ΤΟ 1 Ο ΚΕΦΑΛΑΙΟ
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΠΟ ΤΟ Ο ΚΕΦΑΛΑΙΟ Μονώ νυμ - Πολυώ νυμ Λέμε λγερική πράστση κάθε πράστση που περιέχει μετλητές. π.χ., +, 5, ( + ), +. Λέμε ριθμητική τιμή ( ή πλά τιμή )
Διαβάστε περισσότεραΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ
ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ..7 Μέρος Β του σχολικού ιλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. Ν ρεθεί το εμδόν του χωρίου Ω που περικλείετι πό τη γρφική πράστση
Διαβάστε περισσότεραΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» TAΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΥΝΑΜΕΙΣ - ΤΑΥΤΟΤΗΤΕΣ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ (Μέρος πρώτο) ΒΑΣΙΚΗ ΘΕΩΡΙΑ
ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» TAΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΥΝΑΜΕΙΣ - ΤΑΥΤΟΤΗΤΕΣ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ (Μέρος πρώτο) ΒΑΣΙΚΗ ΘΕΩΡΙΑ ΥΝΑΜΕΙΣ Α είι ές πργτικός ριθός κι ές φυσικός εγλύτερος
Διαβάστε περισσότεραAΠΟΔΕΙΞΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΦΟΡΙΚΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ
Αποδείξεις Θεωρίς Γ Λυκείου Κτεύθυσης Θέμ 1 ο [σελ 167 σχ. Βιβλίου] P 1 Έστω το πολυώυμο Έχουμε 1 1 1 lim P lim... AΠΟΔΕΙΞΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΦΟΡΙΚΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ Ατί προλόγου: Το προτειόμεο Κριτήριο Αξιολόγησης δε φέρετι στη θεωρί που πιτείτι στο ο κι ο θέμ, λλά φορού τ θέμτ διβθμισμέης
Διαβάστε περισσότεραΔ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Ταυτότητες ΤΑΥΤΟΤΗΤΕΣ
Δ/ση Β /θµις Εκπ/σης Φλώρις Κέτρο ΠΛΗ.ΝΕ.Τ. Τυτότητες ΤΑΥΤΟΤΗΤΕΣ Τυτότητ ποκλείτι η ισότητ άµεσ σε δύο λγερικές πρστάσεις, η οποί ληθεύει γι όλες τις τιµές τω µετλητώ πό τις οποίες ε- ξρτώτι οι λγερικές
Διαβάστε περισσότερα1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ
5 ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονί συνάρτησης Οι έννοιες γνησίως ύξουσ συνάρτηση, γνησίως φθίνουσ συνάρτηση είνι γνωστές πό προηγούμενη τάξη Συγκεκριμέν,
Διαβάστε περισσότεραΜαθηματικά Προσανατολισμού Γ Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. συνάρτηση φ: α,β. Ορισμός Έστω f συνάρτηση ορισμένη στο., αν. κάθε xo.
Ορισμός συντελεστή διεύθυνσης ευθείς Έστω συνάρτηση κι M, έν σημείο της γρφικής της πράστσης. υπάρχει το κι είνι πργμτικός ριθμός λ, τότε ορίζουμε ως εφπτομένη της στο σημείο M, την ευθεί (ε) που διέρχετι
Διαβάστε περισσότερααριθμών Ιδιότητες της διάταξης
Ανισότητες Διάτξη πργμτικών ριθμών Ιδιότητες της διάτξης Διάτξη (σύγκριση) δύο ριθμών. Πώς μπορούμε ν συγκρίνουμε δύο ριθμούς κι ; Απάντηση Ο ριθμός είνι μεγλύτερος του (συμολικά > ), ότν η διφορά είνι
Διαβάστε περισσότεραΟ μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση:
Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει α είαι σε θέση: 1 Να μπορεί α βρίσκει απο τη γραφική παράσταση μιας συάρτησης το πεδίο ορισμού της το σύολο τιμώ της τη τιμή της σε έα σημείο x 2
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ Ι. Σε κθεμιά πό τις πρκάτω περιπτώσεις ν κυκλώσετε το γράμμ Α, ν ο ισχυρισμός είνι ληθής κι το γράμμ Ψ, ν ο ισχυρισμός είνι ψευδής δικιολογώντς συγχρόνως την
Διαβάστε περισσότεραΕ Π Α Ν Α Λ Η Ψ Η. 1. Τα σύνολα των αριθµών: 2. Η Απόλυτη τιµή ενός πραγµατικού αριθµού α είναι ίση µε την µε την απόστασή του από το
Ε Π Α Ν Α Λ Η Ψ Η Σελ.. Τ σύνολ των ριθµών:. Ν: οι Φυσικοί ριθµοί Ν = {0,,,, 4,.. } β. Ζ: οι Ακέριοι ριθµοί Ζ = {. -, -, -, 0 +, +, +,. } γ. Q: οι Ρητοί ριθµοί Q = / Ζ κι β Ζ µε β 0 β δ. Q : οι Άρρητοι
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου].
ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3. Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Πράγουσ συνάρτηση ΟΡΙΣΜΟΣ Έστω f μι συνάρτηση ορισμένη σε έν διάστημ.
Διαβάστε περισσότεραμε x1 x2 , τότε η f είναι γνησίως αύξουσα στο Α. β) Αν για μια συνάρτηση f: ισχύει ότι f x , τότε το σύνολο τιμών της δεν μπορεί να είναι της μορφής,
Μθημτικά κτεύθυνσης Γ Λυκείου ο Διγώνισμ διάρκεις ωρών στις Συνρτήσεις κι τ Όρι Οκτώβριος Θέμ Α Α. Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς στο τετράδιό σς την ένδειξη Σωστό ή Λάθος δίπλ στο
Διαβάστε περισσότεραΠαρατηρήσεις 1 Για α ααζητήσουµε το όριο της f στο, πρέπει η f α ορίζεται όσο θέλουµε κοτά στο, δηλαδή η f α είαι ορισµέη σ έα σύολο της µορφής ( α, )
Η έοια του ορίου Όριο συάρτησης Ότα οι τιµές µιας συάρτησης f προσεγγίζου όσο θέλουµε έα πραγµατικό αριθµό l, καθώς το προσεγγίζει µε οποιοδήποτε τρόπο το αριθµό, τότε γράφουµε lim f() = l και διαβάζουµε
Διαβάστε περισσότεραΕ 1. Διαφορικός λογισμός (Κανόνες παραγώγισης)
Ε Διαφορικός λογισμός Καόες παραγώγισης Σελίδα από Πότε μια συάρτηση λέγεται παραγωγίσιμη στο σημείο του πεδίου ορισμού της ; Μια συάρτηση λέμε ότι είαι παραγωγίσιμη σ έα σημείο του πεδίου ορισμού της,
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΥΝΕΧΕΙΑ ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΚΕΝΤΡΙΚΟ Ν. ΣΜΥΡΝΗΣ
Φ4 ΣΥΝΕΧΕΙΑ ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΛΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΥ ΚΕΝΤΡΙΚ 3ο ΓΕΝΙΚ ΛΥΚΕΙ Ν. ΣΜΥΡΝΗΣ ΘΕΩΡΙΑ ΣΩΣΤ-ΛΑΘΣ ΠΛΛΑΠΛΗΣ ΕΠΙΛΓΗΣ ΣΥΜΠΛΗΡΩΣΗΣ ΚΕΝΥ ΠΑΡΑΤΗΡΗΣΕΙΣ ΑΣΚΗΣΕΙΣ Α &
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β
ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : Η ΣΥΝΑΡΤΗΣΗ F( = (d [Kεφ:.5 H Συνάρτηση F( = (d Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. lim e d. Ν υπολογίσετε το όριο: ( Έχουμε ( e d
Διαβάστε περισσότερα1o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΑ ΟΡΙΣΜΟΣ ( ) Αριθµητική τιµή του πολυώνυµου ( ) Το πολυώνυµο ( ) = = =.
ΠΟΛΥΩΝΥΜΑ ΟΡΙΣΜΟΣ Πλυώυµ τυ x λέγετι κάθε πράστση της µρφής : x + x ++ x+ όπυ,,,, είι στθερί πργµτικί ριθµί κι φυσικός ριθµός Τ πλυώυµ τυ x συµβλίζυµε: f( x ), g( x ), f x = x + x ++ x+ h x,, πότε γράφυµε:
Διαβάστε περισσότεραΕρωτήσεις πολλαπλής επιλογής. 1. * Αν η γραφική παράσταση µιας συνάρτησης f είναι αυτή που φαίνεται στο σχήµα, τότε λάθος είναι
Ερωτήσεις πολλπλής επιλογής 1. * Αν η γρφική πράστση µις συνάρτησης f είνι υτή που φίνετι στο σχήµ, τότε λάθος είνι Α. lim f () = 4 B. lim f () = 1 1 1 Γ. lim f () =. f ( 1) = 1 4 0 1 1 1 E. f (1) = 4.
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ. Σύνολο τιμών της f λέμε το σύνολο που έχει για στοιχεία του τις τιμές της f σε όλα τα.
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ Β Γενικό μέρος των συνρτήσεων Τι λέμε σύνολο τιμών μις συνάρτησης με πεδίο ορισμού το σύνολο A ; Σύνολο τιμών της λέμε το σύνολο που έχει γι στοιχεί του τις τιμές
Διαβάστε περισσότεραΗ θεωρία της Α Λυκείου
Η θεωρί της Α Λυκείου Τι λέγετι σύολο; Σύολο είι κάθε συλλογή τικειμέω, που προέρχοτι πό τη εμπειρί μς ή τη διόησή μς, είι κλά ορισμέ κι δικρίοτι το έ πό το άλλο. Τ τικείμε υτά, που ποτελού το σύολο, οομάζοτι
Διαβάστε περισσότεραβ ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a,
ΕΡΩΤΗΣΕΙΣ Σ Λ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΑΔΙΚΩΝ - Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς στο τετράδιό σς την ένδειξη σωστό ή λάθος δίπλ στο γράμμ που ντιστοιχεί σε κάθε πρότση
Διαβάστε περισσότεραΜαθηματικά Θετικής - Τεχνολογική Κατεύθυνσης
o Γεικό Λύκειο Χίω 8-9 Γ τάξη Τμήμ Μθημτικά Θετικής - Τεχολογική Κτεύθυσης γ Ασκήσεις γι λύση Μ Πγρηγοράκης Γ ΛΥΚΕΙΟΥ - ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μ ΠΑΠΑΓΡΗΓΟΡΑΚΗΣ 56 Α) Ν υολογίσετε τ:
Διαβάστε περισσότερα