EM 361: Παπάλληλοι Υπολογιζμοί
|
|
- Σπύρος Μπότσαρης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 EM 361: Παπάλληλοι Υπολογιζμοί Φαπμανδάπηρ Βαγγέληρ, Τμήμα Δθαπμοζμένων Μαθημαηικών Πανεπιζηήμιο Κπήηηρ, Φειμεπινό Δξάμηνο 2009/10 Κεθάλαιο 4: Παπάλληλοι Αλγόπιθμοι Ταξινόμηζη Παπάλληλων Αλγόπιθμων. Παπάδειγμα: Υπολογιζμόρ ηος Απιθμού π. Το Κόζκινο ηος Δπαηοζθένη. Σσεδιαζμόρ Παπάλληλων Αλγοπίθμων. Τύποι Δπικοινωνίαρ Μεηαξύ ηων Δπεξεπγαζηών.
2 Παπάλληλοι Αλγόπιθμοι Οη παξάιιεινη αιγόξηζκνη κπνξνύλ λα ηαμηλνκεζνύλ αλάινγα κε ην πσο θαη πνπ γίλεηαη ν παξαιιειηζκόο. Καηεγνξίεο παξάιιεισλ αιγνξίζκσλ: Παξαιιειηζκόο ζε επίπεδν bits (Bit-level parallel approach). Παξαιιειηζκόο ζε επίπεδν εληνιώλ (Control-parallel approach). Παξαιιειηζκόο ζε επίπεδν δεδνκέλσλ (Data-parallel approach). ΔΜ 361: Παξάιιεινη Υπνινγηζκνί 2010/11, Κεθάιαην 4 2
3 Παπαλληλιζμόρ ζε Δπίπεδο Bits Bit-level parallelism: Παξαιιειηζκόο απμάλνληαο ην κέγεζνο ηεο πιεξνθνξίαο (word size), ζε bits, πνπ κπνξεί λα επεμεξγαζηεί έλαο επεμεξγαζηήο αλά θύθιν ιεηηνπξγίαο. Απμάλνληαο ην word size ειαηηώλεηαη ν αξηζκόο ησλ πξάμεσλ πνπ πξέπεη λα εθηειέζεη έλαο επεμεξγαζηήο γηα κεηαβιεηέο κε κήθνο κεγαιύηεξν ηνπ word size. Παξάδεηγκα: πξόζζεζε 2 16-bit αθεξαίσλ ζε 8-bit επεμεξγαζηή απαηηεί 2 πξάμεηο ελώ ζε 16-bit επεμεξγαζηή 1. Ιζηοπικά: Γηα αξθεηά ρξόληα ήηαλ ν ζπλήζεο ηξόπνο αύμεζεο ηεο ππνινγηζηηθήο ηζρύνο: από 4-bit ζε 8-bit, 16-bit θαη 32-bit επεμεξγαζηέο. Οη ηειεπηαίνη ήηαλ νη πην ζπλεζηζκέλνη γηα πεξίπνπ 2 δεθαεηίεο. Πην πξόζθαηα (~2003) κε ηελ x86-64 αξρηηεθηνληθή 64-bit επεμεξγαζηέο επηθξαηνύλ. Μέιινλ: 128-bit επεμεξγαζηέο; ΔΜ 361: Παξάιιεινη Υπνινγηζκνί 2010/11, Κεθάιαην 4 3
4 Παπαλληλιζμόρ ζε Δπίπεδο Δνηολών Control-level parallelism ή Παξαιιειηζκόο Διέγρνπ: Δθαξκνγή δηαθνξεηηθώλ πξάμεσλ ζε δηαθνξεηηθά δεδνκέλα ηαπηόρξνλα. Γλσζηόο θαη σο ζσιήλσζε (pipelining). Καηάιιεινο γηα MIMD ζπζηήκαηα. Θεσξνύκε έλα πξόβιεκα σο ζύλνιν από δηαθνξεηηθέο δηεξγαζίεο όπνπ ε θαζεκία κπνξεί λα αλαηεζεί ζε δηαθνξεηηθό επεμεξγαζηή. Παξαδείγκαηα: Πξνζνκνίσζε ελόο νηθνζπζηήκαηνο: δηαθνξεηηθά είδε δώσλ, θπηώλ, θαηξόο, θιπ. Κάζε ππνζύζηεκα αλαηίζεηαη ζε δηαθνξεηηθό επεμεξγαζηή. Μνληεινπνίεζε απηνθηλήηνπ: ηα δηαθνξεηηθά κέξε (κεραλή, ζύζηεκα ςύμεο, ζύζηεκα ζέξκαλζεο, θιπ.) θαηαλέκνληαη ζε δηαθνξεηηθνύο επεμεξγαζηέο. ΔΜ 361: Παξάιιεινη Υπνινγηζκνί 2010/11, Κεθάιαην 4 4
5 Παπαλληλιζμόρ ζε Δπίπεδο Γεδομένων Data-level parallelism: Δθαξκνγή ίδησλ πξάμεσλ ζε δηαθνξεηηθά δεδνκέλα ηαπηόρξνλα. Η ίδηα δηαδηθαζία εθηειείηαη ζε πνιιά δεδνκέλα ηαπηόρξνλα. Αλαθέξεηαη θαη σο Καηάηκεζε Φσξίνπ (Domain Decomposition). Καηάιιεινο γηα SIMD θαη MIMD ζπζηήκαηα. Γηαθνξεηηθέο πεξηνρέο ηνπ ρώξνπ αλαηίζεληαη ζε δηαθνξεηηθνύο επεμεξγαζηέο. Παξαδείγκαηα: Καηαλνκή ελόο πίλαθα ζε δηαθνξεηηθνύο επεμεξγαζηέο. Μνξηαθή Πξνζνκνίσζε: δηαθνξεηηθά κέξε ηνπ ρσξίνπ θαηαλέκνληαη ζε δηαθνξεηηθνύο επεμεξγαζηέο. Αλαδήηεζε ζηνηρείσλ ζε κηα βάζε δεδνκέλσλ. πνιιά άιια. ΔΜ 361: Παξάιιεινη Υπνινγηζκνί 2010/11, Κεθάιαην 4 5
6 Παπαλληλιζμόρ ζε Δπίπεδο Γεδομένων Domain Decomposition : Ο πην δηαδεδνκέλνο ηξόπνο παξαιιειηζκνύ πνιύπινθσλ επηζηεκνληθώλ πξνβιεκάησλ. ΔΜ 361: Παξάιιεινη Υπνινγηζκνί 2010/11, Κεθάιαην 4 6
7 Παπάδειγμα: Υπολογιζμόρ ηος Απιθμού π Υπνινγηζκόο ηνπ αξηζκνύ π κε ηελ αθόινπζε κέζνδν: Πεξηθιείνπκε θύθιν κε έλα ηεηξάγσλν. Γεκηνπξγνύκε m ηπραία ζεκεία κέζα ζην ηεηξάγσλν. Βξίζθνπκε ηα ζεκεία πνπ εκπεξηέρνληαη θαη κέζα ζηνλ θύθιν, n. Αλ r = n/m, ηόηε ν αξηζκόο π πξνζεγγίδεηαη σο π 4r. Όζν πεξηζζόηεξα ηα ζεκεία m ηόζν κεγαιύηεξε αθξίβεηα ηνπ ππνινγηζκνύ. ΔΜ 361: Παξάιιεινη Υπνινγηζκνί 2010/11, Κεθάιαην 4 7
8 Σειπιακόρ αλγόπιθμορ: Υπολογιζμόρ ηος Απιθμού π npoints = circle_count = 0 do j = 1, npoints generate 2 random numbers between 0 and 1 xcoordinate = random1 ycoordinate = random2 if (xcoordinate, ycoordinate) inside circle then circle_count = circle_count + 1 end do PI = 4.0*circle_count/npoints Ο ρξόλνο ππνινγηζκνύ είλαη θπξίσο ν ρξόλνο εθηέιεζεο ηεο επαλαιεπηηθήο δηαδηθαζίαο (loop). Απηό νδεγεί ζε (ζρεδόλ) ηέιεην παξαιιειηζκό (embarrassingly parallelism): Δληαηηθνί ππνινγηζκνί. Διάρηζηε επηθνηλσλία, ειάρηζην Ι/Ο. ΔΜ 361: Παξάιιεινη Υπνινγηζκνί 2010/11, Κεθάιαην 4 8
9 Υπολογιζμόρ ηος π: Παπαλληλιζμόρ Γεδομένων Ο παξαιιειηζκόο απηνύ ηνπ αιγόξηζκνπ κπνξεί λα γίλεη ζε επίπεδν δεδνκέλσλ: αλαζέηνπκε ζε θάζε επεμεξγαζηή κέξνο ηεο επαλαιεπηηθήο δηαδηθαζίαο. Κάζε επεμεξγαζηήο εθηειεί ην δηθό ηνπ κέξνο (task) ηνπ loop. Γελ ρξεηάδεηαη επηθνηλσλία κεηαμύ ησλ επεμεξγαζηώλ θαηά ηε δηάξθεηα εθηέιεζεο ηεο επαλαιεπηηθήο δηαδηθαζίαο. Φξεζηκνπνηνύκε ην κνληέιν «αθέληε/εξγάηε» (master/slave). ΔΜ 361: Παξάιιεινη Υπνινγηζκνί 2010/11, Κεθάιαην 4 9
10 Υπολογιζμόρ ηος π: Παπαλληλιζμόρ Γεδομένων Παπάλληλορ αλγόπιθμορ (με κόκκινο οι αλλαγέρ): npoints = circle_count = 0 p = number of tasks num = npoints/p do j = 1, num generate 2 random numbers between 0 and 1 xcoordinate = random1 ycoordinate = random2 if (xcoordinate, ycoordinate) inside circle then circle_count = circle_count + 1 end do find out if I am MASTER or WORKER if I am MASTER receive from WORKERS their circle_counts compute PI (use MASTER and WORKER calculations) else if I am WORKER send to MASTER circle_count end if ΔΜ 361: Παξάιιεινη Υπνινγηζκνί 2010/11, Κεθάιαην 4 10
11 Παπάδειγμα: Το Κόζκινο ηος Δπαηοζθένη Αλγόπιθμορ εύπεζηρ ππώηων απιθμών (Sieve of Eratosthenes) Έζησ όηη δεηάκε όινπο ηνπο πξώηνπο αξηζκνύο έσο n. Ο αιγόξηζκνο πξνρσξάεη σο εμήο: Ξεθηλάκε κε ηνλ αξηζκό 2. Απνθιείνπκε-δηαγξάθνπκε όια ηα πνιιαπιάζηά ηνπ σο n. Ο επόκελνο πξώηνο κε-δηαγξακκέλνο αξηζκόο είλαη πξώηνο. Σπλερίδνπκε κε ηνλ επόκελν πξώην κε-δηαγξακκέλν αξηζκό (ην 3) θαη απνθιείνπκε όια ηα πνι/ζηα ηνπ. Δπαλαιακβάλνπκε ηελ δηαδηθαζία σο λα θηάζνπκε ηνλ αξηζκό n. Με ηε δηαδηθαζία απηή βξίζθνπκε όια θαη ιηγόηεξνπο αξηζκνύο πξνο δηαγξαθή. Όζνη απνκέλνπλ είλαη νη πξώηνη αξηζκνί. Γελ ρξεηάδεηαη λα ειέγμνπκε σο ηνλ αξηζκό n αιιά ηνλ n 1/2. Γηαηί; Σειπιακή εκηέλεζη Βαζικά επαναλαμβανόμενα βήμαηα: (α) Βξίζθνπκε ηνλ επόκελν πξώην. (β) Γηαγξάθνπκε από ηελ ιίζηα όια ηα πνιιαπιάζηά ηνπ. ΔΜ 361: Παξάιιεινη Υπνινγηζκνί 2010/11, Κεθάιαην 4 11
12 Το Κόζκινο ηος Δπαηοζθένη : Παπαλληλιζμόρ Δλέγσος Sieve of Eratosthenes A control parallel approach Κάζε επεμεξγαζηήο δνπιεύεη (εθηειεί ηα βήκαηα (α), (β)) ζε δηαθνξεηηθό πξώην αξηζκό. Πξνβιήκαηα: 1. Σε αζύγρξνλε επηθνηλσλία δύν επεμεξγαζηέο κπνξεί λα δνπιεύνπλ ζηνλ ίδην πξώην. 2. Μπνξεί λα εθηεινύληαη πξάμεηο πνπ δελ ρξεηάδνληαη, π.ρ. ν P1 βξίζθεη αιιά δελ πξνιαβαίλεη λα δηαγξάςεη ηα πνι/ζηα ηνπ 2 ελώ ν P2 αθνύ ηειεηώλεη κε ηνλ 3 βξίζθεη σο επόκελν κε-δηαγξακκέλν αξηζκό ην 4! Φπόνορ Υπολογιζμού: Έζησ όηη ν ρξόλνο ππνινγηζκνύ είλαη κόλν ν ρξόλνο ππνινγηζκνύ πνι/ζησλ θαη δηαγξαθήο-καξθαξίζκαηνο θάζε θειηνύ. Έζησ n αθέξαηνη αξηζκνί κε κ πξώηνπο (π 1, π 2, π θ ). Ο αξηζκόο ησλ πξάμεσλ (ππνινγηζκνύ πνι/ζίσλ) είλαη: n 1 1 n 1 2 n 1 k N... N1 N2... N 1 2 k k ΔΜ 361: Παξάιιεινη Υπνινγηζκνί 2010/11, Κεθάιαην 4 12
13 Το Κόζκινο ηος Δπαηοζθένη : Παπαλληλιζμόρ Δλέγσος Φπόνορ Υπολογιζμού Έζησ t 0 ν ρξόλνο καξθαξίζκαηνο θάζε θειηνύ. Τόηε ν ζεηξηαθόο ρξόλνο εθηέιεζεο είλαη: TS N t 0 Μέγιζηη παπάλληλη επιηάσςνζη: Όηαλ ζηέιλνπκε όινπο ηνπο πξώηνπο ζε δηαθνξεηηθνύο επεμεξγαζηέο. Τόηε ν ρξόλνο ππνινγηζκνύ αληηζηνηρεί ζηνπο (πεξηζζόηεξνπο) ππνινγηζκνύο ηνπ αξηζκνύ 2. max n 3 TP limtp t P 2 0 Παπάδειγμα: Έζησ n=1000. Τόηε Ν π =1411 θαη 1411 Smax ΔΜ 361: Παξάιιεινη Υπνινγηζκνί 2010/11, Κεθάιαην 4 13
14 Το Κόζκινο ηος Δπαηοζθένη : Παπαλληλιζμόρ Γεδομένων Sieve of Eratosthenes A data parallel approach Όινη νη επεμεξγαζηέο δνπιεύνπλ (εθηεινύλ ηα βήκαηα (α), (β)) ζηνλ ίδην πξώην αξηζκό. Έζησ n αθέξαηνη θαη ζύζηεκα κε P επεμεξγαζηέο. Αλαζέηνπκε ζε θάζε επεμεξγαζηή n/p αθέξαηνπο. Θεσξνύκε επίζεο όηη Ρ<<n 1/2. Γηα ζύζηεκα κε θνηλή κλήκε δελ ππάξρεη θόζηνο επηθνηλσλίαο. Γηα ζύζηεκα κε θαηαλεκεκέλε κλήκε ππάξρεη θόζηνο επηθνηλσλίαο. Αλγόπιθμορ: Όινη νη πξώηνη αξηζκνί είλαη ζηνλ Ρ1. Ο Ρ1 βξίζθεη ηνλ επόκελν πξώην, π κ, θαη ζηέιλεη ηελ ηηκή ηνπ ζηνπο άιινπο επεμεξγαζηέο. Καηόπηλ όινη νη επεμεξγαζηέο βξίζθνπλ πνιιαπιάζηα ηνπ π κ ζην δηθό ηνπο ππνζύλνιν ησλ n αξηζκώλ. Η δηαδηθαζία ζπλερίδεηαη σο όηνπ ν Ρ1 βξεη πξώην αξηζκό > n 1/2. ΔΜ 361: Παξάιιεινη Υπνινγηζκνί 2010/11, Κεθάιαην 4 14
15 Το Κόζκινο ηος Δπαηοζθένη : Παπαλληλιζμόρ Γεδομένων Φπόνορ Δκηέλεζηρ: Ο ρξόλνο εθηέιεζεο ηνπ αιγόξηζκνπ είλαη ν ρξόλνο ππνινγηζκνύ (δηαγξαθήο-καξθαξίζκαηνο θάζε θειηνύ) θαη ν ρξόλνο επηθνηλσλίαο. Φπόνορ Υπολογιζμού: Ο ρξόλνο ππνινγηζκνύ, ζεσξώληαο t 0 ην ρξόλν καξθαξίζκαηνο ελόο θειηνύ, είλαη: T comp n / P n / P n / P... t 1 2 k 0 Δπικοινωνία: ν Ρ1 ζηέιλεη θάζε πξώην αξηζκό ζε (Ρ-1) άιινπο επεμεξγαζηέο. Αλ λ είλαη ν ρξόλνο πνπ ρξεηάδεηαη λα ζηείινπκε έλαλ αξηζκό, ηόηε ν ζπλνιηθόο ρξόλνο επηθνηλσλίαο γηα κ πξώηνπο αξηζκνύο είλαη: T k( P 1) comm Πποζοσή: ν ρξόλνο ππνινγηζκνύ κεηώλεηαη όζν απμάλεη ν αξηζκόο ησλ επεμεξγαζηώλ ελώ ν ρξόλνο επηθνηλσλίαο απμάλεη. ΔΜ 361: Παξάιιεινη Υπνινγηζκνί 2010/11, Κεθάιαην 4 15
16 Σσεδιαζμόρ Παπάλληλων Αλγοπίθμων Σηόσορ: ν ζρεδηαζκόο θαη ν πξνγξακκαηηζκόο ηνπ βέιηηζηνπ δπλαηνύ παξάιιεινπ αιγόξηζκνπ. Πξώην βήκα είλαη πάληα ε θαηαλόεζε ηνπ πξνβιήκαηνο θαη ηνπ ζεηξηαθνύ θώδηθα, αλ ππάξρεη. Δπηζπκεηά ραξαθηεξηζηηθά: Η ειάρηζηε δπλαηή επηθνηλσλία, Δπεθηαζηκόηεηα, Τνπηθόηεηα, Δπηκεξηζηηθόηεηα. Γενικέρ πποζεγγίζειρ: -- Δπηκεξηζκόο εληνιώλ-δηεξγαζηώλ Παξαιιειηζκόο Διέγρνπ -- Δπηκεξηζκόο ρσξίνπ Παξαιιειηζκόο Γεδνκέλσλ Πξέπεη λα ιάβνπκε ππ όςηλ: -- Αξηζκό δηεξγαζηώλ αξηζκό επεμεξγαζηώλ. -- Γηεξγαζίεο ζπγθξίζηκνπ κεγέζνπο. -- Πσο αιιάδεη ην κέγεζνο θαη ν αξηζκόο ησλ δηεξγαζηώλ κε ην κέγεζνο ηνπ πξνβιήκαηνο. Βαζική Δπώηηζη: Δίλαη ν παξάιιεινο αιγόξηζκνο κνλαδηθόο; Αλ όρη πνηεο είλαη νη ελαιιαθηηθέο ιύζεηο. ΔΜ 361: Παξάιιεινη Υπνινγηζκνί 2010/11, Κεθάιαην 4 16
17 Σσεδιαζμόρ Παπάλληλων Αλγοπίθμων Δπικοινωνία μεηαξύ ηων επεξεπγαζηών: Δθηίκεζε ηνπ θόζηνπο επηθνηλσλίαο: ηεο αιιειεμάξηεζεο κεηαμύ ησλ δηεξγαζηώλ. Σρεδηαζκόο ηεο επηθνηλσλίαο κεηαμύ ησλ δηεξγαζηώλ: Πόηε, Πσο, Πνπ θαη Τη ζα ζηαιείιεθζεί. Γηαγξάκκαηα επηθνηλσλίαο-κεηαθνξάο δεδνκέλσλ. Όγθνο ησλ κεηαθεξόκελσλ πιεξνθνξηώλ κεηαμύ ησλ επεμεξγαζηώλ. Καζνξηζκόο ηνπ ηξόπνπ επηθνηλσλίαο: blocking vs. non-blocking. Τύπνη επηθνηλσλίαο: -- Τνπηθά/Καζνιηθά. -- Γνκεκέλα/Με Γνκεκέλα. -- Σηαηηθά/Γπλακηθά. -- Σπγρξνληζκέλα/Αζύγρξνλα. ΔΜ 361: Παξάιιεινη Υπνινγηζκνί 2010/11, Κεθάιαην 4 17
18 Τύποι-Σσήμαηα Δπικοινωνίαρ Τοπική: ε επηθνηλσλία επηθεληξώλεηαη κεηαμύ κηθξνύ αξηζκνύ δηεξγαζηώλ. Καθολική: θάζε δηεξγαζία επηθνηλσλεί κε κεγάιν αξηζκό δηεξγαζηώλ. Γομημένη: ε επηθνηλσλία αθνινπζεί θάπνηα ζπγθεθξηκέλε δνκή-ηνπνινγία, π.ρ. δνκή δέληξνπ, αζηεξηνύ, θιπ. Μη Γομημένη: ε επηθνηλσλία δελ αθνινπζεί θάπνηα ζπγθεθξηκέλε δνκή-ηνπνινγία. Σηαηική: ε επηθνηλσλία είλαη ζηαζεξή θαηά ηε δηάξθεηα εθηέιεζεο ηνπ πξνγξάκκαηνο. Γςναμική: ε επηθνηλσλία αιιάδεη θαηά ηε δηάξθεηα εθηέιεζεο ηνπ πξνγξάκκαηνο. Σςγσπονιζμένη: ε απνζηνιή θαη ιήςε ησλ πιεξνθνξηώλ-δεδνκέλσλ γίλεηαη ηαπηόρξνλα. Αζύγσπονη: ε απνζηνιή θαη ιήςε ησλ πιεξνθνξηώλ-δεδνκέλσλ είλαη αλεμάξηεηεο κεηαμύ ηνπο. ΔΜ 361: Παξάιιεινη Υπνινγηζκνί 2010/11, Κεθάιαην 4 18
19 Σσεδίαζη Δπικοινωνίαρ Βαζικέρ επωηήζειρ πος ηίθενηαι ζηη ζσεδίαζη ηηρ επικοινωνίαρ: Δθηεινύλ όιεο νη δηεξγαζίεο ίδηαο ηάμεο αξηζκό εληνιώλ επηθνηλσλίαο; Υπάξρεη δηεξγαζία πνπ επηθνηλσλεί κε πνιιέο από (ή όιεο) ηηο άιιεο δηεξγαζίεο; Υπάξρεη θίλδπλνο ζπκθόξεζεο επηθνηλσλίαο (bottleneck); Πνηνο είλαη ν βαζκόο ηνπηθόηεηαο ηνπ ζρήκαηνο επηθνηλσλίαο; Δίλαη δπλαηόλ νη ππνινγηζκνί λα γίλνληαη ηαπηόρξνλα κε ηελ επηθνηλσλία; Μπνξνύλ πνιιέο δηεξγαζίεο λα εθηεινύληαη ηαπηόρξνλα; ΔΜ 361: Παξάιιεινη Υπνινγηζκνί 2010/11, Κεθάιαην 4 19
20 Βιβλιογπαθία Parallel Programming, B. Wilkinson, M. Allen, Prentice Hall, 2nd Ed Designing and Building Parallel Programs, Ian Foster, Addison-Wesley Parallel Computing: Theory and Practice, M. J. Quinn, McGraw-Hill, Parallel Scientific Computing in C++ and MPI, G. Karniadakis and R.M. Kirby II, Cambridge, ΔΜ 361: Παξάιιεινη Υπνινγηζκνί 2010/11, Κεθάιαην 4 20
Επιστημονικοί Υπολογισμοί - Μέρος ΙΙΙ: Παράλληλοι Υπολογισμοί
Επιστημονικοί Υπολογισμοί - Μέρος ΙΙΙ: Παράλληλοι Υπολογισμοί Χαρμανδάρης Βαγγέλης, Τμήμα Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης, Εαρινό Εξάμηνο 2013/14 Κεφάλαιο 4: Παράλληλοι Αλγόριθμοι Ταξινόμηση
EM 361: Παράλληλοι Υπολογισμοί
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ EM 361: Παράλληλοι Υπολογισμοί Ενότητα #4: Παράλληλοι Αλγόριθμοι Διδάσκων: Χαρμανδάρης Ευάγγελος ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΚΕΦ. 2.3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ
ΚΕΦ..3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ Οπιζμόρ απόλςηηρ ηιμήρ: Σηνλ άμνλα ησλ πξαγκαηηθώλ αξηζκώλ ζεσξνύκε έλαλ αξηζκό α πνπ ζπκβνιίδεηαη κε ην ζεκείν Α. Η απόζηαζε ηνπ ζεκείνπ Α από ηελ αξρή Ο, δειαδή
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ Α ΛΤΚΔΙΟΤ Ζμεπομηνία: 18/12/10 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤ ΕΙ 1. Δίλεηαη ην πνιπώλπκν Αλ θαη., λα βξείηε ην ηειεπηαίν ςεθίν ηνπ αξηζκνύ έρνπκε:
H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ
H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ Φξεζηκόηεηα καζεκαηηθώλ Αξρή θαηακέηξεζεο Όζα έδσζαλ νη Έιιελεο... Τξίγσλνη αξηζκνί Τεηξάγσλνη αξηζκνί Δπηκήθεηο αξηζκνί Πξώηνη αξηζκνί Αξηζκνί κε μερσξηζηέο ηδηόηεηεο Γίδπκνη πξώηνη
Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση
Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση Πώς πρέπει να τιμολογεί ένα μονοπώλιο; Μέρξη ζηηγκήο ην κνλνπώιην έρεη ζεσξεζεί ζαλ κηα επηρείξεζε ε νπνία πσιεί ην πξντόλ ηεο ζε θάζε πειάηε ζηελ
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου ΠΡΟΒΛΗΜΑ Σε έλα ηνπξλνπά βόιετ δήισζαλ ζπκκεηνρή νκάδεο Γπκλαζίσλ ηεο Κύπξνπ.
Ενδεικτικά Θέματα Στατιστικής ΙΙ
Ενδεικτικά Θέματα Στατιστικής ΙΙ Θέματα. Έζησ όηη ζε δείγκα 35 θαηνηθηώλ πνπ ελνηθηάδνληαη ζε θνηηεηέο ζηελ Κνδάλε βξέζεθε ην κέζν κεληαίν κίζζσκα ζηα 5 επξώ, ελώ ζην Ζξάθιεην ην κέζν κεληαίν κίζζσκα ζε
x-1 x (x-1) x 5x 2. Να απινπνηεζνύλ ηα θιάζκαηα, έηζη ώζηε λα κελ ππάξρνπλ ξηδηθά ζηνπο 22, 55, 15, 42, 93, 10 5, 12
ΑΚΖΔΗ ΤΜΝΑΗΟΤ - ΚΤΚΛΟ ΠΡΩΣΟ - - ηα πνηεο ηηκέο ηνπ ηα παξαθάησ θιάζκαηα δελ νξίδνληαη ; (Τπόδεημε : έλα θιάζκα νξίδεηαη αλ ν παξνλνκαζηήο είλαη δηάθνξνο ηνπ κεδελόο) - (-) - (-) - Να απινπνηεζνύλ ηα θιάζκαηα
Αντισταθμιστική ανάλυση
Θεσξήζηε έλαλ αιγόξηζκν Α πνπ ρξεζηκνπνηεί κηα δνκή δεδνκέλσλ Γ : Καηά ηε δηάξθεηα εθηέιεζεο ηνπ Α ε Γ πξαγκαηνπνηεί κία αθνινπζία από πξάμεηο. Παξάδεηγκα: Θπκεζείηε ην πξόβιεκα ηεο εύξεζεο-έλσζεο Δίρακε
Γοκή επαλάιευες Δληοιές Όζο & Μέτρης_όηοσ
Αιγόξηζκνη 2.2.7.4 Γοκή επαλάιευες Δληοιές Όζο & Μέτρης_όηοσ Εηζαγσγή ζηηο Αξρέο ηεο Επηζηήκεο ησλ Η/Υ 1 Άζθεζε 34 ζει 53 Έλα ςεθηαθό θσηνγξαθηθό άικπνπκ έρεη απνζεθεπηηθό ρώξν N Mbytes. Να αλαπηύμεηε
Αζκήζεις ζτ.βιβλίοσ ζελίδας 13 14
.1.10 ζκήζεις ζτ.βιβλίοσ ζελίδας 13 14 Ερωηήζεις Καηανόηζης 1. ύν δηαθνξεηηθέο επζείεο κπνξεί λα έρνπλ θαλέλα θνηλό ζεκείν Έλα θνηλό ζεκείν i ύν θνηλά ζεκεία iλ) Άπεηξα θνηλά ζεκεία ηηηνινγήζηε ηελ απάληεζε
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..
ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου έλαξμεο 09.30 ιήμεο 09.45 Σην παξαθάησ ζρήκα θαίλεηαη ηκήκα ελόο πνιενδνκηθνύ ζρεδίνπ κηαο πόιεο. Οη ζθηαζκέλεο
Δξγαζηεξηαθή άζθεζε 03. Σηεξενγξαθηθή πξνβνιή ζην δίθηπν Wulf
Δξγαζηεξηαθή άζθεζε 03 Σηεξενγξαθηθή πξνβνιή ζην δίθηπν Wulf Ζιίαο Χαηδεζενδσξίδεο Οθηώβξηνο / Ννέκβξηνο 2004 Τη είλαη ην δίθηπν Wulf Δπίπεδν ζην νπνίν κπνξνύκε λα αλαπαξαζηήζνπκε ηξηζδηάζηαηα ζρήκαηα,
Α. Εηζαγσγή ηεο έλλνηαο ηεο ηξηγσλνκεηξηθήο εμίζσζεο κε αξρηθό παξάδεηγκα ηελ εκx = 2
ΣΡΙΓΩΝΟΜΔΣΡΙΚΔ EΞΙΩΔΙ Πνηα παξαδείγκαηα εμηζώζεσλ ή θαη πξνβιεκάησλ πηζηεύεηαη όηη είλαη θαηάιιεια γηα ηελ επίιπζε ηνπο θαηά ηελ δηάξθεηα ηεο δηδαθηηθήο δηαδηθαζίαο κέζα ζηελ ηάμε; 1 ε ΓΙΓΑΚΣΙΚΗ ΩΡΑ Α.
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙΜΟ Α ΛΤΚΔΙΟΤ. Ημεπομηνία: 10/12/11 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΔΙΝΟΜΔΝΔ ΛΤΔΙ
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙΜΟ Α ΛΤΚΔΙΟΤ Ημεπομηνία: 10/12/11 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΔΙΝΟΜΔΝΔ ΛΤΔΙ Πρόβλημα 1: α) Να δείμεηε όηη αλ ζεηηθνί πξαγκαηηθνί αξηζκνί ηζρύεη: β) Αλ είλαη
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..
ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου έλαξμεο 09.30 ιήμεο 09.45 Σην παξαθάησ ζρήκα θαίλεηαη ηκήκα ελόο πνιενδνκηθνύ ζρεδίνπ κηαο πόιεο. Οη ζθηαζκέλεο
Απαντήσεις θέματος 2. Παξαθάησ αθνινπζεί αλαιπηηθή επίιπζε ησλ εξσηεκάησλ.
Απαντήσεις θέματος 2 Απηά πνπ έπξεπε λα γξάςεηε (δελ ρξεηαδόηαλ δηθαηνιόγεζε εθηόο από ην Γ) Α return a*b; Β 0:acegf2, 1: acegf23, 2: acegf234, 3:acegf2345, 4:acegf23456, 5:acegf234567, 6:acegf2345678,
ΔΕΟ 13. Ποσοτικές Μέθοδοι. θαη λα ππνινγίζεηε ην θόζηνο γηα 10000 παξαγόκελα πξντόληα. Να ζρεδηαζηεί γηα εύξνο πξντόλησλ έσο 30000.
ΔΕΟ 13 Ποσοτικές Μέθοδοι Σσνάρηηζη Κόζηοσς C(), μέζο κόζηος C()/. Παράδειγμα 1 Μηα εηαηξεία δαπαλά γηα θάζε πξντόλ Α πνπ παξάγεη 0.0 λ.κ. Τα πάγηα έμνδα ηεο εηαηξείαο είλαη 800 λ.κ. Ζεηείηαη 1) Να πεξηγξάςεηε
Παιχνίδι γλωζζικής καηανόηζης με ζχήμαηα!
Cpyright 2013 Λόγος & Επικοινωνία // All rights Reserved Παιχνίδι γλωζζικής καηανόηζης με ζχήμαηα! Αυηό ηο παιχνίδι έχει ζηόχους: 1. ηελ εθγύκλαζε ηεο αθνπζηηθήο κλήκεο ησλ παηδηώλ 2. ηελ εμάζθεζε ζηελ
Αιγόξηζκνη Γνκή επηινγήο. Πνιιαπιή Δπηινγή Δκθωιεπκέλεο Δπηινγέο. Δηζαγωγή ζηηο Αξρέο ηεο Δπηζηήκεο ηωλ Η/Υ. introcsprinciples.wordpress.
Αιγόξηζκνη 2.2.7.3 Γνκή επηινγήο Πνιιαπιή Δπηινγή Δκθωιεπκέλεο Δπηινγέο Δηζαγωγή ζηηο Αξρέο ηεο Δπηζηήκεο ηωλ Η/Υ 1 Πνιιαπιή Δληνιή Δπηινγήο Αν ζπλζήθε_1 ηόηε εληνιέο_1 αλλιώς_αν ζπλζήθε_2 ηόηε εληνιέο_2...
B-Δέλδξα. Τα B-δέλδξα ρξεζηκνπνηνύληαη γηα ηε αλαπαξάζηαζε πνιύ κεγάισλ ιεμηθώλ πνπ είλαη απνζεθεπκέλα ζην δίζθν.
B-Δέλδξα Τα B-δέλδξα ρξεζηκνπνηνύληαη γηα ηε αλαπαξάζηαζε πνιύ κεγάισλ ιεμηθώλ πνπ είλαη απνζεθεπκέλα ζην δίζθν. Δέλδξα AVL n = 2 30 = 10 9 (πεξίπνπ). 30
Διαηιμήζεις για Αιολικά Πάρκα. Κώδικες 28, 78 και 84
Διαηιμήζεις για Αιολικά Πάρκα Κώδικες 28, 78 και 84 Διαηιμήζεις για Αιολικά Πάρκα Οη Διαηιμήζεις για Αιολικά Πάρκα εθαξκόδνληαη γηα ηελ απνξξνθνύκελε ελέξγεηα από Αηνιηθά Πάξθα πνπ είλαη ζπλδεδεκέλα ζην
ΑΝΤΗΛΙΑΚΑ. Η Μηκή ζθέθηεθε έλαλ ηξόπν, γηα λα ζπγθξίλεη κεξηθά δηαθνξεηηθά αληειηαθά πξντόληα. Απηή θαη ν Νηίλνο ζπλέιεμαλ ηα αθόινπζα πιηθά:
ΑΝΤΗΛΙΑΚΑ Η Μηκή θαη ν Νηίλνο αλαξσηήζεθαλ πνην αληειηαθό πξντόλ παξέρεη ηελ θαιύηεξε πξνζηαζία ζην δέξκα ηνπο. Τα αληειηαθά πξντόληα έρνπλ έλα δείθηε αληειηαθήο πξνζηαζίαο (SPF), ν νπνίνο δείρλεη πόζν
Η/Υ A ΤΑΞΕΩΣ ΑΕ 2010-2011. Συστήματα Αρίθμησης. Υποπλοίαρχος Ν. Πετράκος ΠΝ
Συστήματα Αρίθμησης Υποπλοίαρχος Ν. Πετράκος ΠΝ 1 Ειζαγωγή Τν bit είλαη ε πην βαζηθή κνλάδα κέηξεζεο. Είλαη κία θαηάζηαζε on ή off ζε έλα ςεθηαθό θύθισκα. Άιιεο θνξέο είλαη κία θαηάζηαζε high ή low voltage
EM 361: Παπάλληλοι Υπολογιζμοί
EM 361: Παπάλληλοι Υπολογιζμοί Φαπμανδάπηρ Βαγγέληρ, Τμήμα Δθαπμοζμένων Μαθημαηικών Πανεπιζηήμιο Κπήηηρ, Φειμεπινό Δξάμηνο 2010/11 Κεθάλαιο 2: Απσιηεκηονική Απσιηεκηονική Παπάλληλων Σςζηημάηων. Ταξινόμηζη
Χαξαθηήξεο δηαηξεηόηεηαο ΜΚΓ ΔΚΠ Αλάιπζε αξηζκνύ ζε γηλόκελν πξώησλ παξαγόλησλ
Χαξαθηήξεο δηαηξεηόηεηαο ΜΚΓ ΔΚΠ Αλάιπζε αξηζκνύ ζε γηλόκελν πξώησλ παξαγόλησλ Πνιιαπιάζηα ελόο θπζηθνύ αξηζκνύ α είλαη νη αξηζκνί πνπ πξνθύπηνπλ από ηνλ πνιιαπιαζηαζκό ηνπ α κε όινπο ηνπο θπζηθνύο αξηζκνύο.
Q Η ζσνάρηηζη μέζοσ κόζηοσς μας δίνει ηο κόζηος ανά μονάδα παραγωγής. Q Η ζσνάρηηζη μέζοσ κόζηοσς μας δίνει ηο ζηαθερό κόζηος ανά μονάδα παραγωγής
ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΣΟΜΟ Α Mάθημα 5: To παραγωγής σναρηήζεις κόζηοσς Η ζπλάξηεζε ζπλνιηθνύ θόζηνπο C FC VC Όπνπ FC= ην ζηαζεξό θόζηνο (ην θόζηνο γηα ηνλ ζηαζεξό παξαγσγηθό ζπληειεζηή) θαη VC= ην κεηαβιεηό
Έλαο πίνακας σσμβόλων ππνζηεξίδεη δύν βαζηθέο ιεηηνπξγίεο:
Πίνακες Σσμβόλων Έλαο πίνακας σσμβόλων ππνζηεξίδεη δύν βαζηθέο ιεηηνπξγίεο: Εηζαγσγή ελόο ζηνηρείνπ Αλαδήηεζε ζηνηρείνπ κε δεδνκέλν θιεηδί Άιιεο ρξήζηκεο ιεηηνπξγίεο είλαη: Δηαγξαθή ελόο θαζνξηζκέλνπ ζηνηρείνπ
EM 361: Παπάλληλοι Υπολογιζμοί
EM 361: Παπάλληλοι Υπολογιζμοί Φαπμανδάπηρ Βαγγέληρ, Τμήμα Εθαπμοζμένων Μαθημαηικών Πανεπιζηήμιο Κπήηηρ, Φειμεπινό Εξάμηνο 2010/11 Κεθάλαιο 3: Θεωπία Παπάλληλος Ππογπαμμαηιζμού - Απόδοζη Απόδοζη Παπάλληλων
Άζκηζη ζτέζης κόζηοσς-τρόνοσ (Cost Time trade off) Καηαζκεσαζηική ΑΔ
Άζκηζη ζτέζης κόζηοσς-τρόνοσ (Cost Time trade off) Καηαζκεσαζηική Δίζηε μησανικόρ διοίκηζηρ μεγάληρ καηαζκεςαζηικήρ εηαιπείαρ και καλείζηε να ςλοποιήζεηε ηο έπγο πος πεπιγπάθεηαι από ηον Πίνακα 1. Κωδ.
ΠΡΩΣΟΙ ΑΡΙΘΜΟΙ. (δει. ν n έρεη έλαλ ηνπιάρηζηνλ δηαηξέηε πνπ αλήθεη ζην ζύλνιν 2,..., n 1
ΠΡΩΣΟΙ ΑΡΙΘΜΟΙ Οπιζμόρ : Έλαο αθέξαηνο θαιείηαη πξώηνο αλ νη κόλνη ζεηηθνί δηαηξέηεο ηνπ είλαη νη θαη. Αλ ν αθέξαηνο δελ είλαη πξώηνο ηόηε ν θαιείηαη ζύλζεηνο. Παπαηήπηζη : i) Αλ ν αθέξαηνο είλαη ζύλζεηνο
ΑΠΑΝΤΗΣΔΙΣ ΓΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ II ΔΠΑΛ
ΑΠΑΝΤΗΣΔΙΣ ΓΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ II ΔΠΑΛ ΘΔΜΑ Α Α1. α. Σ β. Σ γ. Λ δ. Λ ε. Λ ζη. Σ Α2. Γ Α3. 1. γ 2. ε 3. δ 4. α Β1. ΘΔΜΑ Β Οη ηειηθνί ππνινγηζηέο παίξλνπλ απνθάζεηο δξνκνιόγεζεο κόλν γηα ηα δηθά ηνπο απηνδύλακα
ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ. Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη Εήηημα 1 ο :
ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ Ον/μο:.. Γ Λσκείοσ Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη. 11-1-11 Εήηημα 1 ο : Α. Γηα ηελ ζπλάξηεζε f, λα βξείηε ην δηάζηεκα ζην νπνίν είλαη παξαγσγίζηκε θαζώο θαη
iii. iv. γηα ηελ νπνία ηζρύνπλ: f (1) 2 θαη
ΔΠΑΝΑΛΗΠΣΙΚΑ ΘΔΜΑΣΑ ΣΟ ΓΙΑΦΟΡΙΚΟ ΛΟΓΙΜΟ Μάρτιος 0 ΘΔΜΑ Να ππνινγίζεηε ηα όξηα: i ii lim 0 0 lim iii iv lim e 0 lim e 0 ΘΔΜΑ Γίλεηαη ε άξηηα ζπλάξηεζε '( ) ( ) γηα θάζε 0 * : R R γηα ηελ νπνία ηζρύνπλ:
ΣΕΙ Δυτικήσ Μακεδονίασ, Παράρτημα Καςτοριάσ Τμήμα Πληροφορικήσ και Τεχνολογίασ Υπολογιςτών
τοιχεία του μαθήματοσ (ημζρα εβδομάδασ, ώρεσ, ζτοσ): ΣΕΙ Δυτικήσ Μακεδονίασ, Παράρτημα Καςτοριάσ Τμήμα Πληροφορικήσ και Τεχνολογίασ Υπολογιςτών Εργαςτηριακή ομάδα αςκήςεων 2 για το μάθημα «ΑΡΧΙΣΕΚΣΟΝΙΚΗ
Απνηειέζκαηα Εξσηεκαηνινγίνπ 2o ηεηξάκελν 2011-12
Απνηειέζκαηα Εξσηεκαηνινγίνπ 2o ηεηξάκελν 11-12 Project 6: Ταμίδη κε ηε Μεραλή ηνπ Φξόλνπ Υπεύζπλνη Καζεγεηέο: Ε. Μπηιαλάθε Φ. Αλησλάηνο Δρώηηζη 3: Πνηα από ηα παξαθάησ ΜΜΕ ηεξαξρείηε από πιεπξάο ζεκαζίαο;
ΓΙΑΙΡΔΣΔ ΦΤΙΚΟΤ ΑΡΙΘΜΟΤ Μ.Κ.Γ. ΦΤΙΚΏΝ ΑΡΙΘΜΏΝ
ΓΙΑΙΡΔΣΔ ΦΤΙΚΟΤ ΑΡΙΘΜΟΤ Γηαηξέηεο ελόο θπζηθνύ αξηζκνύ α είλαη νη θπζηθνί αξηζκνί πνπ όηαλ δηαηξεζνύλ κε ην α δίλνπλ αθέξαην πειίθν θαη ππόινηπν 0. Οη παξάγνληεο ελόο αξηζκνύ είλαη θαη δηαηξέηεο ηνπ. Ππώηοι
ΔΠΙΣΡΟΠΗ ΓΙΑΓΩΝΙΜΩΝ 74 ος ΠΑΝΔΛΛΗΝΙΟ ΜΑΘΗΣΙΚΟ ΓΙΑΓΩΝΙΜΟ ΣΑ ΜΑΘΗΜΑΣΙΚΑ Ο ΘΑΛΗ 19 Οκηωβρίοσ Δνδεικηικές λύζεις
ΔΛΛΗΝΙΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ Παλεπηζηεκίνπ (Διεπζεξίνπ Βεληδέινπ) 34 06 79 ΑΘΖΝΑ Τει. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Δleftheriou
ΚΔΦ. 2.4 ΡΗΕΔ ΠΡΑΓΜΑΣΗΚΩΝ ΑΡΗΘΜΩΝ
ΚΔΦ.. ΡΗΕΔ ΠΡΑΓΜΑΣΗΚΩΝ ΑΡΗΘΜΩΝ Οξηζκόο ηεηξαγσληθήο ξίδαο: Αλ 0 ηόηε νλνκάδνπκε ηεηξαγσληθή ξίδα ηνπ ηελ κε αξλεηηθή ιύζε ηεο εμίζσζεο:. Γειαδή ηεηξαγσληθή ξίδα ηνπ 0 ιέγεηαη ν αξηζκόο 0 πνπ όηαλ πςσζεί
ΓΙΑΙΡΔΣΟΣΗΣΑ. Οπιζμόρ 1: Έζηω d,n. Λέκε όηη ν d δηαηξεί ηνλ n (ζπκβνιηζκόο: dn) αλ. ππάξρεη c ηέηνην ώζηε n. Θεώπημα 2: Γηα d,n,m,α,b ηζρύνπλ:
ΓΙΑΙΡΔΣΟΣΗΣΑ Οπιζμόρ 1: Έζηω,. Λέκε όηη ν δηαηξεί ηνλ (ζπκβνιηζκόο: ) αλ ππάξρεη c ηέηνην ώζηε c. Θεώπημα : Γηα,,m,α,b ηζρύνπλ: i), (άξα ) ii) 1, 1 iii) 0 iv) 0 0 v) m m m vi) α bm vii) α (άξα ) viii)
Να ζρεδηάζεηο ηξόπνπο ζύλδεζεο κηαο κπαηαξίαο θαη ελόο ιακπηήξα ώζηε ν ιακπηήξαο λα θσηνβνιεί.
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: Απλό ηλεκτπικό κύκλυμα Η δηδαζθαιία ηνπ απινύ ειεθηξηθνύ θπθιώκαηνο ππάξρεη ζην κάζεκα «Φπζηθά» ηεο Ε ηάμεο ηνπ δεκνηηθνύ θαη επαλαιακβάλεηαη ζην κάζεκα ηεο Φπζηθήο ζηε Γ ηάμε ηνπ Γπκλαζίνπ.
ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ: έζησ
ΜΙΓΑΔΙΚΙ ΑΡΙΘΜΙ: έζησ έλαο κηγαδηθόο αξηζκόο. αληίζηξνθνο ηνπ κηγαδηθνύ αξηζκνύ a b είλαη ν αξηζκόο Παπάδειγμα: έζησ.αληίζηξνθνο ηνπ αξηζκνύ : Μέηπο μιγαδικού απιθμού: αλ κέηξν δηαλύζκαηνο OM. b ή απόιπηε
Κεθάλαιο 7. Πξνζθνξά ηνπ θιάδνπ Μ. ΨΥΛΛΑΚΗ
Κεθάλαιο 7 Πξνζθνξά ηνπ θιάδνπ 1 Προζθορά ανηαγωνιζηικού κλάδοσ Πώο πξέπεη λα ζπλδπαζηνύλ νη απνθάζεηο πξνζθνξάο ησλ πνιιώλ επηκέξνπο επηρεηξήζεσλ ελόο αληαγσληζηηθνύ θιάδνπ γηα λα βξνύκε ηελ θακπύιε πξνζθνξάο
ΓΔΧΜΔΣΡΙΑ ΓΙΑ ΟΛΤΜΠΙΑΓΔ
ΒΑΓΓΔΛΗ ΦΤΥΑ 2009 ελίδα 2 από 9 ΔΤΘΔΙΔ SIMSON 1 ΒΑΙΚΔ ΠΡΟΣΑΔΙ 1.1 ΔΤΘΔΙΑ SIMSON Γίλεηαη ηξίγσλν AB θαη ηπρόλ ζεκείν ηνπ πεξηγεγξακκέλνπ θύθινπ ηνπ. Αλ 1, 1 θαη 1 είλαη νη πξνβνιέο ηνπ ζηηο επζείεο πνπ
ΑΠΛΟΠΟΙΗΗ ΛΟΓΙΚΩΝ ΤΝΑΡΣΗΕΩΝ ΜΕ ΠΙΝΑΚΕ KARNAUGH
ΑΠΛΟΠΟΙΗΗ ΛΟΓΙΚΩΝ ΤΝΑΡΣΗΕΩΝ ΜΕ ΠΙΝΑΚΕ KRNUGH Γηα λα θάλνπκε απινπνίεζε κηαο ινγηθήο ζπλάξηεζεο κε πίλαθα (ή ράξηε) Karnaugh αθνινπζνύκε ηα παξαθάησ βήκαηα:. Η ινγηθή ζπλάξηεζε ζα πξέπεη λα είλαη ζε πιήξε
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα 11 Ηουνίου 2018 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις)
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα Ηουνίου 08 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α Α. Απόδεημε ζεωξήκαηνο ζει. 99 ζρνιηθνύ βηβιίνπ. Α. α.
Μονοψϊνιο. Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ.
Μονοψϊνιο Ολιγοψώνιο Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ. Οπιακή αξία Δπηπξόζζεηα νθέιε από ηελ ρξήζε/θαηαλάισζε κηαο επηπξόζζεηε
Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training. Dipl.Biol.cand.med. Stylianos Kalaitzis
Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training Dipl.Biol.cand.med. Stylianos Kalaitzis Stylianos Kalaitzis Μνλνϋβξηδηζκνο 1 Γπν γνλείο, εηεξόδπγνη γηα ηνλ αιθηζκό θάλνπλ παηδηά. Πνία ε πηζαλόηεηα
Κεθάιαην 20. Ελαχιστοποίηση του κόστους
Κεθάιαην 0 Ελαχιστοποίηση του κόστους Ειαρηζηνπνίεζε ηνπ θόζηνπο Μηα επηρείξεζε ειαρηζηνπνηεί ην θόζηνο ηεο αλ παξάγεη νπνηνδήπνηε δεδνκέλν επίπεδν πξντόληνο y 0 ζην κηθξόηεξν δπλαηό ζπλνιηθό θόζηνο. Τν
ηδάζθσλ: εµήηξεο Εετλαιηπνύξ
ηάιεμε 4: ιάρηζηα ελλεηνξηθά έλδξα Αιγόξηζκνο Kruskal Σηελ ελόηεηα απηή ζα κειεηεζνύλ ηα εμήο επηκέξνπο ζέκαηα: Ο αλγόριθμος ηοσ Kruskal για εύρεζη ζε γράθοσς Παράδειγμα κηέλεζης ηδάζθσλ: εµήηξεο ετλαιηπνύξ
Σήκαηα Β Α Γ Γ Δ Λ Η Σ Ο Ι Κ Ο Ν Ο Μ Ο Υ Γ Ι Α Λ Δ Ξ Η - ( 2 ) ΕΙΣΑΓΨΓΗ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΨΝΙΕΣ
Σήκαηα 1 Β Α Γ Γ Δ Λ Η Σ Ο Ι Κ Ο Ν Ο Μ Ο Υ Γ Ι Α Λ Δ Ξ Η - ( 2 ) Σήκαηα Οξηζκόο ζήκαηνο Ταμηλόκεζε ζεκάησλ Σεηξέο Fourier Μεηαζρεκαηηζκόο Fourier Σπλέιημε Σπζρέηηζε θαη Φαζκαηηθή Ππθλόηεηα 2 Οξηζκόο Σήκαηνο
ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08/09/2014
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 204-205 ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08/09/204 A ΟΜΑΓΑ Οδηγία: Να γράυεηε ζηο ηεηράδιο ζας ηον αριθμό κάθε μιας από ηις παρακάηφ ερφηήζεις Α.-Α.8 και
ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 1. Να ιπζνύλ ηα ζπζηήκαηα. 1 0,3x 0,1y x 3 3x 4y 2 4x 2y ( x 1) 6( y 1) (i) (ii)
. Να ιπζνύλ ηα ζπζηήκαηα.,, 6 4 4 4 5( ) 6( ). Να ιπζνύλ ηα ζπζηήκαηα.,,,6 7. Να ιπζνύλ ηα ζπζηήκαηα. 5 ( )( ) ( ) 4. Να ιπζνύλ ηα ζπζηήκαηα. 5 4 6 7 4. 5. Να ιπζνύλ ηα ζπζηήκαηα. 59 ( )( ) ()( 5) 7 6.
Ππογπαμμαηιζμόρ Ι (ΗΥ120)
Ππογπαμμαηιζμόρ Ι (ΗΥ120) Δηάιεμε 10: Ταμηλόκεζε Πίλαθα Αλαδήηεζε ζε Ταμηλνκεκέλν Πίλαθα Ππόβλεμα Δίλεηαη πίλαθαο t από Ν αθεξαίνπο. Ζεηνύκελν: λα ηαμηλνκεζνύλ ηα πεξηερόκελα ηνπ πίλαθα ζε αύμνπζα αξηζκεηηθή
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΠΟΥΔΕΣ ΣΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙ - ΦΥΕ 0 7 Ινπλίνπ 009 Απαντήσειρ στιρ ασκήσειρ τηρ τελικήρ εξέτασηρ στιρ Σςνήθειρ Διαυοπικέρ Εξισώσειρ Αγαπηηέ θοιηηηή/ηπια,
A. Αιιάδνληαο ηε θνξά ηνπ ξεύκαηνο πνπ δηαξξέεη ηνλ αγωγό.
ΤΠΟΤΡΓΔΙΟ ΠΑΙΓΔΙΑ ΚΑΙ ΠΟΛΙΣΙΜΟΤ ΛΔΤΚΩΙΑ ΦΤΛΛΟ ΔΡΓΑΙΑ Μειέηε ηωλ παξαγόληωλ από ηνπο νπνίνπο εμαξηάηαη ε ειεθηξνκαγλεηηθή δύλακε. Τιηθά - πζθεπέο: Ηιεθηξνληθή δπγαξηά, ηξνθνδνηηθό ηάζεο, ξννζηάηεο, ακπεξόκεηξν,
ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ. Αθροίσματα, Γινόμενα και Ασσμπτωτικές Εκτιμήσεις
ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ Αθροίσματα, Γινόμενα και Ασσμπτωτικές Εκτιμήσεις Ο Δηζνδεκαηίαο Σην ηειεπαηρλίδη «Ο Δηζνδεκαηίαο» ν Αξλανύηνγινπ γηα πξώηε θνξά δίλεη δύν επηινγέο: Να πάξεηο 50.000 Δπξώ θάζε ρξόλν
Δξγαιεία Καηαζθεπέο 1 Σάμε Σ Δ.Κ.Φ.Δ. ΥΑΝΙΧΝ ΠΡΧΣΟΒΑΘΜΙΑ ΔΚΠΑΙΓΔΤΗ. ΔΝΟΣΗΣΑ 11 ε : ΦΧ ΔΡΓΑΛΔΙΑ ΚΑΣΑΚΔΤΔ. Καηαζθεπή 1: Φαθόο κε ζσιήλα.
Δξγαιεία Καηαζθεπέο 1 Δ.Κ.Φ.Δ. ΥΑΝΙΧΝ ΠΡΧΣΟΒΑΘΜΙΑ ΔΚΠΑΙΓΔΤΗ ΔΝΟΣΗΣΑ 11 ε : ΦΧ ΔΡΓΑΛΔΙΑ ΚΑΣΑΚΔΤΔ Καηαζθεπή 1: Φαθόο κε ζσιήλα Γηαθξάγκαηα Δξγαιεία Καηαζθεπέο 2 Η θαηαζθεπή πεξηγξάθεηαη ζηελ αληίζηνηρε ελόηεηα
ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ(1) ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ
ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ() ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ ΘΔΜΑ : Αλ ηζρύεη 3 3, λα δείμεηε όηη ηα ζεκεία Μ, Ν ηαπηίδνληαη. ΘΔΜΑ : Α Β Μ Γ Σην παξαπάλσ ζρήκα είλαη 3. α) Γείμηε όηη
f '(x)g(x)h(x) g'(x)f (x)h(x) h'(x) f (x)g(x)
ΓΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 54 Υλη: Παράγωγοι Γ Λσκείοσ Ον/μο:.. 6--4 Θεη-Τετν. ΘΔΜΑ Α.. Αλ f, g, h ηξεηο παξαγωγίζηκεο ζπλαξηήζεηο ζην λα απνδείμεηε όηη : f () g() h() ' f '()g()h() g'()f ()h() h'() f ()g()
Επωηήζειρ Σωζηού Λάθοςρ ηων πανελλαδικών εξεηάζεων Σςναπηήζειρ
Επωηήζειρ Σωζηού Λάθοςρ ηων πνελλδικών εξεηάζεων 2-27 Σςνπηήζειρ Η γξθηθή πξάζηζε ηεο ζπλάξηεζεο f είλη ζπκκεηξηθή, σο πξνο ηνλ άμνλ, ηεο γξθηθήο πξάζηζεο ηεο f 2 Αλ f, g είλη δύν ζπλξηήζεηο κε πεδί νξηζκνύ
ΔΦΑΡΜΟΜΔΝΑ ΜΑΘΗΜΑΣΙΚΑ ΣΗ ΧΗΜΔΙΑ Ι ΘΔΜΑΣΑ Α επηέκβξηνο 2009. 1. Να ππνινγηζηνύλ νη κεξηθέο παξάγσγνη πξώηεο ηάμεο ηεο ζπλάξηεζεο f(x,y) =
ΘΔΜΑΣΑ Α επηέκβξηνο 9. Να ππνινγηζηνύλ νη κεξηθέο παξάγσγνη πξώηεο ηάμεο ηεο ζπλάξηεζεο f(,y) = y.. Να ππνινγηζηνύλ ηα νινθιεξώκαηα: a) ln b) a) 3cos b) e sin 4. Να ππνινγηζηεί ην νινθιήξσκα: S ( y) 3
Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano) ΘΔΜΑ Α
Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano). Να δηαηππώζεηε ην Θ.Bolzano. 5 ΘΔΜΑ Α μονάδες A. Να απνδείμεηε όηη γηα θάζε πνιπωλπκηθή
ΑΛΛΑΓΗ ΟΝΟΜΑΣΟ ΚΑΙ ΟΜΑΔΑ ΕΡΓΑΙΑ, ΚΟΙΝΟΥΡΗΣΟΙ ΦΑΚΕΛΟΙ ΚΑΙ ΕΚΣΤΠΩΣΕ ΣΑ WINDOWS XP
ΑΛΛΑΓΗ ΟΝΟΜΑΣΟ ΚΑΙ ΟΜΑΔΑ ΕΡΓΑΙΑ, ΚΟΙΝΟΥΡΗΣΟΙ ΦΑΚΕΛΟΙ ΚΑΙ ΕΚΣΤΠΩΣΕ ΣΑ WINDOWS XP ηότοι εργαζηηρίοσ ην πιαίζην ηνπ ζπγθεθξηκέλνπ εξγαζηεξίνπ ζα παξνπζηαζηνύλ βαζηθέο ιεηηνπξγίεο ησλ Windows XP πνπ ζρεηίδνληαη
7. ΚΑΤΑΧΩΡΗΤΕΣ ΕΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ. 3. Έλαο θαηαρσξεηήο SISO ησλ 4 bits έρεη: α) Μία είζνδν, β) Δύν εηζόδνπο, γ) Σέζζεξεηο εηζόδνπο.
7. ΚΑΤΑΧΩΡΗΤΕΣ ΕΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ 1. Ση είλαη έλαο θαηαρσξεηήο; O θαηαρσξεηήο είλαη κηα νκάδα από flip-flop πνπ κπνξεί λα απνζεθεύζεη πξνζσξηλά ςεθηαθή πιεξνθνξία. Μπνξεί λα δηαηεξήζεη ηα δεδνκέλα ηνπ
ΦΥΣΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ. G. Mitsou
ΦΥΣΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ηαηηθή ηωλ ξεπζηώλ (Τδξνζηαηηθή) Ση είλαη ηα ξεπζηά - Γεληθά Ππθλόηεηα Πίεζε Μεηαβνιή ηεο πίεζεο ζπλαξηήζεη ηνπ βάζνπο Αξρή ηνπ Pascal Τδξνζηαηηθή πίεζε Αηκνζθαηξηθή πίεζε Απόιπηε &
(γ) Να βξεζεί ε ρξνλνεμαξηώκελε πηζαλόηεηα κέηξεζεο ηεο ζεηηθήο ηδηνηηκήο ηνπ ηειεζηή W.
ΚΒΑΝΤΙΚΗ ΦΥΣΙΚΗ Ι Τειηθή Εμέηαζε: 5 Σεπηέκβξε 6 (Δηδάζθσλ: ΑΦ Τεξδήο) ΘΕΜΑ Θεσξνύκε θβαληηθό ζύζηεκα πνπ πεξηγξάθεηαη από Φακηιηνληαλή Η, ε νπνία ζε κνξθή πίλαθα ρξεζηκνπνηώληαο ηηο ηδηνζπλαξηήζεηο, θαη
T A E K W O N D O. Δ. ΠπθαξΨο. ΔπΫθνπξνο ΘαζεγεηΪο ΑζιεηηθΪο ΦπζηθνζεξαπεΫαο ΡΔΦΑΑ - ΑΞΘ
T A E K W O N D O Δ. ΠπθαξΨο ΔπΫθνπξνο ΘαζεγεηΪο ΑζιεηηθΪο ΦπζηθνζεξαπεΫαο ΡΔΦΑΑ - ΑΞΘ ΦΠΗΘΝΘΔΟΑΞΔΗΑ Ο Ρ Ι Μ Ο Φπζη(θ)νζεξαπεΫα εϋλαη ε επηζηϊκε, ε νπνϋα κόλν κε θπζηθψ κωζα θαη κεζόδνπο πξνζπαζεϋ λα ζεξαπεύζεη
242 - Ειζαγωγή ζηοσς Η/Υ
1 242 - Ειζαγωγή ζηοσς Η/Υ Τμήμα Μαθημαηικών, Πανεπιζηήμιο Ιωαννίνων Ακαδημαϊκό Έηος 2015-2016 Άρηια Α.Μ. (0-2-4-6-8) 2 Βαζικές αρτές ζσζηημαηικού και δομημένοσ προγραμμαηιζμού Δηαγξάκκαηα ξνήο πξνγξάκκαηνο
(Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α. Α1. Βιέπε απόδεημε Σει. 262, ζρνιηθνύ βηβιίνπ. Α2. Βιέπε νξηζκό Σει. 141, ζρνιηθνύ βηβιίνπ
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ (ΟΜΑΓΑ Β ) ΣΔΣΑΡΣΖ 18 ΜΑΪΟΤ 16 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (ΝΔΟ ΤΣΖΜΑ) ΚΑΣΔΤΘΤΝΖ (ΠΑΛΑΗΟ ΤΣΖΜΑ) (Ενδεικηικές Απανηήζεις) ΘΔΜΑ
ΔΝΓΔΙΚΣΙΚΔ ΛΤΔΙ ΣΑ ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ 2017
α: κολάδα β: κολάδες Σειίδα από 8 ΔΝΓΔΙΚΣΙΚΔ ΛΤΔΙ ΣΑ ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ 7 ΘΔΜΑ Α Α Έζηω, κε Θα δείμνπκε όηη f ( ) f ( ) Πξάγκαηη, ζην δηάζηεκα [, ] ε f ηθαλνπνηεί ηηο πξνϋπνζέζεηο ηνπ ΘΜΤ Επνκέλωο,
Η αξρή ζύλδεζεο Client-Server
Η αξρή ζύλδεζεο Client-Server Δηαθνκηζηήο (Server) Πξνζθέξεη ππεξεζίεο ζηνπο Πειάηεο (Client) Μεγάινη ππνινγηζηέο γηα ηηο ππεξεζίεο Internet (π.ρ. WWW, FTP) Λακβάλεη εξσηήζεηο θαη δίδεη απαληήζεηο Πειάηεο
1. Οδηγίερ εγκαηάζηαζηρ και σπήζηρ έξςπνυν καπηών και τηθιακών πιζηοποιηηικών με σπήζη ηος λογιζμικού Μοzilla Thunderbird
1. Οδηγίερ εγκαηάζηαζηρ και σπήζηρ έξςπνυν καπηών και τηθιακών πιζηοποιηηικών με σπήζη ηος λογιζμικού Μοzilla Thunderbird 1.1 Εγκαηάζηαζη ηυν οδηγών ηηρ έξςπνηρ κάπηαρ ζηο λογιζμικό Mozilla Thunderbird
ΗΥ-150 Πξνγξακκατησκόο Ταμηλόκεσε θαη Αλαδήτεσε
ΗΥ-150 Πξνγξακκατησκόο Ταμηλόκεσε θαη Αλαδήτεσε To πξόβιεκα ηεο Αλαδήηεζεο Γνζέληνο δεδνκέλσλ, ι.ρ. ζε Πίλαθα (P) Χάρλσ λα βξσ θάπνην ζπγθεθξηκέλν ζηνηρείν (key) Αλ ν πίλαθαο δελ είλαη ηαμηλνκεκέλνο Γξακκηθή
Γηαρείξηζε θόζηνπο ζηελ Γηνίθεζε έξγσλ
Γηαρείξηζε θόζηνπο ζηελ Γηνίθεζε έξγσλ Γηαρείξηζε θόζηνπο Τν θόζηνο θαη ε δηαρείξηζή ηνπ είλαη κηα από ηηο βαζηθόηεξεο παξακέηξνπο ζηελ δηνίθεζε ελόο έξγνπ! Σεκαληηθά ζεκεία: Τη δηαθύκαλζε ηνπ θόζηνπο
ΠΛΗ36. Άσκηση 1. Άσκηση 2. Οη δηεπζύλζεηο ησλ 4 σλ ππνδηθηύσλ είλαη νη αθόινπζεο. Υπνδίθηπν Α: 10.101.1.64/27 Υπνδίθηπν Β: 10.101.1.
Άσκηση 1 ΠΛΗ36 1. Η κόλε πεξίπησζε λα έρνπκε ζύγθξνπζε κεηαμύ παθέησλ ησλ δύν θόκβσλ είλαη λα ζηείιεη ν δεύηεξνο πξηλ πξνιάβεη λα πιεξνθνξεζεί γηα ηελ θαηάιεςε ηνπ δηάπινπ από ηνλ άιιν. Από ηε ζηηγκή πνπ
Πολυεπίπεδα/Διασυμδεδεμέμα Δίκτυα
Πολυεπίπεδα/Διασυμδεδεμέμα Δίκτυα Κοιμωμικά δίκτυα (multiplex network) Έρεηε ινγαξηαζκό ζην Facebook? Έρεηε ινγαξηαζκό ζην LinkedIn? Έρεηε ινγαξηαζκό ζην Twitter? Αεροπορικές γραμμές της Ευρώπης(multiplex
Βάσεις Δεδομέμωμ. Εξγαζηήξην V. Τκήκα Πιεξνθνξηθήο ΑΠΘ 2015-2016
Βάσεις Δεδομέμωμ Εξγαζηήξην V Τκήκα Πιεξνθνξηθήο ΑΠΘ 2015-2016 2 Σκοπός του 5 ου εργαστηρίου Σθνπόο απηνύ ηνπ εξγαζηεξίνπ είλαη: ε κειέηε ζύλζεησλ εξσηεκάησλ ζύλδεζεο ζε δύν ή πεξηζζόηεξεο ζρέζεηο ε κειέηε
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Γ Γυμνασίου ΥΟΛΕΙΟ..
ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Γ Γυμνασίου ιήμεο 11.00 Κάπνηνο άξρηζε λα δηαβάδεη έλα βηβιίν ηελ 1 ε Δεθεκβξίνπ. Κάζε κέξα δηάβαδε ηνλ ίδην αξηζκό ζειίδσλ
Εισαγωγή στοςρ κβαντικούρ ςπολογιστέρ και αλγόπιθμοςρ. Γηδάζθωλ : Φνπληνπιάθεο Αληώληνο
Εισαγωγή στοςρ κβαντικούρ ςπολογιστέρ και αλγόπιθμοςρ. Γηδάζθωλ : Φνπληνπιάθεο Αληώληνο Θεματικές Ενότητες 1. Απιέο έλλνηεο θβαληηθήο κεραληθήο θαη ην ζύζηεκα δύν θβαληηθώλ θαηαζηάζεωλ. 2. Qubit θαη θβαληηθόο
ΘΔΜΑ 1 ο Μονάδες 5,10,10
ΟΝΟΜΑΣΔΠΩΝΤΜΟ ΗΜΔΡΟΜΗΝΙΑ ΘΔΜΑ 1 ο Μονάδες 5,1,1 ΓΙΑΓΩΝΙΜΑ 1 ου ΜΔΡΟΤ ΣΗ ΑΝΑΛΤΗ Α Γώζηε ηνλ νξηζκό ηεο αληίζηξνθεο ζπλάξηεζεο Β Γείμηε όηη αλ κηα ζπλάξηεζε είλαη αληηζηξέςηκε ηόηε νη γξαθηθέο παξαζηάζεηο
ΜΗΧΑΝΟΛΟΓΙΚΟ ΣΧΔΓΙΟ ΙΙ
1 Σ. Δ. Ι. ΓΤ Σ Ι Κ Η Μ Α Κ Δ Γ Ο Ν Ι Α ΥΟΛΗ ΣΔΥΝΟΛΟΓΙΚΩΝ ΔΦΑΡΜΟΓΩΝ Σ Μ Η Μ Α Μ Η Υ Α Ν ΟΛΟ Γ Ι Α Δξγαζηήξην Μεραλνπξγηθώλ Καηεξγαζηώλ & CAD ΜΗΧΑΝΟΛΟΓΙΚΟ ΣΧΔΓΙΟ ΙΙ ΜΑΘΗΜΑ 2: Πνηόηεηα Δπηθάλεηαο Γξ. Βαξύηεο
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ. Οξηδόληηα θαη θαηαθόξπθε κεηαηόπηζε παξαβνιήο
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Οξηδόληηα θαη θαηαθόξπθε κεηαηόπηζε παξαβνιήο 1 ε Δξαζηεξηόηεηα Αλνίμηε ην αξρείν «Μεηαηόπηζε παξαβνιήο.ggb». Με ηε καύξε γξακκή παξηζηάλεηαη ε γξαθηθή παξάζηαζε ηεο f(x)=αx 2 πνπ ζα ηελ
ΘΔΚΑ ΡΖΠ ΑΛΑΓΛΩΟΗΠΖΠ
ΘΔΚΑ ΡΖΠ ΑΛΑΓΛΩΟΗΠΖΠ 1.Απηόο πνπ ζα αλαγλσξηζηεί απνπζηάδεη γηα πνιύ θαηξό. 2.Δπηζηξέθεη κε πιαζηή ηαπηόηεηα ή κεηακνξθσκέλνο. 3.Απνκνλώλνληαη ηα δύν πξόζσπα 4.Άξζε κεηακόξθσζεο 5.Απνθάιπςε 6.Ακθηβνιίεο-απνδεηθηηθά
γηα ηνλ Άξε Κσλζηαληηλίδε
γηα ηνλ Άξε Κσλζηαληηλίδε γηα «ην θνηλό θαη ην θύξην» (Γ.νισκόο) γηα λα ρηίδω πάληα κε ηνλ ίδηνλε ηξόπν, κε ηηο ίδηεο θαηαζθεπαζηηθέο θαη πιαζηηθέο πξννπηηθέο, κε ηελ ίδηαλε πάληνηε πίζηε θαη αγάπε.. Α.Κ.
Ειζαγωγή ζηα Σςζηήμαηα Υπολογιζηών. Αξηζκεηηθά Σπζηήκαηα: Πξάμεηο
Ειζαγωγή ζηα Σςζηήμαηα Υπολογιζηών Αξηζκεηηθά Σπζηήκαηα: Πξάμεηο Δομή Παποςζίαζηρ Σπκπιεξώκαηα Πξόζζεζε Αθαίξεζε Πνιιαπιαζηαζκόο Πξνζεκαζκέλνη δπαδηθνί αξηζκνί Τκήκα Πιεξνθνξηθήο & Τερλνινγίαο Υπνινγηζηώλ,
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. ηνπ επηπέδνπ. Να απνδείμεηε όηη νπνηνδήπνηε δηάλπζκα r
1. Γίλνληαη δύν κε ζπγγξακκηθά δηαλύζκαηα και β ηνπ επηπέδνπ. Να απνδείμεηε όηη νπνηνδήπνηε δηάλπζκα r ηνπ επηπέδνπ απηνύ κπνξεί λα εθθξαζηεί ζαλ γξακκηθόο ζπλδπαζκόο ησλ και β ά κνλαδηθό ηξόπν.. Γίλνληαη
Κβαντικοί Υπολογισμοί. Πέκπηε Γηάιεμε
Κβαντικοί Υπολογισμοί Πέκπηε Γηάιεμε Kπθισκαηηθό Mνληέιν Έλαο θιαζηθόο ππνινγηζηήο απνηειείηαη από αγσγνύο θαη ινγηθέο πύιεο πνπ απνηεινύλ ηνπο επεμεξγαζηέο. Σηνπο θβαληηθνύο ε πιεξνθνξία βξίζθεηαη κέζα
Κινητός και Διάχυτος Υπολογισμός (Mobile & Pervasive Computing)
1 Κινητός και Διάχυτος Υπολογισμός (Mobile & Pervasive Computing) Δημήτπιορ Κατσαπόρ Χεηκώλαο 2016 Διάλεξη 7η 2 Περιεχόμενα Εςπετήπια 3 Παράμετροι ενδιαφέροντος (1/2) Tuning time: Ο ρξόλνο πνπ ν θηλεηόο
Άμεσοι Αλγόριθμοι: Προσπέλαση Λίστας (list access)
Έρνπκε απνζεθεύζεη κηα ζπιινγή αξρείσλ ζε κηα ζπλδεδεκέλε ιίζηα, όπνπ θάζε αξρείν έρεη κηα εηηθέηα ηαπηνπνίεζεο. Μηα εθαξκνγή παξάγεη κηα αθνινπζία από αηηήκαηα πξόζβαζεο ζηα αξρεία ηεο ιίζηαο. Γηα λα
Τ ξ ε ύ ο ξ π ς ξ σ ξ ο ί ξ σ _ Ι ε ο α μ ε ι κ ό π
Τ ξ ε ύ ο ξ π ς ξ σ ξ ο ί ξ σ _ Ι ε ο α μ ε ι κ ό π Α ο υ ι ς ε κ ς ξ μ ι κ ή ρ ύ μ θ ε ρ η 6 Τ ξ μ έ α π ΘΘΘ, X ώ ο ξ π κ α ι Δ π ι κ ξ ι μ χ μ ί α Η έ μ α : Διδάρκξμςεπ: Τξ εύοξπ ςξσ ξοίξσ Ιεοαμεικόπ
ΣΑΞΗ Α - ΜΑΘΗΜΑΣΙΚΑ ΘΕΜΑΣΑ ΘΕΩΡΙΑ (ΓΙΑ ΣΗΝ ΣΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ)
ΣΑΞΗ Α - ΜΑΘΗΜΑΣΙΚΑ ΘΕΜΑΣΑ ΘΕΩΡΙΑ (ΓΙΑ ΣΗΝ ΣΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) Α ΜΕΡΟ- ΑΛΓΕΒΡΑ ΕΡΩΣΗΗ 1 Πνηνη αξηζκνί νλνκάδνληαη πξώηνη θαη πνηνη ζύλζεηνη; Να δώζεηε παξαδείγκαηα. ΑΠΑΝΣΗΗ 1 Όηαλ έλαο αξηζκόο δηαηξείηαη
ΣΡΑΠΕΖΑ ΘΕΜΑΣΩΝ Α ΛΤΚΕΙΟΤ
ΜΑΘΗΜΑ : ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ ΣΡΑΠΕΖΑ ΘΕΜΑΣΩΝ Α ΛΤΚΕΙΟΤ Α/Α : 0_1382/153 1. Καη όηαλ έγηλε ε ππνρώξεζε αξγά ην απόγεπκα, επεηδή θνβήζεθαλ νη νιηγαξρηθνί κήπσο νη δεκνθξαηηθνί, αθνύ θάλνπλ επίζεζε, θαηαιάβνπλ
Γεωμεηπικοί Τόποι Σςμμεηπίερ Α Λυκείου - Γεωμετρία
Γεωμεηπικοί Τόποι Σςμμεηπίερ Α Λυκείου - Γεωμετρία Ερωτήσεις θεωρίας με κενά για απαντήσεις Εργασίες πάνω στην θεωρία Προπαρασκεσαστικά θέματα Κεφάλαια 3.7 3.8 3.9 ΕΑΚΥΝΘΟΣ 2010 11 Γεωμεηπία Α Λςκείος
ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 27 ΜΑΪΟΥ 2013
ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 7 ΜΑΪΟΥ 13 ΘΔΜΑ Α : (Α1) Σρνιηθό βηβιίν ζειίδα 33-335 (Α) Σρνιηθό βηβιίν ζειίδα 6 (Α3) Σρνιηθό βηβιίν ζειίδα (Α) α) Λάζνο β) Σωζηό γ) Σωζηό
Α Ο Κ Η Α Μ Α Ζ Η Η Ρ Η ( S E A R C H )
Ξ G O O G L E S C H O L A R Α Ο Ξ Ε Κ Ε Θ Λ Θ Α Λ Η Τ Α Μ Η Α Μ Α Ζ Η Η Ρ Η Ρ Οξαγκαηνπνηώληαο αλαδήηεζε ζην GoogleScholar (http://scholar.google.com/) ν ρξήζηεο κπνξεί λα εληνπίζεη πιηθό αθαδεκαϊθνύ θαη
Σημεία Ασύπματηρ Ππόσβασηρ (Hot-Spots)
Σημεία Ασύπματηρ Ππόσβασηρ (Hot-Spots) 1.1 Σςνοπτική Πεπιγπαυή Hot Spots Σα ζεκεία αζύξκαηεο πξόζβαζεο πνπ επηιέρζεθαλ αλαθέξνληαη ζηνλ επόκελν πίλαθα θαη παξνπζηάδνληαη αλαιπηηθά ζηηο επόκελεο παξαγξάθνπο.
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη: Εσθύγραμμη Κίνηζη
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Είμαζηε ηυχεροί που είμαζηε δάζκαλοι Ον/μο:.. A Λσκείοσ Ύλη: Εσθύγραμμη Κίνηζη 8-11-2015 Θέμα 1 ο : 1. Η εμίζωζε θίλεζεο ελόο θηλεηνύ πνπ θηλείηαη επζύγξακκα είλαη ε x = 5t. Πνηα
ΛΙΜΝΗ ΤΣΑΝΤ. Σρήκα 1. Σρήκα 2
ΛΙΜΝΗ ΤΣΑΝΤ Τν Σρήκα 1 δείρλεη ηελ αιιαγή ηεο ζηάζκεο ηεο Λίκλεο Τζαλη, ζηε Σαράξα ηεο Βόξεηαο Αθξηθήο. Η Λίκλε Τζαλη εμαθαλίζηεθε ηειείσο γύξσ ζην 20.000 π.χ., θαηά ηε δηάξθεηα ηεο ηειεπηαίαο επνρήο ησλ