Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας)"

Transcript

1 Τµήµα Εφαρµοσµένων Μαθηµατικών Παν/µίου Κρήτης Εξεταστική περίοδος εαρινού εξαµήνου Πέµπτη, 2 Ιούνη 28 Γραµµική Αλγεβρα II ιδάσκων: Α. Τόγκας Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας) Θέµα (2.5 µον.) Εστω τελεστής T : R 4 R 4 που δίνεται από τον τύπο T(x, x 2, x 3, x 4 ) = (x + x 2, x 2, x 3 + x 4, x 4 ). (α) Να ϐρεθούν οι υπόχωροι ker T και Im T του R 4 και να χαρακτηρισθεί ο T ως προς την αντιστρεψιµότητα. (ϐ) Να ϐρεθούν οι υπόχωροι ker (T Id) και Im (T Id) του R 4, όπου Id : R 4 R 4, η ταυτοτική απεικόνιση. Είναι - απεικόνιση η T Id, και γιατί ; (γ) Να ϐρεθεί το ελάχιστο πολυώνυµο του T. Θέµα 2 (2.5 µον.) ίνεται τελεστής T : R 3 R 3 µε τύπο T(x, x 2, x 3 ) = (x + x x 3, x 2, 2 x 3 ). (α) Να ϐρεθεί ο πίνακας του T στην συνηθισµένη ϐάση του R 3, καθώς και το χαρακτηριστικό πολυώνυµο του T. (ϐ) Να ϐρεθούν οι ιδιοτιµές του T και να ϐρεθεί µια ϐάση Jordan για τον T. (γ) Να ϐρεθεί η κανονική µορφή Jordan ( που αντιστοιχεί στη ϐάση Jordan που ϐρήκατε στο προηγούµενο υποερώτηµα ) καθώς και ο πίνακας οµοιότητας για τον T. Θέµα 3 (2.5 µον.) Εστω A µιγαδικός πίνακας 4 4 τέτοιος που A 3 A 2 = A I. Άν ο A δεν είναι διαγωνοποιήσιµος, τότε (α) Να ϐρεθούν τα πιθανά ελάχιστα πολυώνυµα m(z) του A. (ϐ) Να δωθούν οι πιθανές κανονικές µορφές Jordan του πίνακα A. Θέµα 4 (2.5 µον.) ίνεται τελεστής T : C 3 C 3 µε τύπο T(z, z 2, z 3 ) = (a z 2, bz, c z 3 ), a, b, c C. (α) Να ϐρεθεί ο συζυγής τελεστής T. Ποιές συνθήκες πρέπει να ικανοποιούν οι παράµετροι a, b, c έτσι ώστε ο τελεστής T να είναι αυτο-συζυγής ; (ϐ) Να ϐρεθεί η τετραγωνική ϱίζα του ϑετικού τελεστή T T. (γ) Να ϐρεθεί τελεστής S τέτοιος που T = S T T, και να δειχθεί ότι ο S είναι ισοµετρία. Καλή επιτυχία

2 2 Ενδεικτικές απαντήσεις στα ϑέµατα Θέµα α) Ζητείται να ϐρεθούν οι υπόχωροι ker T και Im T δηλ. ker T = {(x,x 2,x 3,x 4 ) R 4 τέτοια που T(x,x 2,x 3,x 4 ) = (,,,)} και ImT = {y R 4 τέτοια που x R 4 έτσι ώστε T x = y} και να χαρακτηρισθεί ο τελεστής T ως προς την αντιστρεψιµότητα. (Α τρόπος, δίχως την επιλογή συγκεκριµένης ϐάσης) Για να ϐρούµε τον υπόχωρο ker T: Από τον ορισµό του τελεστή T, T(x,x 2,x 3,x 4 ) = (,,,) (x + x 2, x 2, x 3 + x 4, x 4 ) = (,,,) x + x 2 = και x 2 = και x 3 + x 4 = και x 4 = Οπότε ϑα πρέπει x = x 2 = x 3 = x 4 = που σηµαίνει ότι ker T = {(,,,)}. Άρα ο τελεστής T είναι - απεικόνιση. Για να ϐρούµε τον υπόχωρο Im T: Από την ϑεωρία γνωρίζουµε ότι για έναν τελεστή T οι προτάσεις ο T είναι - απεικόνιση ο T είναι επί απεικόνιση ο T είναι αντιστρέψιµη απεικόνιση είναι ισοδύναµες µεταξύ τους. Οπότε ο T είναι και επί απεικόνιση. Συνεπώς Im T = R 4. Αλλιώς (άν δεν ϑυµόµαστε την προηγούµενη ισοδυναµία), από το ϑεώρηµα της διάστασης γνω- ϱίζουµε ότι dim R 4 = dim ker T + dim Im T () Είναι προφανές ότι dim R 4 = 4 και dimker T =. Οπότε από την σχέση () έχουµε ότι dimim T = 4 και επειδή Im T R 4, αναγκαστικά έχουµε ότι Im T = R 4. ηλαδή ο T είναι επί απεικόνιση. Και οι δυό αιτιολογήσεις µας οδηγούν προφανώς στο συµπέρασµα ότι ο T είναι και αντιστρέψιµη απεικόνιση. (Β τρόπος, επιλέγοντας συγκεκριµένη ϐάση) Ο πίνακας του τελεστή T στη συνηθισµένη ϐάση {e,e 2,e 3,e 4 } του R 4 έχει τη µορφή [T] {e} = Για να ϐρούµε τον υπόχωρο ker T: Για το παρακάτω οµογενές γραµµικό σύστηµα έχουµε ότι x x 2 x 3 x 4 = x + x 2 = x 2 = x 3 + x 4 = x 4 = x = x 2 = x 3 = x 4 = δηλαδή η µοναδική λύση είναι η µηδενική. Άρα ker T = {(,,,} και συνεπώς ο T είναι - απεικόνιση.

3 3 Για να ϐρούµε τον υπόχωρο Im T: Για το παρακάτω γραµµικό σύστηµα έχουµε ότι x x 2 x 3 x 4 = y y 2 y 3 y 4 x + x 2 = y x 2 = y 2 x 3 + x 4 = y 3 x 4 = y 4 x = y y 2 x 2 = y 2 x 3 = y 3 y 4 x 4 = y 4 δηλαδή για κάθε y,y 2,y 3,y 4 R υπάρχει µια λύση για το παραπάνω σύστηµα, οπότε το τυχαίο y ImS είναι της µορφής y e + y 2 e 2 + y 3 e 4 + y 4 e 4, άρα Im T = R 4 και συνεπώς ο T είναι επί απεικόνιση. Η παραπάνω ανάλυση µας πληροφορεί ότι ο T είναι αντιστρέψιµη απεικόνιση. Στο συµπέρασµα αυτό οδηγούµαστε άµεσα και µετά από τον υπολογισµό της ορίζουσας του πίνακα του τελεστή T που είναι ίση µε. ϐ) Ζητείται να ϐρεθούν οι υπόχωροι ker S και Im S όπου S = T Id δηλ. ker S = {(x,x 2,x 3,x 4 ) R 4 τέτοια που S(x,x 2,x 3,x 4 ) = (,,,)} και Im S = {y R 4 τέτοια που x R 4 έτσι ώστε S x = y} και να χαρακτηρισθεί ο τελεστής S ως προς την αντιστρεψιµότητα. Πρώτα ϐρίσκουµε τον τύπο του τελεστή S. Εχουµε S(x,x 2,x 3,x 4 ) = (T Id)(x,x 2,x 3,x 4 ) = T(x,x 2,x 3,x 4 ) Id(x,x 2,x 3,x 4 ) = (x + x 2, x 2, x 3 + x 4, x 4 ) (x,x 2,x 3,x 4 ) = (x 2,,x 4,). (Α τρόπος, δίχως την επιλογή συγκεκριµένης ϐάσης) Για να ϐρούµε τον υπόχωρο ker S: Από τον ορισµό του τελεστή S, S(x,x 2,x 3,x 4 ) = (,,,) (x 2,, x 4,) = (,,,) x 2 = x 4 = και x,x 3 αυθαίρετοι πραγµατικοί Οπότε ο υπόχωρος ker S παράγεται από τα διανύσµατα (,,,) και (,,,), δηλ. ker S = {a(,,,) + b(,,,),a,b R } και είναι γενικά διαφορετικός από {(,,,)}. Οπότε ο τελεστής S δεν είναι - απεικόνιση και άρα δεν είναι και αντιστρέψιµη. Για να ϐρούµε τον υπόχωρο Im S: Εχουµε S(x,x 2,x 3,x 4 ) = (y,y 2,y 3,y 4 ) (x 2,,x 4,) = (y,y 2,y 3,y 4 ) Οπότε όλα τα (y,y 2,y 3,y 4 ) ImS έχουν την µορφή κ(,,,)+λ(,,,), δηλαδή Im S = ker S. (Β τρόπος, επιλέγοντας συγκεκριµένη ϐάση) Αφήνεται στον αναγνώστη. γ) Ζητείται να ϐρεθεί το ελάχιστο πολυώνυµο του τελεστή T. Επειδή Im S = ker S τότε για το τυχαίο διάνυσµα x R 4, έχουµε S x ImS άρα και S x ker S και οπότε S 2 x =, x R 4, δηλαδή S 2 = και επειδή S = T Id έχουµε ότι (T Id) 2 = και συνεπώς το ελάχιστο πολυώνυµο m(z) του T είναι m(z) = (z ) 2. Αλλιώς, ο πίνακας του τελεστή T είναι σε µορφή Jordan µε µοναδική ιδιοτιµή και µε µέγιστο υπο-block Jordan διάστασης 2 2, οπότε το ελάχιστο πολυώνυµο είναι m(z) = (z ) 2.

4 4 Οπότε Θέµα 2 α) Ο πίνακας της γραµµικής απεικόνισης T στη συνηθισµένη ϐάση του R 3 ϐρίσκεται ως εξής: T(,,) = (,,), (2) T(,,) = (,,), (3) T(,,) = (3,,2). (4) [T] {e} = 3 2 = A Παρατηρούµε ότι ο πίνακας A είναι άνω τριγωνικός, άρα οι ιδιοτιµές ϐρίσκονται πάνω στην κύρια διαγώνιο µε αλγεβρική πολλαπλότητα η κάθε µία ίση µε τις ϕορές που εµφανίζεται στην κύρια διαγώνιο. Οπότε υπάρχουν δύο ιδιοτιµές οι λ = µε αλγεβρική πολλαπλότητα 2 και η οι λ 2 = 2 µε αλγεβρική πολλαπλότητα. Άρα το χαρακτηριστικό πολυώνυµο χ(z) του τελεστή T είναι ϐ) Για την εύρεση της ϐάσης Jordan έχουµε: χ(z) = (z ) 2 (z 2) Ιδιοτιµή λ = : Υπολογισµός (γενικευµένων) ιδιοδιανυσµάτων 3 2 x x 2 x 3 = 3 x x 2 x 3 = x 2 + 3x 3 = = x 3 = Οπότε ϑα πρέπει x 2 = x 3 = και x αυθαίρετος πραγµατικός διαφορετικός του. Άρα, χωρίς ϐλάβη της γενικότητας, ένα ιδιοδιάνυσµα της ιδιοτιµής είναι το u = (,,) Για τον υπολογισµό ενός γενικευµένου x 2 ιδιοδιανύσµατος που αντιστοιχεί στην ιδιοτιµή λ έχουµε 3 x x x 2 + 3x 3 = x 2 = 2 = = = x 3 x 3 = x 3 = Οπότε ϑα πρέπει x αυθαίρετος πραγµατικός, x 2 =, και x 3 =. ηλαδή έχουµε ένα νέο, (γενικευ- µένο) ιδιοδιάνυσµα το u 2 = (,,) Ιδιοτιµή λ 2 = 2: Υπολογισµός ιδιοδιανύσµατος y y 2 y 3 = 3 y y 2 y 3 = y + y 2 + 3y 3 = y 2 = = y = 3y 3 y 2 = = Οπότε ϑα πρέπει y 3 αυθαίρετος πραγµατικός όχι µηδέν, y 2 =, και y = 3y 3 και συνεπώς το ιδιοδιάνυσµα που αντιστοιχεί στην ιδιοτιµή λ 2 = 2 είναι το u 3 = (3,,) Συνοψίζοντας έχουµε κατασκευάσει µια ϐάση Jordan για τον τελεστή T, η οποία αποτελείται από τα ιδιοδιανύσµατα {u,u 2,u 3 }.

5 5 γ) Για την κανονική µορφή Jordan που αντιστοιχεί στην ϐάση {u,u 2,u 3 } έχουµε: T u = u T u 2 = u + u 2 T u 3 = 2u 3 Άρα η κανονική µορφή Jordan του τελεστή T έχει την µορφή [T] {J} = u u 2 u 3 u u 2 u 3 2 και ο πίνακας οµοιότητας (ή αλλαγής ϐάσης) δίνεται από τον πίνακα 3 P = ο οποίος παράγεται ϐάζοντας για στήλες τα γενικευµένα ιδιοδιανύσµατα που ϐρήκαµε προηγουµένως και έτσι έχουµε [T] {e} = P [T] {J} P

6 6 Θέµα 3 α) Ζητείται να ϐρεθούν τα πιθανά ελάχιστα πολυώνυµα m(z) για έναν µιγαδικό πίνακα 4 4 που A 3 A 2 = A I (5) και ο οποίος δεν είναι διαγωνοποιήσιµος. Γενικά υπάρχουν τρεις περιπτώσεις για τα ελάχιστα πολυώνυµα: η δράση τους στον τελεστή T να αντιστοιχεί στην συνθήκη γραµµικής εξάρτησης των παρακάτω διανυσµατικών χώρων πινάκων (i) {I,A} (ii) {I,A,A 2 } (iii) {I,A,A 2,A 3 } Η πρώτη περίπτωση απορρίπτεται γιατί οδηγεί σε διαγωνοποιήσιµο πίνακα (πολλαπλάσιος του µοναδιαίου πίνακα), οπότε αρκεί να εξετάσουµε τις περιπτώσεις (ii) και (iii). Περίπτωση (ii) Το ελάχιστο πολυώνυµο είναι το µονικό πολυώνυµο οπότε έχουµε m(a) = δηλ. m(z) = z 2 + a z + a A 2 + a A + a I = A 3 + a A 2 + a A = (5) (a + )A 2 + (a + )A I = Θα πρέπει a + γιατί στην αντίθετη περίπτωση ο πίνακας ϑα ήταν διαγωνοποιήσιµος, οπότε έχουµε A 2 + a A + a I = (a + )A 2 + (a + )A I = A 2 + a A + a I = A 2 + a + a + A a + I = A2 + a A + a I = a = a + a +,a = a + A 2 + a A + a I = (a + ) 2 (a ) =,a = ( a + ) A 2 + a A + a I = a =,a = ή a =,a = 2 οπότε για την περίπτωση (ii) έχουµε δυο πιθανά ελάχιστα πολυώνυµα m (z) = (z ) 2 m 2 (z) = (z )(z + ) Το m 2 (z) απορρίπτεται γιατί οδηγεί σε πίνακα διαγωνοποιήσιµο, οπότε µας µένει µέχρι τώρα το m (z) Περίπτωση (iii) Εύκολα ϐρίσκουµε ότι το ελάχιστο πολυώνυµο είναι το m 3 (z) = (z ) 2 (z + ) που δεν είναι άλλο από το µονικό πολυώνυµο που προκύπτει από την (5). Συνοψίζοντας έχουµε ϐρεί δυο πιθανά ελάχιστα πολυώνυµα, τα m και m 3

7 7 ϐ) Ζητείται για κάθε ένα από τα προηγούµενα πιθανά ελάχιστα πολυώνυµα να δωθούν οι πιθανές κανονικές µορφές Jordan Για το m = (z ) 2 : Η µοναδική ιδιοτιµή του A είναι και το µέγιστο Jordan υπο-block είναι διάστασης 2 2, οπότε έχουµε δύο πιθανές κανονικές µορφές Jordan για τον A: ή. Για το m 3 = (z ) 2 (z + ): Οι ιδιοτιµές του A είναι, και το µέγιστο Jordan υπο-block που αντιστοιχεί στην ιδιοτιµή είναι διάστασης 2 2, ενώ το µέγιστο Jordan υπο-block που αντιστοιχεί στην ιδιοτιµή είναι διάστασης οπότε έχουµε τις εξής κανονικές µορφές Jordan για τον A: ή.

8 8 Θέµα 4 Ενα σηµείο που χρίζει ιδιαίτερης προσοχής στο ϑέµα αυτό είναι ότι µας δίνεται ένας µιγαδικός διανυσµατικός χώρος και όχι ένας πραγµατικός διανυσµατικός χώρος. α) Μας Ϲητείται να ϐρούµε τον συζυγή τελεστή του τελεστή T και τις συνθήκες που πρέπει να ικανοποιούν οι µιγαδικές παράµετροι a,b,c έτσι που ο τελεστής T να είναι αυτοσυζυγής. Εύκολα ϐρίσκουµε ότι ο πίνακας του τελεστή T στην συνηθισµένη και ορθοκανονική ϐάση του C 3 είναι ο a [T] {e} = b c Άρα ο πίνακας του συζυγούς τελεστή T του T είναι ο b [T ] {e} = ā c όπου µε z συµβολίζουµε τον µιγαδικό συζυγή του z C. Οπότε εύκολα ϐρίσκουµε ότι ο συζυγής τελεστής του T δίνεται από τον τύπο T (z,z 2,z 3 ) = (ā z 2, b z, cz 3 ) Ο τελεστής T είναι αυτοσυζυγής αν T = T, οπότε ϑα πρέπει οι παράµετροι a,b,c να ικανοποιούν τις σχέσεις a = b, c = c ϐ) Μας Ϲητείται να ϐρούµε την τετραγωνική ϱίζα του ϑετικού τελεστή T T. Πρώτα υπολογίζουµε τον τελεστή T T. Εύκολα ϐρίσκουµε ότι ο πίνακας τελεστή T T στην ορθοκανονική ϐάση {e,e 2,e 3 } είναι [T T] {e} = b b aā c c = όπου µε συµβολίζουµε το µέτρο ενός µιγαδικού αριθµού, δηλ. z = z z, z C. Οπότε έχουµε T T(z,z 2,z 3 ) = ( 2 z, 2 z 2, 2 z 3 ) Άρα η τετραγωνική ϱίζα του τελεστή T T είναι ο T T(z,z 2,z 3 ) = (z, z 2, z 3 ) και ο πίνακας του τελεστή T T στη ϐάση {e} δίνεται από τη σχέση [ T T ] {e} = γ) Μας Ϲητείται να ϐρούµε τελεστή S τέτοιο που T = S T T και να αποδείξουµε ότι ο S είναι ισοµετρία. Στα παρακάτω εργαζόµαστε στην συνηθισµένη ορθοκανονική ϐάση του C 3. Εύκολα συµπεραίνουµε ότι ο πίνακας του αντίστροφου ( T T) του τελεστή T T είναι ο [( T T) ] {e} =

9 9 οπότε [S] {e} = [T] {e} [( T T) ] {e} = a b c = a b c Οπως γνωρίζουµε από την ϑεωρία, µια ικανή και αναγκαία συνθήκη για να είναι ο τελεστής S ισοµετρία είναι S S = Id. Εύκολα ϐρίσκουµε ότι και συνακόλουθα [S ] {e} [S] {e} = b ā c [S ] {e} = a b c άρα S S = Id, οπότε ο τελεστής S είναι ισοµετρία. b ā c = b b 2 aā 2 c c 2 =

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10 Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 0 Επαναληπτικες Ασκησεις ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθοι Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laiihtml

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β ΠΕΡΙΤΤΟΙ Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii8/laii8html Παρασκευή 4 Ιουνίου

Διαβάστε περισσότερα

{ } ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι 2 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ. Απαντήσεις. 1. (15 µονάδες)

{ } ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι 2 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ. Απαντήσεις. 1. (15 µονάδες) Σελίδα από 8 (5 µονάδες) ΠΛΗ : ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Απαντήσεις i Εξηγείστε γιατί κάθε ένα από τα παρακάτω υποσύνολα του R δεν είναι υπόχωρος του R {[ xyz,, ] T z } {[ xyz,,

Διαβάστε περισσότερα

Κεφάλαιο 6 Ιδιοτιµές και Ιδιοδιανύσµατα

Κεφάλαιο 6 Ιδιοτιµές και Ιδιοδιανύσµατα Κεφάλαιο 6 Ιδιοτιµές και Ιδιοδιανύσµατα Ορισµοί Ιδιοτιµές και Ιδιοδιανύσµατα Έστω Α ένας πίνακας µε πραγµατικά στοιχεία Ο πραγµατικός ή µιγαδικός αριθµός λ καλείται ιδιοτιµή του πίνακα Α εάν υπάρχει µη

Διαβάστε περισσότερα

============================================================== Σχηµατίζουµε τον πίνακα µε στήλες τα διανύσµατα v1,v2,v3,u1,u2:

============================================================== Σχηµατίζουµε τον πίνακα µε στήλες τα διανύσµατα v1,v2,v3,u1,u2: http://elearn.maths.gr/, maths@maths.gr, Τηλ: 6 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ -: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 2

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 2 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii2018/laii2018.html Παρασκευή 16 Μαρτίου 2018

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: 6 Νοεµβρίου 005 Ηµεροµηνία Παράδοσης της Εργασίας

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 6

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 6 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 6 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii2018/laii2018.html Παρασκευή 4 Μαίου 2018 Ασκηση

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 2 η Ημερομηνία Αποστολής στον Φοιτητή: 28 Νοεμβρίου 2011

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 2 η Ημερομηνία Αποστολής στον Φοιτητή: 28 Νοεμβρίου 2011 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 8 Νοεμβρίου 0 Ημερομηνία παράδοσης της Εργασίας: 6 Ιανουαρίου 0 Οι ασκήσεις

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ Οι πρώτες δύο ασκήσεις αναφέρονται στις έννοιες γραµµική ανεξαρτησία, γραµµικός

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Κανονική Μορφή Jordan - I Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 35 7 Η Κανονική Μορφή Jordan - I Στην

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων.

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων. 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 8

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 8 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Βοηθος Ασκησεων: Χ. Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://www.math.uoi.gr/ abeligia/linearalgebrai/lai.html

Διαβάστε περισσότερα

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας)

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας) Τµήµα Μαθηµατικών, Πανεπιστηµίου Κρήτης Εξεταστική περίοδος Ιουνίου ακαδηµαϊκού έτους 29-21 Παρασκευή, 1 Ιουνίου 21 Εφαρµοσµένη Άλγεβρα ιδάσκων: Α. Τόγκας Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 3

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 3 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 3 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii2018/laii2018html Παρασκευή 23 Μαρτίου

Διαβάστε περισσότερα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα Κεφάλαιο 5 Ιδιοτιµές και Ιδιοδιανύσµατα 5 Ιδιοτιµές και Ιδιοδιανύσµατα Αν ο A είναι ένας n n πίνακας και το x είναι ένα διάνυσµα στον R n, τότε το Ax είναι και αυτό ένα διάνυσµα στον R n Συνήθως δεν υπάρχει

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ 7 ης ΕΒΔΟΜΑΔΑΣ

ΑΣΚΗΣΕΙΣ 7 ης ΕΒΔΟΜΑΔΑΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Ακαδηµαϊκό έτος 5-6 ΜΑΘΗΜΑ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Καθηγητής: Σ Πνευµατικός ΑΣΚΗΣΕΙΣ 7 ης ΕΒΔΟΜΑΔΑΣ ΟΙ ΚΑΝΟΝΙΚΕΣ ΜΟΡΦΕΣ JORDAN Θεωρούµε ένα n-διάστατο διανυσµατικό χώρο E στο σώµα Κ = ή και

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Παραγοντοποιήσεις Πινάκων και Γραµµικών Απεικονίσεων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 82 13 Παραγοντοποιήσεις

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚH Ι (ΠΛΗ ) ΕΡΓΑΣΙΑ 6 - ΛΥΣΕΙΣ Άσκηση. (6 µον.) Ελέγξτε ποια από τα επόµενα σύνολα είναι διανυσµατικοί χώροι

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος 6/6/06 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 0 Δίνεται ο πίνακας A =. Nα υπολογίσετε την βαθμίδα του και να βρείτε τη διάσταση και από μία βάση α) του μηδενοχώρου

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Ελάχιστο Πολυώνυµο Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 20 4. Ελάχιστο Πολυώνυµο Στην παρούσα παράγραφο

Διαβάστε περισσότερα

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας)

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας) Τµήµα Μαθηµατικών, Πανεπιστηµίου Κρήτης Εξεταστική περίοδος Σεπτεµβρίου ακαδηµαϊκού έτους 29-2 Τρίτη, 3 Αυγούστου 2 Εφαρµοσµένη Άλγεβρα ιδάσκων: Α. Τόγκας Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii2018/laii2018.html Παρασκευή 23 Μαρτίου 2018

Διαβάστε περισσότερα

Κεφάλαιο 6 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 6 Ιδιοτιμές και Ιδιοδιανύσματα Κεφάλαιο 6 Ορισμοί Έστω Α ένας πίνακας με πραγματικά στοιχεία Ο πραγματικός ή μιγαδικός αριθμός λ καλείται ιδιοτιμή του πίνακα Α εάν υπάρχει μη μηδενικό διάνυσμα v με πραγματικά ή μιγαδικά στοιχεία τέτοιο

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii018/laii018html ευτέρα 3 Απριλίου 018 Αν C = x

Διαβάστε περισσότερα

4 k 2 = 2 ( 1+ 2 k 2. k 2 2 k= k 2. 1.ii) Αν σχηµατίσουµε τον πίνακα µε γραµµές τα δύο διανύσµατα έχουµε: Γ1 Γ1 ---> { }

4 k 2 = 2 ( 1+ 2 k 2. k 2 2 k= k 2. 1.ii) Αν σχηµατίσουµε τον πίνακα µε γραµµές τα δύο διανύσµατα έχουµε: Γ1 Γ1 ---> { } http://elearn.maths.gr/, maths@maths.gr, Τηλ: 69795 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ 8-9: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ 00- ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ. (5 µον.) ίνεται ο πίνακας 0 0 A. 0 (α) (α) Να βρεθούν όλες οι ιδιοτιµές και τα ιδιοδιανύσµατα του πίνακα Α. (β) Είναι δυνατή η διαγωνιοποίηση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ12 «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 16 Ιουλίου 2003

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ12 «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 16 Ιουλίου 2003 http://edueapgr/pli/pli/studetshtm Page of 6 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 6 Ιουλίου Απαντήστε όλα

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii09/laii09.html Παρασκευή 0 Μαίου

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 7

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 7 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 7 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii2018/laii2018.html Παρασκευή 11 Μαίου 2018

Διαβάστε περισσότερα

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ ΚΕΦ:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ Τετραγωνικές μορφές: Συναρτήσεις με τύπο Q ν α ι j j, j [ ] ν α α ν αν α νν ν Τ Χ ΑΧ Για παράδειγμα εάν v Q α + α + α + α α + α + α + α δηλ a a a a α + α + α

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

8.1 Διαγωνοποίηση πίνακα

8.1 Διαγωνοποίηση πίνακα Κεφάλαιο 8 Κανονικές μορφές από 6 Κεφάλαιο 8 Κ Α Ν Ο Ν Ι Κ Ε Σ Μ Ο Ρ Φ Ε Σ 8. Διαγωνοποίηση πίνακα Ορισμός 8.α Ένας πίνακας M n ( ) oνομάζεται διαγωνοποιήσιμος στο αν υπάρχει αντιστρέψιμος πίνακας P M

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 00 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ9) Ηράκλειο, 7 Ιανουαρίου 00 Θέμα. (μονάδες.5) α) [μονάδες:.0]. Υπολογίστε

Διαβάστε περισσότερα

βαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των

βαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των Ασκήσεις 6 Ασκήσεις Ελάχιστο Πολυώνυμο Βασικά σημεία Ορισμός ελαχίστου πολυωνύμου πίνακα και ιδιότητές του Ορισμός ελαχίστου πολυωνύμου γραμμικής απεικόνισης και ιδιότητές του Κριτήριο διαγωνισιμότητας

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ «ΜΑΘΗΜΑΤΙΚΑ Ι» Τελική Εξέταση 5 Ιουνίου 00 Απαντήστε όλα τα κάτωθι ερωτήµατα, παρέχοντας επεξηγηµατικά σχόλια όπου

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΠΛΗΡΟΦΟΡΙΚΗ (ΘΕ ΠΛΗ ) ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ TEΛΙΚΗΣ ΕΞΕΤΑΣΗΣ 7 Ιουνίου 8 Θέµα ο ( µονάδες) α) ( µονάδες) yz yz του διανυσµατικού

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai2017/lai2017html Παρασκευή 20 Οκτωβρίου 2017

Διαβάστε περισσότερα

Θέμα 1. με επαυξημένο 0 1 1/ 2. πίνακα. και κλιμακωτή μορφή αυτού

Θέμα 1. με επαυξημένο 0 1 1/ 2. πίνακα. και κλιμακωτή μορφή αυτού ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΗΣ Ιουλίου 0 Θέμα α) (Μον.6) Να βρεθεί η τιμή του πραγματικού

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii08/laii08.html Παρασκευή 4 Μαίου

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy 4 Εισαγωγή Kεφάλαιο 4 Συστήματα διαφορικών εξισώσεων Εστω διανυσματικό πεδίο F : : F = Fr, όπου r x, και είναι η ταχύτητα στο σημείο πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουμε τις τροχιές κίνησης των

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Ταυτόχρονη ιαγωνοποίηση Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 31 6. Ταυτόχρονη ιαγωνοποίηση 6.1. Ταυτόχρονη

Διαβάστε περισσότερα

Στοχαστικά Σήµατα και Εφαρµογές

Στοχαστικά Σήµατα και Εφαρµογές Στοχαστικά Σήµατα & Εφαρµογές Ανασκόπηση Στοιχείων Γραµµικής Άλγεβρας ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής ιανύσµατα Ορίζουµετοδιάνυσµα µε Ν στοιχεία

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 2

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 2 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii8/laii8html Παρασκευή 6 Μαρτίου 8 Ασκηση Εστω E

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 1

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 1 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii18/laii18html Παρασκευή 9 Μαρτίου 18 Ασκηση 1 Θεωρούµε

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii9/laii9html Παρασκευή 9 Μαρτίου 9 Ασκηση Εστω (E,,

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών : Στοιχεία Γραμμικής Άλγεβρας

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών : Στοιχεία Γραμμικής Άλγεβρας Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών : Στοιχεία Γραμμικής Άλγεβρας Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (http://users.tua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Βασικές Έννοιες

Διαβάστε περισσότερα

Λύσεις και Υποδείξεις Επιλεγµένων Ασκήσεων

Λύσεις και Υποδείξεις Επιλεγµένων Ασκήσεων Λύσεις και Υποδείξεις Επιλεγµένων Ασκήσεων 11 1 i) ii) 1 1 1 0 1 1 0 0 0 x = 0 x +x 4 +x 5 = x = 1 Λύνοντας ως προς x και στη συνέχεια ως προς x 4, ϐρίσκουµε ότι η γενική λύση του συστήµατος είναι η 5άδα

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα ΙΙ. Εκπαιδευτικο Υλικο Μαθηµατος

Γραµµικη Αλγεβρα ΙΙ. Εκπαιδευτικο Υλικο Μαθηµατος Γραµµικη Αλγεβρα ΙΙ Εκπαιδευτικο Υλικο Μαθηµατος Ακαδηµαϊκο Ετος 011-01 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laiihtml

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: Ιανουαρίου 6 Ηµεροµηνία Παράδοσης της Εργασίας από

Διαβάστε περισσότερα

Γραµµική Αλγεβρα Ι. Ενότητα: Γραµµικές απεικονίσεις. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Γραµµική Αλγεβρα Ι. Ενότητα: Γραµµικές απεικονίσεις. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών Ενότητα: Γραµµικές απεικονίσεις Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

1.i) 1.ii) v 2. v 1 = (2) (1) + ( 2) ( 1) + (-2) (2) + (0) (-4) v 3. Βρίσκουµε πρώτα µία ορθογώνια βάση: u 1. . u 1 u. u 2

1.i) 1.ii) v 2. v 1 = (2) (1) + ( 2) ( 1) + (-2) (2) + (0) (-4) v 3. Βρίσκουµε πρώτα µία ορθογώνια βάση: u 1. . u 1 u. u 2 http://elearn.maths.gr/, maths@maths.gr, Τηλ: 979 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ 7-8: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ 12) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 3

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ 12) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 3 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ Άσκηση. ( µον.). Έστω z ο µιγαδικός αριθµός z i, µε, R. (α) ίνεται η εξίσωση: z

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: ΓΡΑΜΜΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ

ΚΕΦΑΛΑΙΟ 5: ΓΡΑΜΜΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ ΚΕΦΑΛΑΙΟ 5: 5. ΟΡΙΣΜΟΙ Έστω U και V δύο διανυσματικοί χώροι. Μια συνάρτηση F : U V θα λέγεται γραμμική απεικόνιση (ή ομομορφισμός, ή απλά μορφισμός εάν ικανοποιεί τις συνθήκες (i F ( u + = u + για κάθε

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Κανονική Μορφή Jordan - II Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 52 9 Η Κανονική Μορφή Jordan - II

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 6

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 6 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 6 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai2018/lai2018html Παρασκευή 7 εκεµβρίου 2018 Ασκηση

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 6

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 6 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 6 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai2017/lai2017html Παρασκευή 15 εκεµβρίου 2017

Διαβάστε περισσότερα

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις 1. Εισαγωγή Δίνεται η συνάρτηση μεταφοράς = = 1 + 6 + 11 + 6 = + 6 + 11 + 6 =. 2 Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις L = 0 # και L $ % &'

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα

ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ 4. Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα Εστω R είναι ο γνωστός -διάστατος πραγµατικός διανυσµατικός χώρος. Μία απεικόνιση L :

Διαβάστε περισσότερα

Επίλυση Γραµµικών Συστηµάτων

Επίλυση Γραµµικών Συστηµάτων Κεφάλαιο 3 Επίλυση Γραµµικών Συστηµάτων 31 Εισαγωγή Αριθµητική λύση γενικών γραµµικών συστηµάτων n n A n n x n 1 b n 1, όπου a 11 a 12 a 1n a 21 a 22 a 2n A [a i j, x a n1 a n2 a nn x n, b b 1 b 2 b n

Διαβάστε περισσότερα

Μαθηµατικά Ιβ Σελίδα 1 από 6

Μαθηµατικά Ιβ Σελίδα 1 από 6 Μαθηµατικά β Σελίδα από 6 Μάθηµα 9 ο ΑΩΝΠΗΣΗ ΠΝΑΚΑ Θεωρία : ραµµική Άλγεβρα : εδάφιο 5, σελ 5 (µόνο την Πρόταση 6) Τα παραδείγµατα που αντιστοιχούν στην ύλη έχουν διδαχθεί Ασκήσεις :,, 4, 8, 9, σελ 58

Διαβάστε περισσότερα

[A I 3 ] [I 3 A 1 ].

[A I 3 ] [I 3 A 1 ]. ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΤΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟ ΟΥ ΣΕΠΤΕΜΒΡΙΟΥ 9 (α) Να ϐρεθεί ο αντίστροφος του πίνακα A = 6 4 (ϐ) Εστω b, b, b στο R Να λύθεί το σύστηµα x = b 6x + x + x = b x

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 3

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 3 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/aeligia/linearalgerai/lai07/lai07html Παρασκευή Νοεµβρίου 07 Ασκηση Αν

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Παράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( )

Παράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( ) Παράρτηµα Β Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης Β1 Χώροι Baach Βάσεις Schauder Στο εξής συµβολίζουµε µε Z,, γραµµικούς (διανυσµατικούς) χώρους πάνω απ το ίδιο σώµα K = ή και γράφουµε απλά

Διαβάστε περισσότερα

Κεφάλαιο 9 Ιδιοτιµές και Ιδιοδιανύσµατα

Κεφάλαιο 9 Ιδιοτιµές και Ιδιοδιανύσµατα Σελίδα από 5 Κεφάλαιο 9 Ιδιοτιµές και Ιδιοδιανύσµατα 9. Ορισµοί... 9. Ιδιότητες...7 9. Θεώρηµα Cayley-Hamilto...4 9.. Εφαρµογές του Θεωρήµατος Cayley-Hamilto...6 9.4 Ελάχιστο Πολυώνυµο...5 Ασκήσεις του

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

Η ΚΑΝΟΝΙΚΗ ΜΟΡΦΗ JORDAN

Η ΚΑΝΟΝΙΚΗ ΜΟΡΦΗ JORDAN Η ΚΑΝΟΝΙΚΗ ΜΟΡΦΗ JORDN Εάν ένας πίνακας δεν διαγωνοποιείται, τότε ο στόχος μας είναι υπολογίσουμε μέσω ενός μετασχηματισμού ομοιότητας, έναν απλούστερο πίνακα, «σχεδόν διαγώνιο» όπως ο παρακάτω πίνακας

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 19/6/2018 Διδάσκων: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 19/6/2018 Διδάσκων: Ι. Λυχναρόπουλος Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Άσκηση (Μονάδες.) Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 9/6/08 Διδάσκων: Ι. Λυχναρόπουλος Έστω A= k και w = 3 0. Να βρεθεί η τιμή του k για την οποία

Διαβάστε περισσότερα

1 ιαδικασία διαγωνιοποίησης

1 ιαδικασία διαγωνιοποίησης ιαδικασία διαγωνιοποίησης Εστω V ένας R-διανυσματικός χώρος (ή έναςc-διανυσματικός χώρος) διάστασης n. Είναι γνωστό ότι κάθε διάνυσμα (,,..., n ) του χώρου V μπορεί να παρασταθεί και σαν πίνακας στήλη

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 10ο Σετ Ασκήσεων (Λύσεις) Γραμμικοί Μετασχηματισμοί

Εφαρμοσμένα Μαθηματικά ΙΙ 10ο Σετ Ασκήσεων (Λύσεις) Γραμμικοί Μετασχηματισμοί Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Γραμμικοί Μετασχηματισμοί Επιμέλεια: Ι. Λυχναρόπουλος. Να εξετασθεί αν είναι γραμμικές οι ακόλουθες συναρτήσεις: a) f : R R με f b) f : R R f y, ( +, y

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ Τα κάτωθι προβλήµατα προέρχονται από τα κεφάλαια, και του συγγράµµατος «Γραµµική Άλγεβρα». Η ηµεροµηνία παράδοσης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Επιστήμης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Επιστήμης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Επιστήμης Υπολογιστών «Γραμμική Άλγεβρα» (ΗΥ119) Χειμερινό Εξάμηνο 009-010 Διδάσκων: Ι. Τσαγράκης 6 Ο ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ Άσκηση 1: Δείξτε ότι η απεικόνιση τον ker f. Είναι η

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Ορίζουσα Gram και οι Εφαρµογές της Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 65 11 Η Ορίζουσα Gram και

Διαβάστε περισσότερα

[ ] και το διάνυσµα των συντελεστών:

[ ] και το διάνυσµα των συντελεστών: Μηχανική ΙΙ Τµήµα Ιωάννου-Απόστολάτου 8 Μαϊου 2001 Εσωτερικά γινόµενα διανυσµάτων µέτρο διανύσµατος- ορθογώνια διανύσµατα Έστω ένας διανυσµατικός χώρος V, στο πεδίο των µιγαδικών αριθµών Τα στοιχεία του

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii28/laii28html Παρασκευή 23 Μαρτίου 28 a b Υπενθυµίζουµε

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ , Β= 1 y, όπου y 0. , όπου y 0.

ΑΠΑΝΤΗΣΕΙΣ , Β= 1 y, όπου y 0. , όπου y 0. ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ 9 Ιουνίου 8:-: ΑΠΑΝΤΗΣΕΙΣ Θέμα (Α) ( 5 μονάδες) Δίδονται οι πίνακες Α=,

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (2 Ιουλίου 2009) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (2 Ιουλίου 2009) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ( Ιουλίου 009 ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ I. (εκδχ. Α. Σωστό ή Λάθος: α Αν A,B R n n είναι αντιστρέψιµα, τότε το ίδιο ισχύει και για το AB. ϐ Αν A R n n, τότε A AA. γ Αν A R και συµµετρικό

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ιούνιος 2010 Επιλεγµένες απαντήσεις και σχόλια

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ιούνιος 2010 Επιλεγµένες απαντήσεις και σχόλια ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ιούνιος Επιλεγµένες απαντήσεις και σχόλια Ι.. (Σωστό-Λάθος) με επαρκή αιτιολόγηση α) Για κάθε μητρώο A μεγέθους x μπορείτε να βρείτε ένα αντιστρέψιμο μητρώο X τέτοιο ώστε ΑΧ ΧK, όπου το

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Ισοµετρίες Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 78 12 Ισοµετρίες 121 Χαρακτηρισµός Ισοµετριών Εστω

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 12 Ιανουαρίου 2017 Ασκηση 1. Εστω

Διαβάστε περισσότερα

Παραδείγματα Γραμμικοί Μετασχηματισμοί

Παραδείγματα Γραμμικοί Μετασχηματισμοί Παραδείγματα Γραμμικοί Μετασχηματισμοί Παράδειγμα Να εξετασθεί αν είναι γραμμικές οι ακόλουθες συναρτήσεις: a) f : R R με f + 4 4+ b) f : R R με f + a+ b ac c) f : P M με f ( a + b + c + d ) d b d f :

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις Ασκήσεις 5 Βασικά σημεία Ιδιότητες ιδιόχωρων: Έστω,, Ισχύουν τα εξής Ασκήσεις Διαγωνίσιμες Γραμμικές Απεικονίσεις κάποιες διακεκριμένες ιδιοτιμές της γραμμικής απεικόνισης : V V, όπου o Αν v v 0, όπου

Διαβάστε περισσότερα

A, και εξετάστε αν είναι διαγωνίσιμη.

A, και εξετάστε αν είναι διαγωνίσιμη. Ασκήσεις 6 Ασκήσεις Ελάχιστο Πολυώνυμο Βασικά σημεία Ορισμός ελαχίστου πολυωνύμου πίνακα και ιδιότητές του Θεώρημα (Κριτήριο διαγωνισιμότητας) Ένας είναι διαγωνίσιμος αν και μόνο αν ( x) γινόμενο διακεκριμένων

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Εφαρµογές της Κανονικής Μορφής Jordan Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 46 8 Εφαρµογές της Κανονικής

Διαβάστε περισσότερα

Θεωρία Τελεστών. Ενότητα: Το Φασµατικό Θεώρηµα - Εισαγωγή. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών

Θεωρία Τελεστών. Ενότητα: Το Φασµατικό Θεώρηµα - Εισαγωγή. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών Ενότητα: Το Φασµατικό Θεώρηµα - Εισαγωγή Αριστείδης Κατάβολος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12,

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12, ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ, - Οι παρακάτω λύσεις των ασκήσεων της 6 ης εργασίας που καλύπτει το µεγαλύτερο µέρος της ύλης της θεµατικής ενότητας ΠΛΗ) είναι αρκετά εκτεταµένες καθώς έχει δοθεί αρκετή έµφαση

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 7

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 7 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 7 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebrai/lai2018/lai2018.html Παρασκευή 14 εκεµβρίου 2018 Ασκηση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 7 Από τα κάτωθι Θέµατα καλείστε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι. Ακαδηµαϊκο Ετος Βοηθος Ασκησεων: Χ. Ψαρουδάκης

Γραµµικη Αλγεβρα Ι. Ακαδηµαϊκο Ετος Βοηθος Ασκησεων: Χ. Ψαρουδάκης Γραµµικη Αλγεβρα Ι Ακαδηµαϊκο Ετος 2011-2012 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml 21-2 - 2012

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Βαθµίδα Πίνακα. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Βαθµίδα Πίνακα. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Βαθµίδα Πίνακα Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 8 Βαθµιδα Πινακα Στο παρόν Κεφάλαιο ϑα µελετήσουµε την ϐαθµίδα ενός πίνακα

Διαβάστε περισσότερα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα A 4. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές πολλαπλότητες των ιδιοτιμών.

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 7

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 7 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 7 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebrai/lai2017/lai2017.html Παρασκευή 22 εκεµβρίου 2017

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 6: ΓΡΑΜΜΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΟ ΤΙΣ ΠΑΡΑΔΟΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΗΡΑΚΛΕΙΟ

Διαβάστε περισσότερα

x 2 = b 1 2x 1 + 4x 2 + x 3 = b 2. x 1 + 2x 2 + x 3 = b 3

x 2 = b 1 2x 1 + 4x 2 + x 3 = b 2. x 1 + 2x 2 + x 3 = b 3 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ 008-9 ΛΥΣΕΙΣ = 1 (Ι) Να ϐρεθεί ο αντίστροφος του πίνακα 6 40 1 0 A 4 1 1 1 (ΙΙ) Εστω b 1, b, b 3 στο R Να λύθεί το σύστηµα x = b 1 x 1 + 4x + x 3 = b x 1 + x + x

Διαβάστε περισσότερα

1. a. Έστω b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα του A Έστω A και ( x) [ x]

1. a. Έστω b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα του A Έστω A και ( x) [ x] σκήσεις Ασκήσεις Ιδιοτιμές και ιδιοδιανύσματα Βασικά σημεία Ορισμός ιδιοτιμών και ιδιοδιανυσμάτων, υπολογισμός τους Ιδιόχωροι, διάσταση ιδιόχωρου, εύρεση βάσης ιδιόχωρου Σε διακεκριμένες ιδιοτιμές αντιστοιχούν

Διαβάστε περισσότερα