Εξίσωση Διάχυσης στη Μία Διάσταση

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εξίσωση Διάχυσης στη Μία Διάσταση"

Transcript

1 Εξίσωση Διάχυσης στη Μία Διάσταση Κωνσταντίνος Ν. Αναγνωστόπουλος Τομέας Φυσικής Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβειο Πολυτεχνείο Πολυτεχνειούπολη Ζωγράφου Ζωγράφου konstant@mail.ntua.gr 14 Ιουνίου 211

2 1 Εισαγωγή Η εξίσωση διάχυσης είναι στενά συνδεδεμένη με την τυχαία διαδρομή ενός τυχαίου περιπατητή (random walker). Ας υποθέσουμε ότι μελετάμε την κίνηση ενός τέτοιου σωμάτιου πάνω στην ευθεία ( μία διάσταση ). Η διαδικασία της κίνησης είναι στοχαστική και η συνάρτηση ( διαδότης ) K(x, x ; t) (1) ερμηνεύεται ως η πυκνότητα πιθανότητας να παρατηρηθεί το σωμάτιο στη θέση x αν τη χρονική στιγμή t = το σωμάτιο βρίσκεται στη θέση x. Η εξίσωση που καθορίζει το K(x, x ; t) είναι K(x, x ; t) t = D 2 K(x, x ; t) x 2 (2) που είναι η εξίσωση διάχυσης. Ο συντελεστής διάχυσης D μπορεί να καθοριστεί από τις λεπτομέρειες του συστήματος που μελετάμε. Για την κίνηση Brown ενός σωματιδίου σκόνης μέσα σε ένα υγρό, το οποίο κινείται με την επίδραση των τυχαίων θερμικών κρούσεων με τα μόρια του υγρού παίρνουμε D = T /γ, όπου T είναι η απόλυτη θερμοκρασία του υγρού και γ ο συντελεστής τριβής του σωματιδίου μέσα στο υγρό. Συνήθως επιλέγουμε για αρχικές συνθήκες (t = ) το σωμάτιο να είναι εντοπισμένο σε ένα σημείο x, δηλ. 1 K(x, x ; ) = δ(x x ) (3) Η ερμηνεία της K(x, x ; t) σα συνάρτηση πυκνότητας πιθανότητας συνεπάγεται ότι για κάθε t θα πρέπει να έχουμε 2 + K(x, x ; t) dx = 1. (4) 1 Θυμίζουμε ότι δ(x x ) είναι το περίφημο δέλτα του Dirac. Ορίζεται από τη σχέση + δ(x x ) dx = 1 και για οποιαδήποτε συνάρτηση f(x) έχουμε + f(x)δ(x x ) dx = f(x ). Μπορεί κανείς να τη φανταστεί σα μια συνάρτηση που είναι πρακτικά μηδέν παντού, εκτός από μια απειροστή περιοχή γύρω από το x. 2 Εναλλακτικά, αν η K(x, x ; t) δίνει λ.χ. την πυκνότητα μάζας μιας σταγόνας μελανιού μάζας m ink που διαχέεται μέσα σε ένα διαφανές υγρό, θα έχουμε + K(x, x ; t) dx = m ink και K(x, x ; ) = m ink δ(x x ). 1

3 Αυτή η σχέση δεν είναι προφανές ότι μπορεί να ισχύει για κάθε χρονική στιγμή. Ακόμα και αν την επιβάλλουμε για t =, η χρονική εξέλιξη που καθορίζεται από την (2) μπορεί να την αλλάξει σε μεγαλύτερους χρόνους. Αυτό είναι εύκολο να αναλυθεί. Αν επιβάλλουμε την (4) όταν t =, η συνθήκη θα ισχύει για κάθε χρονική στιγμή αν d + K(x, x ; t)dx =. (5) dt + K(x, x ; t)dx = + K(x,x ;t) dx και ότι t Λαμβάνοντας υπόψη ότι d dt K(x,x ;t) = D 2 K(x,x ;t) παίρνουμε t x 2 d + ( ) + K(x, x ; t) K(x, x ; t)dx = D dx dt x x = D K(x, x ; t) D K(x, x ; t) (6). x x + x x Η παραπάνω σχέση μας λέει πως για συναρτήσεις που το δεξί μέλος μηδενίζεται, η συνθήκη κανονικοποίησης μπορεί να επιβληθεί για όλες τις χρονικές στιγμές t >. Η προσεκτική ανάλυση της εξίσωσης (2) δίνει ότι, για μικρούς χρόνους, η ασυμπτωτική συμπεριφορά του K(x, x ; t) είναι x x 2 K(x, x ; t) e 4Dt t d/2 a i (x, x )t i. (7) i= Η σχέση αυτή δείχνει πως η διάχυση είναι ισότροπη (ίδια προς όλες τις κατευθύνσεις) και η πιθανότητα ανίχνευσης ελαττώνεται δραστικά με την απόσταση από την αρχική θέση του σωματιδίου. Αυτή η σχέση δεν μπορεί να ισχύει για πάντα, αφού για αρκετά μεγάλους χρόνους το σωμάτιο κατανέμεται ομοιόμορφα μέσα στο χώρο 3. Η πιθανότητα επιστροφής του σωματιδίου στην αρχική του θέση ορίζεται να είναι P R (t) = K(x, x ; t) 1 t d/2 a i (x, x )t i (8) i= 3 Θυμηθείτε την αναλογία με τη σταγόνα μελανιού που διαχέεται μέσα σε ένα ποτήρι νερό και μετά από αρκετό χρόνο έχει διαχυθεί ομοιόμορφα μέσα στο νερό. 2

4 που ορίζει τη φασματική διάσταση του χώρου. Η μέση τιμή του τετραγώνου της απόστασης που βρίσκεται το σωματίδιο σε χρόνο t είναι εύκολο να υπολογιστεί 4 r 2 = (x x ) 2 (t) = + (x x ) 2 K(x, x ; t) dx 2Dt. (9) Η τελευταία σχέση είναι πολύ σημαντική. Μας λέει πως η κίνηση του τυχαίου περιπατητή (κίνηση Brown) δεν μπορεί να έχει κλασική περιγραφή αλλά μόνο στοχαστική: Για ένα κλασικό σωμάτιο που κινείται πάνω σε μια ομαλή τροχιά x x vt άρα r 2 t 2. Στα επόμενα κεφάλαια, για απλότητα παίρνουμε 5 D = 1 και ορίζουμε u(x, t) K(x x, x ; t). (1) 2 Απαγωγή Θερμότητας σε μια Λεπτή Ραβδο Έστω μια λεπτή ευθύγραμμη ράβδος μήκους L και T (x, t) η κατανομή της θερμοκρασίας της τη χρονική στιγμή t και έστω ότι τα άκρα της τα κρατάμε σε σταθερή θερμοκρασία T (, t) = T (L, t) = T. Αν η αρχική κατανομή της θερμοκρασίας είναι T (x, ) η θερμοκρασία σε κάθε άλλη χρονική στιγμή προσδιορίζεται από την εξίσωση διάχυσης T (x, t) = α 2 T (x, t) (11) t x 2 όπου α = k/(c p ρ) ο θερμικός συντελεστής διάχυσης (thermal diffusivity), k η θερμική αγωγιμότητα, ρ η πυκνότητα και c p η ειδική θερμότητα της ράβδου. Ορίζουμε u(x, t) = T (xl, L2 α t) T T, (12) όπου x [, 1]. Με τον ορισμό αυτό, η συνάρτηση u(x, t) είναι καθαρός αριθμός (αδιάστατη) εκφράζει το κλάσμα της διαφοράς θερμοκρασίας σε σχέση με αυτής των άκρων της ράβδου και 4 u(, t) = u(1, t) =. (13) dr r n e r2 /4Dt = 2 n Γ( n+1 n+1 2 )(Dt) 2. 5 Αυτό σύμφωνα με την (2) αντιστοιχεί στο να πάρουμε t Dt. 3

5 Αυτές λέγονται συνοριακές συνθήκες τύπου Dirichlet 6 Η (11) γίνεται u(x, t) = 2 u(x, t) (14) t x 2 Η σχέση (6) γινεται d 1 dt u(x, t)dx = u u (15) x x=1 x x= Η παραπάνω σχέση δεν μπορεί να δίνει πάντα λόγω των συνοριακών συνθηκών (13). Αυτό μπορούμε να το δούμε με ένα παράδειγμα. Έστω u(x, ) = sin(πx), (16) τότε μπορείτε εύκολα να επιβεβαιώσετε ότι ικανοποιούνται οι απαιτούμενες συνοριακές συνθήκες και ότι η συνάρτηση u(x, t) = sin(πx)e π2t, (17) είναι η ζητούμενη λύση της εξίσωσης διάχυσης που ικανοποιεί επίσης της συνοριακές συνθήκες. Είναι εύκολο να διαπιστώσετε ότι 1 u(x, t)dx = 2 t π e π2 φθίνει εκθετικά γρήγορα στο μηδέν με το χρόνο και ότι d 1 u(x, t)dx = 2πe π2 t dt σε συμφωνία με τις σχέσεις (15). Η εκθετική πτώση του μέτρου της u(x, t) είναι σε συμφωνία με την φυσική απαίτηση ότι η ράβδος σε αρκετά μεγάλο χρόνο θα έχει ομοιόμορφη θερμοκρασία, ίση με αυτή που επιβάλαμε στα άκρα της (lim t + u(x, t) = ). 3 Διακριτοποίηση Η αριθμητική λύση της εξίσωσης (14) θα αναζητηθεί στο διάστημα x [, 1] και t [, t f ]. Το πρόβλημα πρέπει να οριστεί πάνω σε ένα 6 Αν προσδιορίζαμε τις παραγώγους u/ x στα άκρα (λ.χ. ταλάντωση ελεύθερης ράβδου) θα είχαμε συνοριακές συνθήκες τύπου Neumann. 4

6 διακριτό πλέγμα και η διαφορική εξίσωση να προσεγγιστεί από αλγεβρικές εξισώσεις πεπερασμένων διαφορών. Το πλέγμα ορίζεται από N x χωρικά σημεία x i [, 1] x i = + (i 1) x i = 1,..., N x, (18) όπου τα N x 1 διαστήματα έχουν σταθερό πλάτος x = 1 N x 1, (19) και από N t χρονικά πλεγματικά σημεία t j [, t f ] t j = + (j 1) t j = 1,..., N t, (2) όπου τα N t 1 διαστήματα έχουν σταθερό πλάτος t = t f 1 N t 1. (21) Σημειώνουμε ότι τα άκρα των διαστημάτων αντιστοιχούν στα x 1 =, x Nx = 1, t 1 =, t Nt = t f. (22) Η συνάρτηση u(x, t) προσεγγίζεται από τις τιμές της πάνω στο διακριτό N x N t πλέγμα u i,j u(x i, t j ). (23) Οι παράγωγοι διακριτοποιούνται σύμφωνα με τις σχέσεις u(x, t) t u(x i, t j + t) u(x i, t j ) t 1 t (u i,j+1 u i,j ), (24) 2 u(x, t) u(x i + x, t j ) 2u(x i, t j ) + u(x i x, t j ) x 2 ( x) 2 1 ( x) (u 2 i+1,j 2u i,j + u i 1,j ). (25) Εξισώνοντας τα δύο μέλη των παραπάνω σχέσεων σύμφωνα με την (14), παίρνουμε τη δυναμική εξέλιξη της u i,j στο χρόνο u i,j+1 = u i,j + t ( x) 2 (u i+1,j 2u i,j + u i 1,j ). (26) 5

7 Αυτή είναι μια επαγωγική σχέση ενός βήματος ως προς το χρόνο. Αυτό είναι πολύ σημαντικό γιατί δε χρειάζεται στο πρόγραμμα να αποθηκεύσουμε στη μνήμη τις τιμές u i,j για κάθε j Ο δεύτερος όρος της δεύτερης παραγώγου στην (26) περιέχει μόνο τους πλησιέστερους γείτονες u i±1,j κάθε πλεγματικού σημείου u i,j μιας χρονικής φέτας t j του πλέγματος, άρα μπορεί να χρησιμοποιηθεί για κάθε i = 2,..., N x 1. Για τα σημεία i = 1 και i = N x δε χρειάζεται να χρησιμοποιηθούν οι σχέσεις (26) αφού κρατάμε τις τιμές u 1,j = u Nx,j = αμετάβλητες. Τέλος η παράμετρος t ( x) 2 (27) είναι αυτή που καθορίζει τη χρονική εξέλιξη στον αλγόριθμο. Ονομάζεται παράμετρος του Courant και για να έχουμε χρονική εξέλιξη χωρίς να παρουσιάζονται γρήγορα αστάθειες, θα πρέπει t ( x) 2 < 1 2. (28) Αυτό είναι κάτι που εμείς θα το ελέγξουμε εμπειρικά με την αριθμητική ανάλυση που θα κάνουμε. 4 Το Πρόγραμμα Τα μόνα σημεία που τονίζουμε σχετικά με το σχεδιασμό του προγράμματος είναι ότι η σχέση (26) είναι μια επαγωγική σχέση ενός βήματος ως προς το χρόνο. Άρα σε κάθε χρονικό βήμα αρκεί να αποθηκεύσουμε σε ένα array τις τιμές του δεύτερου όρου (τη δεύτερη παράγωγο ) και να το χρησιμοποιήσουμε για να ενημερώσουμε τις νέες τιμές της συνάρτησης u i,j. Άρα, στην επαναλαμβανόμενη διαδικασία (26) υπολογισμού της u i,j+1 από την u i,j αρκεί να χρησιμοποιήσουμε μονάχα ένα array u i, i = 1,..., N x και ένα ( 2 u/ x 2 ) i, i = 1,..., N x που δίνουν τις αντίστοιχες τιμές της u i,j και t/( x) 2 (u i+1,j 2u i,j + u i 1,j ) τη χρονική στιγμή t j αντίστοιχα. Στο παρακάτω πρόγραμμα αυτά κωδικοποιούνται στα arrays u(p) και d2udx2(p). Τα χρήσιμα δεδομένα βρίσκονται στις θέσεις u(1)... u(nx) d2udx2(1)... d2udx2(nx) και η παράμετρος P επιλέγεται αρκετά μεγάλη ώστε οι τιμές του Nx που θα μελετηθούν να είναι πάντα μικρότερες. 6

8 Ο χρήστης δίνει στην είσοδο τις τιμές N x = Nx, Nt =Nt, t f =tf. Οι τιμές x, t και t/ x 2 = courant υπολογίζονται στα αρχικά στάδια του προγράμματος. Στην έξοδο παίρνουμε το αρχείο d.dat που περιέχει σε στήλες τις τιμές (t j, x i, u i,j ). Όταν τελειώνει μια χρονική φέτα t j, το πρόγραμμα τυπώνει μια κενή γραμμή, έτσι ώστε το gnuplot να κάνει αμέσως την τρισδιάστατη γραφική παράσταση. Το προγραμμά μπορεί να βρεθεί στο αρχείο diffusion.f στο συνοδευτικό λογισμικό και ο κώδικας που περιέχει δίνεται παρακάτω: C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C 1-dimensional Diffusion Equation with simple C Dirichlet boundary conditions u(,t)=u(1,t)= C <= x <= 1 and <= t <= tf C C We set initial condition u(x,t=) that satisfies C the given boundary conditions. C Nx is the number of points in spatial lattice: C x = + (j-1)*dx, j=1,...,nx and dx = (1-)/(Nx-1) C Nt is the number of points in temporal lattice: C t = + (j-1)*dt, j=1,...,nt and dt = (tf-)/(nt-1) C C u(x,) = sin(pi*x) tested against analytical solution C u(x,t) = sin(pi*x)*exp(-pi*pi*t) C C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC program diffusion_1d implicit none integer P! Max no of points real*8 PI parameter (P=1,PI= D) real*8 u(p), d2udx2(p) real*8 t,x,dx,dt,tf,courant integer Nx,Nt,i,j C --- Input: print *, '# Enter: Nx, Nt, tf: (P= ',P,' Nx must be < P)' read(5,*) Nx,Nt,tf if(nx.ge. P) stop 'Nx >= P' if(nx.le. 3) stop 'Nx <= 3' if(nt.le. 2) stop 'Nt <= 2' 7

9 C --- Initialize: dx = 1.D/(Nx-1) dt = tf /(Nt-1) courant = dt/dx**2 print *,'# 1d Diffusion Equation: <=x<=1, <=t<=tf' print *,'# dx= ',dx,' dt= ',dt,' tf= ', tf print *,'# Nx= ',Nx,' Nt= ',Nt print *,'# Courant Number= ',courant if(courant.gt..5d) print *,'# WARNING: courant >.5' open(unit=11,file='d.dat')! data file C --- Initial condition at t= C u(x,) = sin( pi x) do i= 1, Nx x = (i-1)*dx u(i) = sin(pi*x) enddo u(1) =.d u(nx) =.d do i= 1,Nx x = (i-1)*dx write(11,*).d, x, u(i) enddo write(11,*)' ' C C --- Calculate time evolution: do j=2,nt t = (j-1)*dt C second derivative: do i=2,nx-1 d2udx2(i) = courant*(u(i+1)-2.d*u(i)+u(i-1)) enddo C update: do i=2,nx-1 u(i) = u(i) + d2udx2(i) enddo do i=1,nx x = (i-1)*dx write(11,*) t, x, u(i) enddo write(11,*)' ' 8

10 enddo! do j=2,nt close(11) end 5 Αποτελέσματα Αρχικά γίνεται η μεταγλώττιση και το τρέξιμο του προγράμματος > f77 diffusion.f -o d > echo "1 1.4"./d # Enter: Nx, Nt, tf: (P= 1 Nx must be < P) # 1d Diffusion Equation: <=x<=1, <=t<=tf # dx= dt= E-3 tf=.4 # Nx= 1 Nt= 1 # Courant Number= Στη δεύτερη σειρά, ταΐζουμε το stdin του πραγράμματος τις τιμές Nx=1, Nt=1, tf=.4 από το stdout της εντολής echo. Οι επόμενες γραμμές είναι το output του προγράμματος. Στη συνέχεια μπορούμε να κάνουμε μια τρισδιάστατη γραφική αναπαράσταση της u(x, t) με τη βοήθεια του gnuplot: gnuplot> set pm3d gnuplot> set hidden3d gnuplot> splot "d.dat" with lines gnuplot> unset pm3d Στη συνέχεια θέλουμε να δούμε τη συνάρτηση u(x, t) σα συνάρτηση του x για δεδομένες τιμές του χρόνου. Παρατηρούμε ότι ο χρόνος αλλάζει κάθε φορά που συναντάμε μια κενή γραμμή στο αρχείο d.dat. Το παρακάτω πρόγραμμα awk μετράει τις κενές γραμμές και τυπώνει μόνο εκείνη που εμείς επιθυμούμε. Ο μετρητής n=, 1,..., Nt-1 μπορεί να καθορίσει την τιμή του t j = t n 1. Τα αποτελέσματα τα σώζουμε σε ένα αρχείο tj το οποίο μπορούμε να το δούμε με το gnuplot. Επαναλαμβάνουμε όσες φορές χρειάζεται: > awk 'NF<3{n++}n==3 {print}' d.dat > tj gnuplot> plot "tj" using 2:3 with lines 9

11 "d.dat" u(x,t) t x Σχήμα 1: Η συνάρτηση u(x, t) για Nx=1, Nt=1, tf=.4. Την παραπάνω εργασία μπορούμε να την κάνουμε χωρίς τη δημιουργία ενδιάμεσων αρχείων tj χρησιμοποιώντας το φίλτρο της awk μέσα από το gnuplot. Έτσι για παράδειγμα οι εντολές gnuplot>! echo "1 8 2"./d gnuplot> plot "<awk 'NF<3{n++}n==3 {print}' d.dat" u 2:3 w l notit gnuplot> replot "<awk 'NF<3{n++}n==6 {print}' d.dat" u 2:3 w l notit gnuplot> replot "<awk 'NF<3{n++}n==1 {print}' d.dat" u 2:3 w l notit gnuplot> replot "<awk 'NF<3{n++}n==2 {print}' d.dat" u 2:3 w l notit gnuplot> replot "<awk 'NF<3{n++}n==3 {print}' d.dat" u 2:3 w l notit gnuplot> replot "<awk 'NF<3{n++}n==5 {print}' d.dat" u 2:3 w l notit gnuplot> replot "<awk 'NF<3{n++}n==1{print}' d.dat" u 2:3 w l notit τρέχουν το πρόγραμμα για Nx=1, Nt=8, tf= 2 και παράγουν το σχήμα 2 Στη συνέχεια είναι ενδιαφέρον να συγκρίνει κανείς τα αποτελέσματα του με την ακριβή λύση u(x, t) = sin(πx)e π2t. Ένας τρόπος να γίνει είναι να ορίσουμε το σχετικό σφάλμα u i,j u(x i, t j ) u i,j, και να το υπολογίσουμε ορίζοντας τη σχετική συνάρτηση μέσα στο gnuplot: 1

12 u(x,t=const) Σχήμα 2: Η συνάρτηση u(x, t) για Nx=1, Nt=8, tf= 2 για διαφορετικές σταθερές τιμές του χρόνου t j. Εδώ j = 4, 7, 11, 21, 31, 51, 11 όπου η u(x, t) φθίνει όταν αυξάνει το j. x gnuplot> u(x,y,z) = (z - sin(pi*x)*exp(-pi*pi*y))/z gnuplot> plot "<awk 'NF<3{n++}n==2 ' d.dat" u 2:(u($2,$1,$3)) w l gnuplot> plot "<awk 'NF<3{n++}n==6 ' d.dat" u 2:(u($2,$1,$3)) w l gnuplot> plot "<awk 'NF<3{n++}n==2 ' d.dat" u 2:(u($2,$1,$3)) w l gnuplot> plot "<awk 'NF<3{n++}n==2' d.dat" u 2:(u($2,$1,$3)) w l gnuplot> plot "<awk 'NF<3{n++}n==6' d.dat" u 2:(u($2,$1,$3)) w l gnuplot> plot "<awk 'NF<3{n++}n==78' d.dat" u 2:(u($2,$1,$3)) w l Τα αποτελέσματα μπορούμε να τα δούμε στο σχήμα 3. 6 Διάχυση Πάνω στον Κύκλο. Για να μελετήσουμε τον πυρήνα/διαδότη K(x, x ; t) στο πρόβλημα της διάχυσης ή των τυχαίων διαδρομών, πρέπει να επιβάλλουμε τη συνθήκη κανονικοποίησης (4) για κάθε χρονική στιγμή. Στην περίπτωση της u(x, t) ορισμένης για x [, 1] η σχέση γίνεται 1 u(x, t) dx = 1, (29) η οποία για να ισχύει για κάθε χρονική στιγμή είναι αναγκαίο το δεξί μέλος της (15) να είναι. Ένας τρόπος να επιβάλλουμε 11

13 .1 relative error Σχήμα 3: H απόλυτη τιμή του σχετικού σφάλματος του αριθμητικού υπολογισμού για Nx=1, Nt=8, tf= 2 για διαφορετικές σταθερές τιμές του χρόνου t j. Εδώ j = 3, 7, 21, 21, 61, 781 και το σχετικό σφάλμα αυξάνει με το j. x αυτή τη συνθήκη είναι να θεωρήσουμε το πρόβλημα της διάχυσης πάνω στον κύκλο. Αν παραμετροποιήσουμε τα σημεία του κύκλου με τη μεταβλητή x [, 1] τότε τα σημεία x = και x = 1 ταυτίζονται και έχουμε u(, t) u(1, t) u(, t) = u(1, t), =. (3) x x Η δεύτερη από τις παραπάνω σχέσεις μηδενίζει το δεξί μέλος της (15) με αποτέλεσμα αν θέσουμε 1 u(x, ) dx = 1, τότε να έχουμε 1 u(x, t) dx = 1, t >. Με τις παραπάνω παραδοχές, η διακριτοποίηση της διαφορικής εξίσωσης γίνεται ακριβώς όπως και στο πρόβλημα της απαγωγής της θερμότητας. Αντί τώρα να κρατάμε τις τιμές u(, t) = u(1, t) = σταθερές, θα εφαρμόσουμε την εξίσωση δυναμικής εξέλιξης (26) και για τα σημεία x 1, x Nx αφού πάνω στον κύκλο αυτά τα σημεία δεν ξεχωρίζουν από τα υπόλοιπα. Για να λάβουμε υπόψη την κυκλική τοπολογία αρκεί να πάρουμε και u 1,j+1 = u 1,j + u Nx,j+1 = u i,j + t ( x) 2 (u 2,j 2u 1,j + u Nx,j), (31) t ( x) 2 (u 1,j 2u Nx,j + u Nx 1,j), (32) 12

14 αφού ο γείτονας εκ δεξιών του σημείου x Nx είναι το σημείο x 1 και ο γείτονας εξ αριστερών του σημείου x 1 είναι το σημείο x Nx. Για τα υπόλοιπα σημεία i = 2,..., N x 1 η σχέση (26) εφαρμόζεται κανονικά. Το πρόγραμμα που κωδικοποιεί το παραπάνω πρόβλημα δίνεται παρακάτω και βρίσκεται στο αρχείο diffusions1.f. H επιβολή των συνοριακών συνθηκών (3) γίνεται στις γραμμές nnr = i+1 if(nnr.gt. Nx) nnr = 1 nnl = i-1 if(nnl.lt. 1 ) nnl = Nx d2udx2(i) = courant*(u(nnr)-2.d*u(i)+u(nnl)) Οι αρχικές συνθήκες τη χρονική στιγμή t = επιλέγονται έτσι ώστε να είναι το σωμάτιο στη θέση x Nx /2. Σε κάθε χρονική στιγμή γίνονται μετρήσεις με σκοπό να επαληθευτούν οι εξισώσεις (4), (9) και το γεγονός ότι lim t + u(x, t) = σταθ. Η μεταβλητή prob = N x i=1 u i,j και ελέγχεται αν διατηρεί την αρχική της τιμή που είναι ίση με 1. Η μεταβλητή r2 = N x i=1(x i x Nx/2) 2 u i,j είναι η διακριτή εκτίμηση της μέσης τιμής του τετραγώνου της απόστασης από την αρχική θέση η οποία για αρκετά μικρούς χρόνους θα πρέπει να ακολουθεί το νόμο που δίνει η εξίσωση (9). Οι παραπάνω μεταβλητές αποθηκεύονται στο αρχείο e.dat μαζί με τις τιμές u Nx/2,j, u Nx/4,j και u 1,j. Η τελευταίες ελέγχονται αν μετά από αρκετά μεγάλο χρόνο αποκτούν την ίδια σταθερή τιμή, σύμφωνα με το αναμενόμενο αποτέλεσμα lim t + u(x, t) = σταθ. Όλος ο πηγαίος κώδικας είναι: C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C 1-dimensional Diffusion Equation with C periodic boundary conditions u(,t)=u(1,t) C <= x <= 1 and <= t <= tf C C We set initial condition u(x,t=) that satisfies C the given boundary conditions. C Nx is the number of points in spatial lattice: C x = + (j-1)*dx, j=1,...,nx and dx = (1-)/(Nx-1) C Nt is the number of points in temporal lattice: C t = + (j-1)*dt, j=1,...,nt and dt = (tf-)/(nt-1) C 13

15 C u(x,) = \delta_{x,.5} C C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC program diffusion_1d implicit none integer P! Max no of points real*8 PI parameter (P=1,PI= D) real*8 u(p), d2udx2(p) real*8 t,x,dx,dt,tf,courant,prob,r2,x integer Nx,Nt,i,j,nnl,nnr C --- Input: print *, '# Enter: Nx, Nt, tf: (P= ',P,' Nx must be < P)' read(5,*) Nx,Nt,tf if(nx.ge. P) stop 'Nx >= P' if(nx.le. 3) stop 'Nx <= 3' if(nt.le. 2) stop 'Nt <= 2' C --- Initialize: dx = 1.D/(Nx-1) dt = tf /(Nt-1) courant = dt/dx**2 print *,'# 1d Diffusion Equation on S1: <=x<=1, <=t<=tf' print *,'# dx= ',dx,' dt= ',dt,' tf= ', tf print *,'# Nx= ',Nx,' Nt= ',Nt print *,'# Courant Number= ',courant if(courant.gt..5d) print *,'# WARNING: courant >.5' open(unit=11,file='d.dat')! data file open(unit=12,file='e.dat')! data file C --- Initial condition at t= do i= 1, Nx x = (i-1)*dx u(i) =.D enddo u(nx/2) = 1.D do i= 1,Nx x = (i-1)*dx write(11,*).d, x, u(i) enddo write(11,*)' ' 14

16 C C --- Calculate time evolution: do j=2,nt t = (j-1)*dt C second derivative: do i=1,nx nnr = i+1 if(nnr.gt. Nx) nnr = 1 nnl = i-1 if(nnl.lt. 1 ) nnl = Nx d2udx2(i) = courant*(u(nnr)-2.d*u(i)+u(nnl)) enddo C update: prob =.D r2 =.D x = ((Nx/2)-1)*dx!original position do i=1,nx x = (i-1)*dx u(i) = u(i) + d2udx2(i) prob = prob + u(i) r2 = r2 + u(i)*(x-x)*(x-x) enddo do i=1,nx x = (i-1)*dx write(11,*) t, x, u(i) enddo write(11,*)' ' write(12,*) 'pu ',t, prob,r2,u(nx/2),u(nx/4),u(1) enddo! do j=2,nt close(11) end 15

17 7 Ανάλυση Το πρόγραμμα αποθηκεύει στο αρχείο e.dat για κάθε χρονική στιγμη τις ποσότητες N x U j = u i,j (33) i=1 που είναι ο διακριτός εκτιμητής της (29) και περιμένουμε να παίρνουμε U j = 1 για κάθε τιμή του j, r 2 = N x u i,j (x i x Nx /2) 2 (34) j i=1 που είναι ο διακριτός εκτιμητής της (9) και περιμένουμε για μικρούς χρόνους να ισχύει r 2 j 2t j, (35) καθώς και τις τιμές u Nx/2,j, u Nx/4,j, u 1,j. Οι τιμές t j, U j, r 2 j, u Nx /2,j, u Nx /4,j, u 1,j βρίκονται αντίστοιχα στις στήλες 2, 3, 4, 5, 6 και 7 του αρχείου e.dat. Ξεκινάμε το gnuplot και μέσα από αυτό δίνουμε τις εντολές gnuplot>!f77 diffusions1.f -o d gnuplot>! echo "1 1.4"./d που ορίζουν τις τιμές N x = 1, N t = 1, t f =.4, x.111, t 4.44, t/ x Με τις εντολές gnuplot> plot "e.dat" u 2:5 w l gnuplot> replot "e.dat" u 2:6 w l gnuplot> replot "e.dat" u 2:7 w l φτιάχνουμε το σχήμα 4 από όπου βλέπουμε την ομοιόμορφη κατανομή της διάχυσης για αρκετά μεγάλους χρόνους. Η σχέση U j = 1 επιβεβαιώνεται με απλό κοίταγμα στο αρχείο e.dat. Η ασυμπτωτική σχέση r 2 j 2t j επιβεβαιώνεται με τις εντολές gnuplot> plot [:][:.11] "e.dat" u 2:4,2*x που μας δίνει το σχήμα 5. Τέλος κάνουμε μια επισκόπηση της συνάρτησης u(x, t) με τις εντολές 16

18 .12.1 i=n x /2 i=n x /4 i= Σχήμα 4: Οι συναρτήσεις u Nx/2,j, u Nx/4,j, u 1,j σα συνάρτηση του t j για N x = 1, N t = 1, t f =.4. Για μεγάλο χρόνο τείνουν προς μια σταθερή τιμή που αντιστοιχεί στην ομοιόμορφη διάχυση. gnuplot>! echo "1 1.16"./d gnuplot> set pm3d gnuplot> splot [:.16][:1][: 1] "d.dat" w l gnuplot> splot [:.16][:1][:.2] "d.dat" w l και το αποτέλεσμα φαίνεται στο σχήμα 6. 17

19 <x 2 >(t j ) 2 t Σχήμα 5: Η μέση τιμή r 2 j σα συνάρτηση του t j για N x = 1, N t = 1, t f =.4. Για μικρές τιμές του t j ισχύει r 2 j 2t j το οποίο συγκρίνεται με την ευθεία 2t. 18

20 "d.dat".8 1 Σχήμα 6: Η συνάρτηση u(x, t) για N x = 1, N t = 1, t f =.16. Στο δεύτερο σχήμα αλλάζουμε μόνο την κλίμακα του άξονα z ώστε να φανούν οι λεπτομέρειες της διάχυσης μακρυά από το σημείο x x Nx /2 = x 5. 19

Εξίσωση Διάχυσης στη Μία Διάσταση

Εξίσωση Διάχυσης στη Μία Διάσταση ΚΕΦΑΛΑΙΟ 9 Εξίσωση Διάχυσης στη Μία Διάσταση 9.1 Εισαγωγή Η εξίσωση διάχυσης είναι στενά συνδεδεμένη με την τυχαία διαδρομή ενός τυχαίου περιπατητή (random walker). Ας υποθέσουμε ότι μελετάμε την κίνηση

Διαβάστε περισσότερα

Εξίσωση Διάχυσης στη Μία Διάσταση

Εξίσωση Διάχυσης στη Μία Διάσταση ΚΕΦΑΛΑΙΟ 8 Εξίσωση Διάχυσης στη Μία Διάσταση 8.1 Εισαγωγή Η εξίσωση διάχυσης είναι στενά συνδεδεμένη με τη διαδρομή ενός τυχαίου περιπατητή (random walker). Ας υποθέσουμε ότι μελετάμε την κίνηση ενός τέτοιου

Διαβάστε περισσότερα

MEM 253. Αριθμητική Λύση ΜΔΕ * * *

MEM 253. Αριθμητική Λύση ΜΔΕ * * * MEM 253 Αριθμητική Λύση ΜΔΕ * * * 1 Ένα πρόβλημα-μοντέλο Ροή θερμότητας σε ένα ομογενές μέσο. Ζητούμε μια συνάρτηση x [0, 1] και t 0 τέτοια ώστε u(x, t) ορισμένη για u t u(0, t) u(x, 0) = u xx, 0 < x

Διαβάστε περισσότερα

Ενότητα 6. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος

Ενότητα 6. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 6 Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ενότητα 3 (μέρος 1 ο )

Ενότητα 3 (μέρος 1 ο ) Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 3 (μέρος 1 ο ) Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3

Διαβάστε περισσότερα

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

8 FORTRAN 77/90/95/2003

8 FORTRAN 77/90/95/2003 ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1: Εισαγωγή... 17 1.1. Ανασκόπηση της ιστορίας των υπολογιστών... 18 1.2. Πληροφορία και δεδομένα... 24 1.3. Ο Υπολογιστής... 26 1.4. Δομή και λειτουργία του υπολογιστή... 28 1.5.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο

ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο ΚΕΦΑΛΑΙΟ 2 Περιγραφή της Κίνησης Στο κεφάλαιο αυτό θα δείξουμε πώς να προγραμματίσουμε απλές εξισώσεις τροχιάς ενός σωματιδίου και πώς να κάνουμε βασική ανάλυση των αριθμητικών αποτελεσμάτων. Χρησιμοποιούμε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8. Εξίσωση Διάχυσης. 8.1 Εισαγωγή

ΚΕΦΑΛΑΙΟ 8. Εξίσωση Διάχυσης. 8.1 Εισαγωγή ΚΕΦΑΛΑΙΟ 8 Εξίσωση Διάχυσης 8.1 Εισαγωγή Η εξίσωση διάχυσης είναι στενά συνδεδεμένη με τη διαδρομή ενός τυχαίου περιπατητή (random walker). Ας υποθέσουμε ότι μελετάμε την κίνηση ενός τέτοιου σωματίου πάνω

Διαβάστε περισσότερα

Pr(10 X 15) = Pr(15 X 20) = 1/2, (10.2)

Pr(10 X 15) = Pr(15 X 20) = 1/2, (10.2) Κεφάλαιο 10 Συνεχείς τυχαίες μεταβλητές Σε αυτό το κεφάλαιο θα εξετάσουμε τις ιδιότητες που έχουν οι συνεχείς τυχαίες μεταβλητές. Εκείνες οι Τ.Μ. X, δηλαδή, των οποίων το σύνολο τιμών δεν είναι διακριτό,

Διαβάστε περισσότερα

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ - ΕΚΔΟΣΕΙΣ ΚΡΙΤΙΚΗ

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ - ΕΚΔΟΣΕΙΣ ΚΡΙΤΙΚΗ Συναρτήσεις Προεπισκόπηση Κεφαλαίου Τα μαθηματικά είναι μια γλώσσα με ένα συγκεκριμένο λεξιλόγιο και πολλούς κανόνες. Πριν ξεκινήσετε το ταξίδι σας στον Απειροστικό Λογισμό, θα πρέπει να έχετε εξοικειωθεί

Διαβάστε περισσότερα

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι ο υπολογισμός του μέτρου της στιγμιαίας ταχύτητας και της επιτάχυνσης ενός υλικού σημείου

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier 1. Ανάπτυγμα σήματος σε Σειρά Fourier

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

. Να βρεθεί η Ψ(x,t).

. Να βρεθεί η Ψ(x,t). ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου II Άσκηση 1: Εάν η κυματοσυνάρτηση Ψ(,0) παριστάνει ένα ελεύθερο σωματίδιο, με μάζα m, στη μία διάσταση την χρονική στιγμή t=0: (,0) N ep( ), όπου N 1/ 4. Να βρεθεί η

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 1: Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Εισαγωγή στα Σήματα 1. Σκοποί της Θεωρίας Σημάτων 2. Κατηγορίες Σημάτων 3. Χαρακτηριστικές Παράμετροι

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΟΥ ΜΗΧΑΝΙΚΟΥ

ΕΞΕΤΑΣΕΙΣ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΟΥ ΜΗΧΑΝΙΚΟΥ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 ΖΩΓΡΑΦΟΥ, 157 80 ΑΘΗΝΑ ηλ. ταχυδρομείο: semfe@central.ntua.gr, fax: 2107721685 ιστοσελίδα: semfe.ntua.gr

Διαβάστε περισσότερα

Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Λύσεις Θεμάτων Εξέτασης Ιούνη 2019

Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Λύσεις Θεμάτων Εξέτασης Ιούνη 2019 Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών ΜΕΜ 74 Λύσεις Θεμάτων Εξέτασης Ιούνη 9 Ζήτημα Α Α. Δείξτε ότι αν p, q πραγματιϰά πολυώνυμα ίδιου βαϑμού, τότε p q ϰαϑώς ±. Λύση. Αρϰεί να δείξουμε ότι για με αρϰετά μεγάλο

Διαβάστε περισσότερα

1.1. Διαφορική Εξίσωση και λύση αυτής

1.1. Διαφορική Εξίσωση και λύση αυτής Εισαγωγή στις συνήθεις διαφορικές εξισώσεις 9 Διαφορική Εξίσωση και λύση αυτής Σε ότι ακολουθεί με τον όρο συνάρτηση θα εννοούμε μια πραγματική συνάρτηση μιας πραγματικής μεταβλητής, ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων

Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων Copyright 2009 Cengage Learning 8.1 Συναρτήσεις Πυκνότητας Πιθανοτήτων Αντίθετα με τη διακριτή τυχαία μεταβλητή που μελετήσαμε στο Κεφάλαιο 7, μια συνεχής τυχαία

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΙV. ΤΜΗΜΑ ΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι Μονοβασίλης Θεόδωρος

ΕΡΓΑΣΤΗΡΙΟ ΙV. ΤΜΗΜΑ ΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι Μονοβασίλης Θεόδωρος ΤΜΗΜΑ ΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι Μονοβασίλης Θεόδωρος ΕΡΓΑΣΤΗΡΙΟ ΙV Συναρτήσεις στο Mathematica Στο Mathematica υπάρχουν ορισμένες πολλές βασικές συναρτήσεις όπως ημίτονο, συνημίτονο,

Διαβάστε περισσότερα

Εισαγωγή στο Πρόγραμμα Maxima

Εισαγωγή στο Πρόγραμμα Maxima Εισαγωγή στο Πρόγραμμα Maxima Το Maxima είναι ένα πρόγραμμα για την εκτέλεση μαθηματικών υπολογισμών, συμβολικών μαθηματικών χειρισμών, αριθμητικών υπολογισμών και γραφικών παραστάσεων. Το Maxima λειτουργεί

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Άσκηση 1. Έστω ότι η συνάρτηση f: R R είναι γνησίως αύξουσα στο R και η γραφική της παράσταση τέµνει τον άξονα y y στο. Να λύσετε την ανίσωση: f(x 9)

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΟΥ ΜΗΧΑΝΙΚΟΥ

ΕΞΕΤΑΣΕΙΣ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΟΥ ΜΗΧΑΝΙΚΟΥ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 ΖΩΓΡΑΦΟΥ, 157 80 ΑΘΗΝΑ ηλ. ταχυδρομείο: semfe@central.ntua.gr, fax: 2107721685 ιστοσελίδα: semfe.ntua.gr

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Εαρινό Εξάμηνο 2015/2016. ΦΥΣ145 Υπολογιστικές Μέθοδοι στην Φυσική

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Εαρινό Εξάμηνο 2015/2016. ΦΥΣ145 Υπολογιστικές Μέθοδοι στην Φυσική Τμήμα Φυσικής Πανεπιστημίου Κύπρου Εαρινό Εξάμηνο 2015/2016 Διδάσκoντες: Χαράλαμπος Παναγόπουλος, Μάριος Κώστα Βαθμός: Όνομα: Α.Δ.Τ.:... ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ 24/03/2016 Άσκηση 1 (1 μονάδα) Ποιο είναι το αποτέλεσμα

Διαβάστε περισσότερα

Περιεχόμενα μεθόδευση του μαθήματος

Περιεχόμενα μεθόδευση του μαθήματος Περιεχόμενα μεθόδευση του μαθήματος. Πως ορίζεται η έννοια. Το όριο. To f() f() ; f() εφόσον υπάρχει είναι μονοσήμαντα ορισμένο; εξαρτιέται από τα άκρα α, β των ( α, ) και (, β ) ;. Πως ορίζονται τα πλευρικά

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΚΥΜΑΤΑ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός.

Γ ΛΥΚΕΙΟΥ ΚΥΜΑΤΑ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός. ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΥΜΑΤΑ Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός / Βασικές Έννοιες Η επιστήμη της Φυσικής συχνά μελετάει διάφορες διαταραχές που προκαλούνται και διαδίδονται στο χώρο.

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ. Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής

ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ. Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής Re Im V r V r i V r, όπου οι συναρτήσεις Re,Im V r V r είναι πραγματικές συναρτήσεις

Διαβάστε περισσότερα

Κεφάλαιο 0: Εισαγωγή

Κεφάλαιο 0: Εισαγωγή Κεφάλαιο : Εισαγωγή Διαφορικές εξισώσεις Οι Μερικές Διαφορικές Εξισώσεις (ΜΔΕ) αλλά και οι Συνήθεις Διαφορικές Εξισώσεις (ΣΔΕ) εμφανίζονται παντού στις επιστήμες από τη μηχανική μέχρι τη βιολογία Τις περισσότερες

Διαβάστε περισσότερα

1. Κίνηση Υλικού Σημείου

1. Κίνηση Υλικού Σημείου 1. Κίνηση Υλικού Σημείου Εισαγωγή στην Φυσική της Γ λυκείου Τροχιά: Ονομάζεται η γραμμή που συνδέει τις διαδοχικές θέσεις του κινητού. Οι κινήσεις ανάλογα με το είδος της τροχιάς διακρίνονται σε: 1. Ευθύγραμμες

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

Μερικές Διαφορικές Εξισώσεις

Μερικές Διαφορικές Εξισώσεις Πανεπιστήμιο Πατρών, Τμήμα Μαθηματικών Μερικές Διαφορικές Εξισώσεις Χειμερινό εξάμηνο ακαδημαϊκού έτους 14-15, Διδάσκων: Α.Τόγκας ο φύλλο προβλημάτων Ονοματεπώνυμο - ΑΜ: Πρόβλημα 1. Για κάθε μια από τις

Διαβάστε περισσότερα

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης

Διαβάστε περισσότερα

Σκοπός. Εργαστήριο 6 Εντολές Επανάληψης

Σκοπός. Εργαστήριο 6 Εντολές Επανάληψης Εργαστήριο 6 Εντολές Επανάληψης Η δομή Επιλογής στη PASCAL H δομή Επανάληψης στη PASCAL. Ρεύμα Εισόδου / Εξόδου.. Ρεύμα Εισόδου / Εξόδου. To πρόγραμμα γραφικών gnuplot. Γραφικά στη PASCAL. Σκοπός 6.1 ΕΠΙΔΙΩΞΗ

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ. υ = σταθερη (1) - Με διάγραμμα :

ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ. υ = σταθερη (1) - Με διάγραμμα : Πρότυπο Πρότυπα ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ Η Φυσική για να ερμηνεύσει τα φαινόμενα, δημιουργεί τα πρότυπα ή μοντέλα. Τα πρότυπα αποτελούνται από ένα πλέγμα

Διαβάστε περισσότερα

4.1 Αριθμητική Ολοκλήρωση Εξισώσεων Νεύτωνα

4.1 Αριθμητική Ολοκλήρωση Εξισώσεων Νεύτωνα ΚΕΦΑΛΑΙΟ 4 Κίνηση Σωματιδίου Στο κεφάλαιο αυτό μελετάται αριθμητικά η επίλυση των κλασικών εξισώσεων κίνησης μονοδιάστατων μηχανικών συστημάτων, όπως λ.χ. αυτή του σημειακού σωματιδίου σε μια ευθεία, του

Διαβάστε περισσότερα

Εισαγωγή στο Gnuplot. Σφυράκης Χρυσοβαλάντης

Εισαγωγή στο Gnuplot. Σφυράκης Χρυσοβαλάντης Εισαγωγή στο Gnuplot Σφυράκης Χρυσοβαλάντης Περιεχόμενα Εισαγωγή... 3 Εντολές του Gnuplot... 3 Έξοδος του γραφήματος... 3 Καθορισμός των χαρακτηριστικών του γραφήματος... 4 Συναρτήσεις Αρχεία Δεδομένων...

Διαβάστε περισσότερα

Φυσική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου. Τμήμα Ενεργειακής Τεχνολογίας

Φυσική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου. Τμήμα Ενεργειακής Τεχνολογίας Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική (Ε) Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου Τμήμα Ενεργειακής Τεχνολογίας Το περιεχόμενο του

Διαβάστε περισσότερα

Είναι γνωστό ότι η δύναμη που ασκείται σε ένα ελατήριο και ονομάζεται δύναμη επαναφοράς δίνεται από τη σχέση : F = kx (3.1)

Είναι γνωστό ότι η δύναμη που ασκείται σε ένα ελατήριο και ονομάζεται δύναμη επαναφοράς δίνεται από τη σχέση : F = kx (3.1) 3.1. Εισαγωγή Είναι γνωστό ότι η δύναμη που ασκείται σε ένα ελατήριο και ονομάζεται δύναμη επαναφοράς δίνεται από τη σχέση : F = kx (3.1) Αν ϑελήσουμε να υπολογίσουμε το έργο της δύναμης αυτής μεταξύ δύο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Έστω t, t,..., t ν οι παρατηρήσεις µιας ποσοτικής µεταβλητής Χ ενός δείγµατος µεγέθους ν, που έχουν µέση τιµή x. Σχηµατίζουµε

Διαβάστε περισσότερα

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη;

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης. Στην Κινηματική

Διαβάστε περισσότερα

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη : Περιγραφή αριθμητικών μεθόδων Χειμερινό εξάμηνο 008 Προηγούμενη παρουσίαση... Γράψαμε τις εξισώσεις

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μαθηματικά Ενότητα 2: Διαφορικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Φυλλάδιο 2

Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Φυλλάδιο 2 Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Φυλλάδιο 2 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΝΝΟΙΑ ΤΗΣ ΑΣΥΜΠΤΩΤΙΚΗΣ ΣΕΙΡΑΣ Εστω μη ϰενά διαστήματα J, I R, με 0 Ī. Ονομάζουμε μεταβλητή το x J ϰαι ασυμπτωτιϰή (ή διαταραϰτιϰή) παράμετρο

Διαβάστε περισσότερα

Sˆy. Η βάση για την οποία συζητάμε απαρτίζεται από τα ανύσματα = (1) ˆ 2 ± =± ± Άσκηση 20. (βοήθημα θεωρίας)

Sˆy. Η βάση για την οποία συζητάμε απαρτίζεται από τα ανύσματα = (1) ˆ 2 ± =± ± Άσκηση 20. (βοήθημα θεωρίας) Άσκηση 0. (βοήθημα θεωρίας) Έστω + και η βάση που συγκροτούν οι (κοινές) ιδιοκαταστάσεις των τελεστών ˆ S και Sˆz ενός σωματίου με spin 1/. Να βρείτε την αναπαράσταση των τελεστών S ˆx, Sˆ και Sˆz στη

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

kg(χιλιόγραμμο) s(δευτερόλεπτο) Ένταση ηλεκτρικού πεδίου Α(Αμπέρ) Ένταση φωτεινής πηγής cd (καντέλα) Ποσότητα χημικής ουσίας mole(μόλ)

kg(χιλιόγραμμο) s(δευτερόλεπτο) Ένταση ηλεκτρικού πεδίου Α(Αμπέρ) Ένταση φωτεινής πηγής cd (καντέλα) Ποσότητα χημικής ουσίας mole(μόλ) ΕΙΣΑΓΩΓΗ- ΦΥΣΙΚΑ ΜΕΓΕΘΗ Στα φυσικά φαινόμενα εμφανίζονται κάποιες ιδιότητες της ύλης. Για να περιγράψουμε αυτές τις ιδιότητες χρησιμοποιούμε τα φυσικά μεγέθη. Τέτοια είναι η μάζα, ο χρόνος, το ηλεκτρικό

Διαβάστε περισσότερα

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; Μονόμετρα ονομάζονται τα μεγέθη τα οποία, για να τα προσδιορίσουμε πλήρως, αρκεί να γνωρίζουμε

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #1: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ.

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #1: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 005-06, 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. Πως ορίζεται και τι σηµαίνει ο όρος lop στους επιστηµονικούς υπολογισµούς.

Διαβάστε περισσότερα

ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ. Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής:

ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ. Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής: ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής: (,)(,)()() h 1 u x t u x t u t x (1) e Η διαφορά με τα

Διαβάστε περισσότερα

Κεφάλαιο 2. Κίνηση κατά μήκος ευθείας γραμμής

Κεφάλαιο 2. Κίνηση κατά μήκος ευθείας γραμμής Κεφάλαιο 2 Κίνηση κατά μήκος ευθείας γραμμής Στόχοι 1 ου Κεφαλαίου Περιγραφή κίνησης σε ευθεία γραμμή όσον αφορά την ταχύτητα και την επιτάχυνση. Διαφορά μεταξύ της μέσης και στιγμιαίας ταχύτητας καθώς

Διαβάστε περισσότερα

Τυχαία μεταβλητή (τ.μ.)

Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) είναι μια συνάρτηση X ( ) με πεδίο ορισμού το δειγματικό χώρο Ω του πειράματος και πεδίο τιμών ένα υποσύνολο πραγματικών αριθμών που συμβολίζουμε συνήθως

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. f (x) =, x 0, (1), x. lim f (x) = lim = +. x

ΣΗΜΕΙΩΣΕΙΣ. f (x) =, x 0, (1), x. lim f (x) = lim = +. x ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ [Κεφ. 2.9: Ασύμπτωτες Κανόνες de l Hospital Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ ΑΣΥΜΠΤΩΤΕΣ-ΚΑΝΟΝΑΣ

Διαβάστε περισσότερα

2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ

2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ .5. ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ Η μέθοδος κατασκευής διαστήματος εμπιστοσύνης για την πιθανότητα που περιγράφεται στην προηγούμενη ενότητα μπορεί να χρησιμοποιηθεί για την κατασκευή διαστημάτων

Διαβάστε περισσότερα

21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης

21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ Στέλιος Τζωρτζάκης Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ 1 3 4 Το δυναμικό του αρμονικού ταλαντωτή Η παραβολική προσέγγιση βρίσκει άμεση

Διαβάστε περισσότερα

Ευθύγραμμες Κινήσεις

Ευθύγραμμες Κινήσεις Οι παρακάτω σημειώσεις διανέμονται υπό την άδεια: Creaive Commons Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 4.0 Διεθνές. 1 Θέση και Σύστημα αναφοράς Στην καθημερινή μας ζωή για να περιγράψουμε

Διαβάστε περισσότερα

ΦΥΣ 145 Λύσεις Ενδιάμεσης Εξέτασης Χ. Παναγόπουλος 12/3/2015

ΦΥΣ 145 Λύσεις Ενδιάμεσης Εξέτασης Χ. Παναγόπουλος 12/3/2015 Οι εντολές είναι: ΦΥΣ 145 Λύσεις Ενδιάμεσης Εξέτασης Χ. Παναγόπουλος 12/3/2015 ls -l../lab3/*/data* cp../lab3/*/plot*../lab3 mkdir../lab1/plot grep FORMAT../*/prog*.f chmod o+r../lab*/*/plot2 cd../lab3/exercise1

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την

Διαβάστε περισσότερα

ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. 21 Μαίου Γράψτε το ονοµατεπώνυµο και αριθµό ταυτότητάς σας στο πάνω µέρος της αυτής της σελίδας.

ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. 21 Μαίου Γράψτε το ονοµατεπώνυµο και αριθµό ταυτότητάς σας στο πάνω µέρος της αυτής της σελίδας. ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική 21 Μαίου 2009 Γράψτε το ονοµατεπώνυµο και αριθµό ταυτότητάς σας στο πάνω µέρος της αυτής της σελίδας. Επίσης γράψετε το password σας. Στο τέλος της εξέτασης θα πρέπει

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα. Φαινόμενα μεταφοράς Ορισμοί. Ενεργός διατομή 3. Ενεργός διατομή στο μοντέλο των σκληρών σφαιρών

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 6//0 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ Σωματίδιο μάζας m = Kg κινείται ευθύγραμμα και ομαλά στον

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση

Διαβάστε περισσότερα

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η ιδέα του συμπτωτικού πολυωνύμου, του πολυωνύμου, δηλαδή, που είναι του μικρότερου δυνατού βαθμού και που, για συγκεκριμένες,

Διαβάστε περισσότερα

Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Ολοκληρώσαμε

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΘΑΛΑΣΣΙΩΝ ΚΑΤΑΣΚΕΥΩΝ

ΔΥΝΑΜΙΚΗ ΘΑΛΑΣΣΙΩΝ ΚΑΤΑΣΚΕΥΩΝ ΔΥΝΑΜΙΚΗ ΘΑΛΑΣΣΙΩΝ ΚΑΤΑΣΚΕΥΩΝ ΤΑΛΑΝΤΩΣΕΙΣ ΚΥΛΙΝΔΡΙΚΗΣ ΚΑΤΑΣΚΕΥΗΣ ΛΟΓΩ ΔΙΝΩΝ Γ. Σ. ΤΡΙΑΝΤΑΦYΛΛΟΥ ΚΑΘΗΓΗΤΗΣ ΕΜΠ Διατύπωση των εξισώσεων Θεωρούμε κύλινδρο διαμέτρου D, μήκους l, και μάζας m. Ο κύλινδρος συγκρατειται

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ

ΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ ΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ Εισαγωγή στη μέθοδο των πεπερασμένων στοιχείων Α. Θεοδουλίδης Η Μεθοδος των Πεπερασμένων στοιχείων Η Μέθοδος των ΠΣ είναι μια

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

Η ΚΙΝΗΣΗ ΣΩΜΑΤΙΟ Ή ΥΛΙΚΟ ΣΗΜΕΙΟ Ή ΣΗΜΕΙΑΚΟ ΑΝΤΙΚΕΙΜΕΝΟ

Η ΚΙΝΗΣΗ ΣΩΜΑΤΙΟ Ή ΥΛΙΚΟ ΣΗΜΕΙΟ Ή ΣΗΜΕΙΑΚΟ ΑΝΤΙΚΕΙΜΕΝΟ «Μπορούμε να παρομοιάσουμε τις έννοιες που δεν έχουν καμιά θεμελίωση στη φύση, με τα δάση εκείνα του Βορρά όπου τα δένδρα δεν έχουν καθόλου ρίζες. Αρκεί ένα φύσημα του αγέρα, ένα ασήμαντο γεγονός για να

Διαβάστε περισσότερα

11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11.1 Γενικά περί συνήθων διαφορικών εξισώσεων Μια συνήθης διαφορική εξίσωση (ΣΔΕ) 1 ης τάξης έχει τη μορφή dy d = f (, y()) όπου f(, y) γνωστή και y() άγνωστη συνάρτηση.

Διαβάστε περισσότερα

6. Στατιστικές μέθοδοι εκπαίδευσης

6. Στατιστικές μέθοδοι εκπαίδευσης 6. Στατιστικές μέθοδοι εκπαίδευσης Μία διαφορετική μέθοδος εκπαίδευσης των νευρωνικών δικτύων χρησιμοποιεί ιδέες από την Στατιστική Φυσική για να φέρει τελικά το ίδιο αποτέλεσμα όπως οι άλλες μέθοδοι,

Διαβάστε περισσότερα

η απόσταση d γίνεται ελάχιστη. Τα αντίστοιχα σημεία των καμπυλών είναι: P, P, , P, P, ( 2) ,

η απόσταση d γίνεται ελάχιστη. Τα αντίστοιχα σημεία των καμπυλών είναι: P, P, , P, P, ( 2) , Λύσεις Ασκήσεων ου Κεφαλαίου 45 και επειδή d x x = / = 7.5649 > η απόσταση d γίνεται ελάχιστη. Τα αντίστοιχα σημεία των καμπυλών είναι: και ( x ) = ( x x ) = P P, P,.58975,.478 x =.58975 x =.58975 ( x

Διαβάστε περισσότερα

F x h F x f x h f x g x h g x h h h. lim lim lim f x

F x h F x f x h f x g x h g x h h h. lim lim lim f x 3 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 013: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο 1, ) ΘΕΜΑ Α 1 Έχουμε F h F f( h) g h f() g f( h)

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΟΡΙΑ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΚΕΦΑΛΑΙΟ 1ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΟΡΙΑ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΟΡΙΑ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Η έννοια του ορίου στο x ο Υπάρχουν συναρτήσεις οι τιμές των οποίων πλησιάζουν ένα πραγματικό αριθμό L, όταν η ανεξάρτητη μεταβλητή

Διαβάστε περισσότερα

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER 4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι

Διαβάστε περισσότερα

ΦΥΣ 145 Υπολογιστικές Μέθοδοι στη Φυσική

ΦΥΣ 145 Υπολογιστικές Μέθοδοι στη Φυσική ΦΥΣ 145 Υπολογιστικές Μέθοδοι στη Φυσική 4 η Εργασία Επιστροφή: 24/3/13 Yπενθύµιση: Οι εργασίες πρέπει να επιστρέφονται µε e-mail που θα στέλνετε από το πανεπιστηµιακό σας λογαριασµό το αργότερο µέχρι

Διαβάστε περισσότερα

Αριθμητικές Προσομοιώσεις του πρότυπου ISING στις Τρεις Διαστάσεις

Αριθμητικές Προσομοιώσεις του πρότυπου ISING στις Τρεις Διαστάσεις Αριθμητικές Προσομοιώσεις του πρότυπου ISING στις Τρεις Διαστάσεις Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο ΚΟΡΝΑΡΟΣ ΕΥΑΓΓΕΛΟΣ Εισαγωγή ό ή ί ί μ έ ά μ έ Ising μ

Διαβάστε περισσότερα

Αριθμητική Ανάλυση & Εφαρμογές

Αριθμητική Ανάλυση & Εφαρμογές Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου

Διαβάστε περισσότερα

Δύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης:

Δύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης: Ορολογία bit (binary digit): δυαδικό ψηφίο. Τα δυαδικά ψηφία είναι το 0 και το 1 1 byte = 8 bits word: η θεμελιώδης μονάδα σύμφωνα με την οποία εκπροσωπούνται οι πληροφορίες στον υπολογιστή. Αποτελείται

Διαβάστε περισσότερα

Άσκηση 1. Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του Z στα παρακάτω κομμάτια κώδικα FORTRAN:

Άσκηση 1. Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του Z στα παρακάτω κομμάτια κώδικα FORTRAN: Άσκηση 1 Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του J στα παρακάτω κομμάτια κώδικα FORTRAN: INTEGER J J = 5 J = J + 1 J = J + 1 INTEGER X, Y, J X = 2 Y =

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΗ ΡΕΥΣΤΟΔΥΝΑΜΙΚΗ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ

ΥΠΟΛΟΓΙΣΤΙΚΗ ΡΕΥΣΤΟΔΥΝΑΜΙΚΗ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΥΠΟΛΟΓΙΣΤΙΚΗ ΡΕΥΣΤΟΔΥΝΑΜΙΚΗ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ Εαρινό Εξάμηνο 2017 Διδάσκουσα: Δρ. Βλαχομήτρου Μαρία ΠΡΟΤΕΙΝΟΜΕΝΗ ΒΙΒΛΙΟΓΡΑΦΙΑ 1.

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [a, b] είναι όριο?

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [a, b] είναι όριο? ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [, ] είναι όριο? β) Για να βρούμε το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [, ] πρέπει

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Στοιχειώδη Σήματα Συνεχούς Χρόνου 1. Μοναδιαία Βηματική Συνάρτηση 2. Κρουστική Συνάρτηση ή

Διαβάστε περισσότερα

Πανεπιστήµιο Αθηνών. προς το χρόνο και χρησιµοποιείστε την εξίσωση Schrodinger για να βρείτε τη χρονική παράγωγο της κυµατοσυνάρτησης.

Πανεπιστήµιο Αθηνών. προς το χρόνο και χρησιµοποιείστε την εξίσωση Schrodinger για να βρείτε τη χρονική παράγωγο της κυµατοσυνάρτησης. Πανεπιστήµιο Αθηνών Τµήµα Φυσικής Κβαντοµηχανική Ι Α Καρανίκας και Π Σφήκας Άσκηση 1 Η Hamiltonian ενός συστήµατος έχει τη γενική µορφή Δείξτε ότι Υπόδειξη: Ξεκινείστε από τον ορισµό της αναµενόµενης τιµής,

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση 2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του φυσικού εκκρεμούς.

Εργαστηριακή Άσκηση 2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του φυσικού εκκρεμούς. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 09104042 Εργαστηριακή Άσκηση 2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του φυσικού

Διαβάστε περισσότερα

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 8Α ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ A ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Πότε μια συνάρτηση λέγεται συνεχής σε ένα σημείο του πεδίου ορισμού o της ; Απάντηση : ( ΟΜΟΓ, 6 ΟΜΟΓ, 9 Β, ΟΜΟΓ, 5 Έστω μια συνάρτηση και ένα σημείο του πεδίου

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2009 ΕΥΤΕΡΟ ΜΕΡΟΣ :

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2009 ΕΥΤΕΡΟ ΜΕΡΟΣ : ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ-ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΝΑΛΥΣΗ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΙΘΑΝΟΤΗΤΕΣ-ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. α.. δ. 3. β. 4. γ. 5. α-λ, β-σ, γ-σ, δ-σ, ε-λ. ΘΕΜΑ B. Σωστή απάντηση είναι η (β). Εφαρμόζουμε την αρχή της διατήρησης

Διαβάστε περισσότερα

Ομάδα Δ. Λύνοντασ Προβλήματα Φυςικήσ με τον υπολογιςτή

Ομάδα Δ. Λύνοντασ Προβλήματα Φυςικήσ με τον υπολογιςτή Ομάδα Δ. Λύνοντασ Προβλήματα Φυςικήσ με τον υπολογιςτή Πρόβλημα 9 α : Κλίςη καμπύλησ Πρόβλημα 9 β : Εμβαδόν καμπύλησ Πωσ μπορεί κανείσ να λύςει προβλήματα με τη βοήθεια τησ Mahemaica Πρόβλημα 9 α : Κλίςη

Διαβάστε περισσότερα

ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΕΓΧΕΙΡΙΔΙΟ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ ΔΗΜΗΤΡΙΟΣ ΘΕΟΔΩΡΙΔΗΣ Κεφάλαιο 1.1 Ευθύγραμμη κίνηση 1. Τι ονομάζουμε κίνηση; Τι ονομάζουμε τροχιά; Ποια είδη τροχιών γνωρίζετε; Κίνηση ενός αντικειμένου

Διαβάστε περισσότερα

Κεφάλαιο M2. Κίνηση σε μία διάσταση

Κεφάλαιο M2. Κίνηση σε μία διάσταση Κεφάλαιο M2 Κίνηση σε μία διάσταση Κινηματική Περιγράφει την κίνηση, αγνοώντας τις αλληλεπιδράσεις με εξωτερικούς παράγοντες που ενδέχεται να προκαλούν ή να μεταβάλλουν την κίνηση. Προς το παρόν, θα μελετήσουμε

Διαβάστε περισσότερα

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 8Α ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ A ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Πότε μια συνάρτηση λέγεται συνεχής σε ένα σημείο του πεδίου ορισμού o της ; Απάντηση : ( ΟΜΟΓ, 6 ΟΜΟΓ, 9 Β, ΟΜΟΓ, 5 Έστω μια συνάρτηση και ένα σημείο του πεδίου

Διαβάστε περισσότερα

Ημερομηνία: Πέμπτη 5 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Ημερομηνία: Πέμπτη 5 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ 18/1/016 ΕΩΣ 05/01/017 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Ημερομηνία: Πέμπτη 5 Ιανουαρίου 017 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α1. Έστω η συνάρτηση

Διαβάστε περισσότερα

Hamiltonian Δυναμική - Παράδειγμα

Hamiltonian Δυναμική - Παράδειγμα Hamiltonian Δυναμική - Παράδειγμα ΦΥΣ 211 - Διαλ.12 1 Μάζα m κινείται στο εσωτερικό επιφάνειας κατακόρυφου κώνου ρ=cz. Το σώμα κινείται μέσα σε ομοιόμορφο βαρυτικό πεδίο με g προς τα κάτω. Χρησιμοποιήστε

Διαβάστε περισσότερα