Μερικές Διαφορικές Εξισώσεις

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μερικές Διαφορικές Εξισώσεις"

Transcript

1 Πανεπιστήμιο Πατρών, Τμήμα Μαθηματικών Μερικές Διαφορικές Εξισώσεις Χειμερινό εξάμηνο ακαδημαϊκού έτους 14-15, Διδάσκων: Α.Τόγκας ο φύλλο προβλημάτων Ονοματεπώνυμο - ΑΜ:

2 Πρόβλημα 1. Για κάθε μια από τις ακόλουθες αρχικές τιμές θερμοκρασίας i) να βρεθεί η λύση στην μορφή μια σειράς Fourier της εξίσωσης της θερμότητας με περιοδικές συνοριακές συνθήκες u t = u x x π < x < π, t >, u( π, t) = u(π, t), u x ( π, t) = u x (π, t), t. (ii) Να βρεθεί η θερμοκρασία ισορροπίας καθώς t. Απάντηση: α) u(x, ) = cos x, β) u(x, ) = sin x + sin x, π x π. i) Αναζητούμε λύσεις χωριζομένων μεταβλητών της μορφής u(x, t) = e λ t v(x). Εισάγοντας στην εξίσωση της θερμότητας, η τελευταία ανάγεται στην ακόλουθη ΣΔΕ κι από την επιβολή των συνοριακών συνθηκών έχουμε ότι θα πρέπει v (x) = λv(x), (1.1) v( π) = v(π), v ( π) = v (π). (1.) Οι σχέσεις (1.1), (1.), απαρτίζουν τo πρόβλημα ιδιοτιμών, μέσω του οποίου θα βρούμε τις αντίστοιχες ιδιολύσεις της ΜΔΕ και κατ επέκταση θα κατασκευάσουμε την λύση του προβλήματος στην μορφή μιας σειράς Fourier. λ =. Τότε η λύση της (1.1) είναι η v(x) = A x + B. Επιβάλλοντας την πρώτη συνοριακή συνθήκη παίρνουμε ότι Α ( π) + B = A π + B A =, ενώ η δεύτερη συνοριακή συνθήκη (με A = ) ικανοποιείται αυτόματα. Οπότε έχουμε την ιδιοτιμή λ =, με αντίστοιχη ιδιοσυνάρτηση v (x) = 1, κι ιδιολύση u (x, t) = 1, (η σταθερή παραλείπεται αφού θα την εισάγουμε στο τέλος παίρνοντας έναν άπειρο γραμμικό συνδυασμό των ιδιολύσεων). λ = ω >, (ω > ). Τότε η λύση της (1.1) είναι η v(x) = A e ω x + B e ω x. Επιβάλλοντας τις συνοριακές συνθήκες παίρνουμε τις ακόλουθες σχέσεις για τις παραμέτρους A, B, (A B) sinh(ω π) =, (A + B) sinh(ω π) =. Αφού ω, τότε sinh(ω π), και συνεπώς A B = A + B = και συνακόλουθα A = B =, οπότε δεν υπάρχει μη τετριμμένη λύση σε αυτήν την περίπτωση, κι άρα δεν υπάρχει ιδιοτιμή κι αντίστοιχη ιδιοσυνάρτηση κι ιδιολύση.

3 λ = ω <, (ω > ). Τότε η λύση της (1.1) είναι η v(x) = A cos ω x + B sin ω x, Επιβάλλοντας τις συνοριακές συνθήκες παίρνουμε τις ακόλουθες σχέσεις για τις παραμέτρους A, B, A sin ω π =, B sin ω π =. Αν sin ω π, τότε θα πρέπει A = B =, δηλαδή η τετριμμένη λύση. Οπότε θα πρέπει sin ω π = δηλαδή ω = k, k = 1,, 3 Δηλαδή έχουμε ιδιοτιμές λ k = k, κι αντίστοιχες ιδιοσυναρτήσεις v k (x) = A k cos k x + B k sin k x, k = 1,, 3, κι ιδιολύσεις u k (x, t) = A k e k t cos k x + B k e k t sin k x, k = 1,, 3, Λαμβάνοντας υπόψη και την ιδιοτιμή λ =, παριστάνουμε την λύση στην μορφή μιας άπειρης σειράς u(x, t) = A + ( A k t e k cos k x + B k e k t sin k x ), k=1 όπου οι σταθερές A k, B k, θα προσδιορισθούν από την αρχική συνθήκη. α) Αν u(x, ) = cos x, τότε θα πρέπει B k = (k 1), A =, A 1 = 1, A k = για k > 1, και η λύση του ΠΑΣΤ είναι η u(x, t) = e t cos x. β) Αν u(x, ) = sin x + sin x = 1 1 cos x + sin x, τότε θα πρέπει A = 1, A 1 =, A = 1, A k = για k >, B 1 =, B k = για k > 1, και η λύση του ΠΑΣΤ σε αυτή την περίπτωση είναι η u(x, t) = 1 + e t sin x 1 e 4 t cos x. ii) Σε κάθε περίπτωση η θερμοκρασία ισορροπίας καθώς t, είναι A αφού im u(x, t) = A t. Οπότε για τα αρχικά δοσμένα του α) μέρους του προβλήματος η θερμοκρασία ισορροπίας είναι, ενώ για τα αρχικά δοσμένα του β) μέρους είναι 1. Σχήμα 1: Η λύση για τα αρχικά δοσμένα α) Σχήμα : Η λύση για τα αρχικά δοσμένα β)

4 Πρόβλημα. Θεωρούμε το ακόλουθο πρόβλημα αρχικών συνοριακών τιμών (ΠΑΣΤ) για την εξίσωση της θερμότητας με ομογενείς συνοριακές συνθήκες τύπου Neumann (μονωμένα άκρα) u t = u x x π < x < π, t >, u x ( π, t) = u x (π, t) =, t, και αρχική κατανομή θερμοκρασίας u(x, ) = 1, x π,, π < x π. αʹ) Να βρεθεί η λύση του ΠΑΣΤ στην μορφή μιας σειράς Fourier. βʹ) Να βρεθεί η θερμοκρασία ισορροπίας καθώς t. Απάντηση: α ) Αναζητούμε λύσεις χωριζομένων μεταβλητών της μορφής u(x, t) = e λ t v(x). Εισάγοντας στην εξίσωση της θερμότητας, η τελευταία ανάγεται στην ακόλουθη ΣΔΕ κι από την επιβολή των συνοριακών συνθηκών έχουμε ότι θα πρέπει v (x) = λv(x), (.1) v ( π) =, v (π) =. (.) Οι σχέσεις (.1), (.), απαρτίζουν τo πρόβλημα ιδιοτιμών, μέσω του οποίου θα βρούμε τις αντίστοιχες ιδιολύσεις της ΜΔΕ και κατ επέκταση θα κατασκευάσουμε την λύση του προβλήματος στην μορφή μιας σειράς Fourier. λ =. Τότε η λύση της (.1) είναι η v(x) = A x + B. Επιβάλλοντας τις συνοριακές συνθήκες παίρνουμε ότι A =. Οπότε έχουμε την ιδιοτιμή λ =, με αντίστοιχη ιδιοσυνάρτηση v (x) = 1, κι ιδιολύση u (x, t) = 1. λ = ω >, (ω > ). Τότε η λύση της (1.1) είναι η v(x) = A e ω x + B e ω x. Επιβάλλοντας τις συνοριακές συνθήκες παίρνουμε τις ακόλουθες σχέσεις για τις παραμέτρους A, B, A ω e ω π B ωe ω π =, Aωe ω π B ωe ω π =, ή ισοδύναμα (αφού ω ) A e ω π B e ω π =, Ae ω π B e ω π =,

5 το οποίο είναι ένα ομογενές γραμμικό σύστημα ως προς τις παραμέτρους A, B. Για να υπάρχουν μη-μηδενικές λύσεις αρκεί και πρέπει η ορίζουσα Δ να είναι μηδέν. Όμως η ορίζουσα είναι Δ = e ω π e ω π, και είναι μηδέν αν και μόνο αν ω =. Άτοπο, γιατί υποθέσαμε ότι ω >, συνεπώς δεν υπάρχουν ιδιοτιμές σε αυτήν την περίπτωση και κατ επέκταση δεν υπάρχουν ιδιοσυναρτήσεις κι ιδιολύσεις. λ = ω <, (ω > ). Τότε η λύση της (.1) είναι η v(x) = A cos ω x + B sin ω x. Επιβάλλοντας τις συνοριακές συνθήκες παίρνουμε τις ακόλουθες σχέσεις για τις παραμέτρους A, B, ή ισοδύναμα A ω sin( ωπ) + B ω cos( ω π) =, A ω sin(ωπ) + B ω cos(ω π) =, A sin(ωπ) + B cos(ω π) =, A sin(ωπ) + B cos(ω π) =. Το παραπάνω ομογενές γραμμικό σύστημα ως προς τις παραμέτρους A, B, έχει λύσεις μη-μηδενικές αν και μόνο αν η ορίζουσα Δ είναι μηδέν. Υπολογίζουμε την ορίζουσα και βρίσκουμε ότι Δ = sin(ω π) cos(ω π) = sin( ω π). Οπότε Δ = ω π = k π ω = k, k = 1,, 3, Δηλαδή έχουμε τις ιδιοτιμές λ k = k, k = 1,, 3, Διακρίνουμε τις εξής περιπτώσεις : 4 k = n, άρτιος. Τότε ω = n και η συνοριακή συνθήκη (οποιαδήποτε από τις δυο αφού είναι γραμμικώς εξαρτημένες) δίνει B =. Συνεπώς έχουμε ιδιοτιμές και αντίστοιχες ιδιοσυναρτήσεις - ιδιολύσεις n = 1,, 3, λ n = n, v n (x) = cos n x, u n (x, t) = e n t cos n x, k = n 1, περιττός. Τότε ω = n 1 και η συνοριακή συνθήκη (οποιαδήποτε από τις δυο αφού είναι γραμμικώς εξαρτημένες) δίνει A =. Συνεπώς έχουμε ιδιοτιμές και αντίστοιχες ιδιοσυναρτήσεις - ιδιολύσεις λ n = ( n 1 ), vn (x) = sin ( n 1 ) x, u n (x, t) = e (n 1/) t sin ( n 1 ) x, n = 1,, 3, Λαμβάνοντας υπόψη και την ιδιοτιμή λ =, γράφουμε την λύση σαν ένα άπειρο άθροισμα γραμμικών συνδυασμών των ιδιολύσεων κι έχουμε u(x, t) = A + [ A n e n t cos n x + B n e (n 1/) t sin ( n 1 ) x ],

6 όπου οι συντελεστές A n, B n θα προσδιορισθούν από την αρχική συνθήκη. Παρατηρούμε ότι η αρχική συνθήκη u(x, ) = f(x) είναι άρτια συνάρτηση, συνεπώς οι συντελεστές B n των ημιτόνων (περιττές συναρτήσεις) θα πρέπει να είναι μηδέν, B n =. Για τους συντελεστές A n έχουμε A n = π π A = π f(x) cos n x d x = π π/ π f(x)d x = π π/ d x = 1. cos n x d x = n π sin n π ( ) =, n = m, ( 1)m, n = m 1 π( m 1) m = 1,, 3, Οπότε η λύση του ΠΑΣΤ στην μορφή μιας σειράς Fourier είναι u(x, t) = 1 + A n e n t cos n x. β ) Παρατηρούμε ότι u(x,t) 1 καθώς t, οπότε η θερμοκρασία ισορροπίας είναι 1. Σχήμα 3: Γραφική παράσταση της λύσης.

7 Πρόβλημα 3. Θεωρούμε το ακόλουθο ΠΑΣΤ για την κυματική εξίσωση u x x u t t =, < x < π, t >, u(x, ) = sin x, u t (x, ) =, x π, u x (, t) =, u x (π, t) =, t. αʹ) Να γραφεί η λύση του ΠΑΣΤ στην μορφή μιας σειράς Fourier. βʹ) Να δειχθεί ότι η h(t) = u( π /4, t) είναι περιοδική συνάρτηση και να βρεθεί η περίοδος. γʹ) Ποιά είναι η τιμή u( π /4, π /); (i), (ii) 1 /, (iii) 1 /, (iv). δʹ) Έχει η Απάντηση: u ασυνέχειες; Αν ναι, κατά μήκος ποιών καμπυλών διαδίδονται; x α ) Αναζητούμε λύσεις της κυματικής εξίσωσης που είναι χωριζομένων μεταβλητών, δηλαδή της μορφής u(x, t) = X(x) T (t). Εισάγουμε στην κυματική εξίσωση u x x = u t t και παίρνουμε X (x)t (t) = X(x)T (t). Αφού X(x) και T (t), διαιρώντας την παραπάνω εξίσωση με τον όρο X(x) T (t), έχουμε X(x) X(x) = T (t) T (t), όπου το αριστερό μέλος είναι συνάρτηση μόνο του x, ενώ το δεξί μέρος συνάρτηση μόνο του t. Για να μπορεί να συμβεί αυτό θα πρέπει και οι δυό όροι να είναι ίσοι με μια σταθερή ποσότητα που την ονομάζουμε λ R. Οπότε η ΜΔΕ ανάγεται στην επίλυση των ΣΔΕ X (x) = λx(x), T (t) = λt (t). Από την άλλη, οι συνοριακές συνθήκες u x (, t) =, u x (π, t) =, δίνουν ότι θα πρέπει X () =, X (π) =, αντίστοιχα. Οπότε έχουμε το πρόβλημα ιδιοτιμών X (x) = λx(x), X () = X (π) =. λ =. Σε αυτή την περίπτωση έχουμε ότι X(x) = A x + B, κι οι συνοριακές συνθήκες ικανοποιούνται όταν A =. Οπότε έχουμε την ιδιοτιμή λ =, με ιδιοσυνάρτηση X (x) = 1. Από την άλλη, η ΣΔΕ για την συνάρτηση T (t) δίνει ότι οπότε συνολικά έχουμε τις ιδιολύσεις {1, t}. T (t) = Γ t + Δ, λ = ω >, (ω > ). Σε αυτή την περίπτωση έχουμε ότι X(x) = A e ω x + B e ω x,

8 κι επιβάλλοντας τις συνοριακές συνθήκες παίρνουμε ότι θα πρέπει ή ισοδύναμα A ω B ω =, A ω e ωπ B ω ω π =, A = B, A sinh(ω π) =. Αφού ω, τότε sinh(ω π), συνεπώς παίρνουμε μόνο την τετριμμένη λύση A = B =, και δεν υπάρχουν ιδιοτιμές σε αυτήν την περίπτωση. λ = ω <, (ω > ). Σε αυτή την περίπτωση έχουμε ότι X(x) = A cos ω x + B sin ω x, κι επιβάλλοντας τις συνοριακές συνθήκες παίρνουμε ότι θα πρέπει ή ισοδύναμα B =, A ω sin ωπ =, B =, sin ω π =. Οπότε έχουμε τις ιδιοτιμές λ = k, k = 1,, 3, με αντίστοιχες ιδιοσυναρτήσεις X k (x) = cos k x. Από την άλλη η ΣΔΕ για την συνάρτηση T (t) για τις τιμές της λ που βρήκαμε δίνει ότι θα πρέπει T (t) = Γ cos k t + Δ sin k t, οπότε έχουμε τις ιδιολύσεις {cos k x cos k t, cos k x sin k t}. Λαμβάνοντας υπόψη και τις ιδιολύσεις της ιδιοτιμής λ =, γράφουμε την λύση σαν ένα άπειρo άθροισμα γραμμικών συνδυασμών των ιδιολύσεων κι έχουμε u(x, t) = A + B t + (A k cos k x cos k t + B k cos k x sin k t), (3.1) k=1 όπου οι συντελεστές A k, Β κ θα προσδιορισθούν από τις αρχικές συνθήκες u(x, ) = sin x, και u t (x, ) =. Για την πρώτη αρχική συνθήκη έχουμε u(x, ) = A + A k cos k x = sin x, k=1 ενώ παραγωγίζοντας την σχέση (3.1) ως προς t έχουμε για την δεύτερη αρχική συνθήκη Συνεπώς B k =, και A k = 1 π π u t (x, ) = B + kb k cos k x =. k=1 A = 1 π π sin x d x = π =, sin x cos k x d x = =, k περιττός, 4, π(1 k ) k άρτιος.

9 Συνεπώς η λύση στη μορφή μιας σειράς Fourier είναι u(x, t) = π + 4 π(1 4 n ) cos( n x) cos( n t). (3.) β ) Για x = π 4 έχουμε π h(t) = u ( 4, t ) = π + 4 π(1 4 n ) cos ( n π 4 ) cos( n t) = π + 4 π(1 4 n ) cos n π ( ) cos( n t). Παρατηρούμε ότι οι όροι με n περιττό θετικό ακέραιο δεν συνεισφέρουν στην h(t), αφού τότε cos( ) =, οπότε η συνάρτηση h(t) παίρνει την μορφή n π h(t) = π + m=1 4 ( 1) m π(1 16 m ) cos(4 m t), και αφού h(t + π ) = h(t), η h(t) είναι περιοδική συνάρτηση με περίοδο π. γ ) Ο τύπος του d Aembert για την άπειρη χορδή ( < x < ) είναι u(x, t) = 1 ( f(x t) + f(x + t)) + 1 x t x+t g(s)d s, (3.3) όπου u(x, ) = f(x), u t (x, ) = g(x). Για το πρόβλημά μας γνωρίζουμε τις αρχικές τιμές f(x) = sin x και g(x) = μόνο για το διάστημα x π. Θα πρέπει λοιπόν να επεκτείνουμε τα αρχικά δοσμένα κατάλληλα σε όλο το άξονα των x, έτσι ώστε η λύση που δίνεται από τον τύπο του d Aembert να ικανοποιεί αυτόματα τις συνοριακές συνθήκες στα άκρα x =, x = π. Επειδή η λύση που δίνεται από την σχέση (3.) είναι άρτια συνάρτηση κάνοντας άρτια π-περιοδική επέκταση των συναρτήσεων f(x), g(x), παρατηρούμε ότι οι συνοριακές συνθήκες στην (3.3) ικανοποιούνται. Πράγματι, επεκτείνουμε τα αρχικά δοσμένα έτσι που f( x) = f(x), g( x) = g(x),, f( π + x) = f(x), g( π + x) = g(x). Παραγωγίζοντας την (3.3) ως προς x, παίρνουμε Στα άκρο x = έχουμε u x (x, t) = 1 ( f (x t) + f (x + t)) + 1 ( g(x + t) g(x t)). u x (, t) = 1 ( f ( t) + f (t)) + 1 ( g(t) g( t)) =, αφού g( t) = g(t) και αν f( t) = f(t), τότε f ( t) = f (t). Στο άκρο x = π έχουμε u x (π, t) = 1 ( f (π t) + f (π + t)) + 1 ( g(π + t) g(π t)) =, αφού ισχύει ότι g(π + t) = g( π π + t) = g( π + t) = g(π t), και ομοίως f(π + t) = f(π t) και παραγωγίζοντας ως προς t, ισχύει ότι f (π + t) = f (π t).

10 Εφαρμόζοντας λοιπόν τον τύπο του d Aembert παίρνουμε u( π 4, π ) = 1 [ f( π 4 ) + f( 3 π 4 )] = 1 [ f( π 4 ) + f( 3 π 4 )] = 1 ( sin π 4 3 π + sin 4 ) = 1. u δ ) Η (x, t), παρουσιάζει ασυνέχειες στα άκρα x = και x = π, οι οποίες διαδίδονται κατά x μήκος των χαρακτηριστικών καμπυλών. Πράγματι, παραγωγίζοντας την αρχική συνθήκη u(x, ) = sin x ως προς x έχουμε ότι οπότε για το άκρο x =, έχουμε ότι u x (x, ) = cos x, im u x (x, ) = cos = 1, x ενώ από την συνοριακή συνθήκη u x (, t) = για κάθε t, άρα για t =, έχουμε u x (, ) =. Ομοίως, για το άκρο x = π, έχουμε im u x(x, ) = cos π = 1, x π ενώ από την συνοριακή συνθήκη u x (π, t) = για κάθε t, άρα για t =, έχουμε u x (π, ) =. Σχήμα 4: Η λύση u(x, t) Σχήμα 5: Η παράγωγος u(x, t) x

11 Πρόβλημα 4. Έστω ότι η u είναι μια κλασική λύση της κυματικής εξίσωσης u x x = u t t στο διάστημα < x < και ικανοποιεί τις ομογενείς συνοριακές συνθήκες τύπου Dirichet u(, t) = u(, t) =. Η ολική ενέργεια της u στο χρόνο t ορίζεται ως εξής 1 u E(t) = [( t ) u + ( x ) d x. ] Να επαληθευτεί η αρχή διατήρησης της ενέργειας δείχνοντας ότι η E(t) είναι σταθερή συνάρτηση. Απάντηση: Για να αποδείξουμε ότι η E(t) είναι σταθερή συνάρτηση, αρκεί να δείξουμε ότι E (t) =. Πράγματι, d d t E(t) = d d t 1 u [( t ) u + ( x ] ) d x = 1 u t [( t ) u + ( x ) d x ] = (u t u t t + u x u x t)d x = (u t u x x + u x u x t)d x = u t u x x d x + u t u x t d x = [u t u x] x= x= u t u t x d x + u t u x t d x = u t (, t)u x (, t) u t (, t)u x (, t), (4.1) όπου χρησιμοποιήσαμε το γεγονός ότι u t t = u x x και το γεγονός ότι η u(x, t) είναι μια κλασική λύση δηλαδή ότι η u και οι μερικές παράγωγοί της μέχρι τουλάχιστον δεύτερης τάξης είναι συνεχείς συναρτήσεις. Το τελευταίο το χρησιμοποιήσαμε για να περάσουμε την μερική παράγωγο μέσα στο ολοκλήρωμα, για να εκτελέσουμε την ολοκλήρωση κατά παράγοντες και για να θεωρήσουμε ότι u x t = u t x. Από τις συνοριακές συνθήκες u(, t) = u(, t) =, έχουμε ότι u t (, t) = u t (, t) =, συνεπώς στην εξίσωση (4.1) έχουμε ότι το δεξί μέλος είναι μηδέν, άρα η E(t) είναι σταθερή συνάρτηση E(t) = E().

12 Πρόβλημα 5. Θεωρούμε το ακόλουθο πρόβλημα συνοριακών τιμών για τη εξίσωση του Lapace u x x + u y y =, 1 < x < 1, 1 < y < 1, u(x, 1) = f(x), u(x, 1) =, u( 1, y) =, u(1, y) =. αʹ) Σωστό ή λάθος; Αν f( x) = f(x) είναι περιττή, τότε u(, y) = για κάθε 1 y 1. βʹ) Σωστό ή λάθος; Αν f() =, τότε u(, y) = για κάθε 1 y 1. Απάντηση: Αναζητούμε λύσεις χωριζομένων μεταβλητών της μορφής u(x, t) = X(x) Y (y). Εισάγουμε στην ΜΔΕ του Lapace u x x = u t t και παίρνουμε X (x)y (y) = X(x)Y (y). Αφού X(x) και Y (y), διαιρώντας την παραπάνω εξίσωση με τον όρο X(x) Y (y), έχουμε X(x) X(x) = Y (y) Y (y), όπου το αριστερό μέλος είναι συνάρτηση μόνο του x, ενώ το δεξί μέρος συνάρτηση μόνο του y. Για να μπορεί να συμβεί αυτό θα πρέπει και οι δυό όροι να είναι ίσοι με μια σταθερή ποσότητα που την ονομάζουμε λ R. Οπότε η ΜΔΕ ανάγεται στην επίλυση των ΣΔΕ X (x) λx(x) =, Y (t) + λy (y) =. Από την άλλη, οι συνοριακές συνθήκες u( 1, y) =, u(1, y) =, δίνουν ότι θα πρέπει X( 1) =, X(1) =, αντίστοιχα. Οπότε έχουμε το εξής πρόβλημα ιδιοτιμών X (x) λx(x) =, X( 1) = X(1) =. λ =. Σε αυτή την περίπτωση έχουμε ότι X(x) = A x + B, και επιβάλλοντας τις συνοριακές συνθήκες παίρνουμε A + B =, A + B =, συνεπώς A = Β =, οπότε δεν υπάρχει μη-τετριμμένη λύση σε αυτήν την περίπτωση κι άρα δεν υπάρχει ιδιοτιμή και κατ επέκταση ιδιολύση. λ = ω >, (ω > ). Σε αυτή την περίπτωση έχουμε ότι X(x) = A e ω x + B e ω x, κι επιβάλλοντας τις συνοριακές συνθήκες παίρνουμε ότι θα πρέπει A e ω + B e ω =, Ae ω + B e ω =,

13 Το τελευταίο είναι ένα ομογενές γραμμικό σύστημα για τις παραμέτρους A, B και για να έχει μήμηδενική λύση πρέπει και αρκεί η ορίζουσα Δ να είναι μηδέν. Όμως Δ = e ω e ω και είναι μηδέν αν και μόνο αν ω =, άτοπο. Οπότε και σε αυτήν την περίπτωση παίρνουμε μόνο την τετριμμένη λύση A = B =, κι έτσι δεν υπάρχουν ιδιοτιμές κι ιδιολύσεις. λ = ω <, (ω > ). Σε αυτή την περίπτωση έχουμε ότι X(x) = A cos ω x + B sin ω x, κι επιβάλλοντας τις συνοριακές συνθήκες παίρνουμε ότι θα πρέπει A cos ω B sin ω =, A cos ω + B sin ω =. (5.1) Το τελευταίο είναι ένα ομογενές γραμμικό σύστημα για τις παραμέτρους A, B και για να έχει μήμηδενική λύση πρέπει και αρκεί η ορίζουσα Δ να είναι μηδέν. Έχουμε ότι Δ = cos ω sin ω = sin ω, άρα θα πρέπει ω = k π ή ισοδύναμα ω = k π και συνεπώς έχουμε τις ιδιοτιμές λ k = k π, k = 4 1,, 3, Διακρίνουμε τις εξής περιπτώσεις : k = n, άρτιος. Τότε ω = n π και οποιαδήποτε από τις σχέσεις (5.1) δίνει A =. Συνεπώς έχουμε ιδιοτιμές και αντίστοιχες ιδιοσυναρτήσεις λ n = n π, X n (x) = sin(n π x), n = 1,, 3, Από την άλλη η ΣΔΕ για την Y (y) για λ n = n π δίνει ότι Y (y) = Γ e n π y + Δe n π y. Η συνοριακή συνθήκη u(x, 1) = μας πληροφορεί ότι θα πρέπει Y (1) =, οπότε θα πρέπει οπότε Γ = Δ e n π, Y (y) = Γ e n π y + Δe n π y = Δe n π e n π y + Δe n π y = Δe n π (e n π(1 y) (e n π(1 y) ) = Δ 1 e n π (e n π(1 y) (e n π(1 y) ) = Δe n π sinh (n π(1 y)). Οπότε έχουμε τις αντίστοιχες ιδιοσυναρτήσεις Y n (y) = sinh (n π(1 y)), n = 1,, 3, (η σταθερή παραλείπεται αφού θα εμφανισθούν στο τέλος όταν θα πάρουμε άπειρο άθροισμα από γραμμικούς συνδυασμούς των ιδιολύσεων). Συνεπώς, οι ιδιολύσεις του προβλήματός μας σε αυτήν την περίπτωση είναι u n (x, y) = X n (x)y n (y) = sin(n π x) sinh (n π(1 y)), n = 1,, 3, k = n 1, περιττός. Τότε ω = (n 1 )π και οποιαδήποτε από τις σχέσεις (5.1) δίνει B =. Συνεπώς έχουμε ιδιοτιμές και αντίστοιχες ιδιοσυναρτήσεις λ n = ( n 1 ) π, X n (x) = cos [( n 1 ) π x ], n = 1,, 3,

14 Με όμοιο τρόπο όπως στην προηγούμενη περίπτωση βρίσκουμε ότι οι αντίστοιχες ιδιοσυναρτήσεις Y n (y) είναι Y n (y) = sinh [( n 1 ) π(1 y) ], n = 1,, 3, Συνεπώς οι ιδιολύσεις σε αυτήν την περίπτωση είναι u n (x, y) = cos [( n 1 ) π x ] sinh [( n 1 ) π(1 y) ], n = 1,, 3, Γράφουμε την λύση u(x, y) σαν ένα άπειρo άθροισμα γραμμικών συνδυασμών των ιδιολύσεων και των δυό περιπτώσεων κι έχουμε u(x, y) = { A n sin(n π x) sinh (n π(1 y)) + B n cos [( n 1 ) π x ] sinh [( n 1 ) π(1 y) ]} (5.) n = 1,, 3, όπου οι συντελεστές A n, B n προσδιορίζονται από την συνοριακή συνθήκη u(x, 1) = f(x). α ) Παρατηρούμε ότι άν f( x) = f(x) είναι περιττή συνάρτηση τότε στην παραπάνω σειρά θα πρέπει B n =, και η λύση παίρνει την μορφή u(x, y) = A n sin(n π x) sinh (n π(1 y)), n = 1,, 3, όπου προφανώς όταν x =, έχουμε ότι u(, y) =. Συνεπώς η πρόταση του α ) ερωτήματος είναι αληθής. β ) Ας θεωρήσουμε την συνάρτηση f(x) = x η οποία είναι άρτια και f() =. Τότε στην λύση (5.) θα πρέπει A n = και υπολογίζοντας τους συντελεστές B n στην σειρά Fourier (ο αναγνώστης καλείται να εκτελέσει τις απαιτούμενες πράξεις) βρίσκουμε ότι B n. Οπότε σε αυτήν την περίπτωση έχουμε ότι u(, y) = B n sinh [( n 1 ) π(1 y) ], n = 1,, 3 η οποία συνάρτηση δεν είναι μηδέν για κάθε 1 y 1. Παρακάτω δίνεται η γραφική παράσταση της λύσης με συνορική τιμή u(x, 1) = x, και δίπλα της δίνεται η γραφική παράσταση της αντίστοιχης συνάρτησης u(, y)..15 u, y.1.5 y Σχήμα 6: Η λύση u(x, y) Σχήμα 7: Η συνάρτηση u(, y) Οπότε η πρόταση του ερωτήματος β ) είναι λανθασμένη.

15 Πρόβλημα 6. Να λυθεί το πρόβλημα συνοριακών τιμών τύπου Dirichet για την εξίσωση του Lapace u x x + u y y = στον κυκλικό τομέα T = { < θ < π /4, < r < 1} με u(r, ) = u(r, π /4) =, u(1, θ) = sin 4θ. y θ = π 4 r = 1 Απάντηση: θ = x Επειδή οι συνοριακές τιμές μας δίνονται πάνω σε κυκλικό τομέα ενδείκνυται να μετασχηματίσουμε την ΜΔΕ του Lapace u x x + u y y = από τις Καρτεσιανές συντεταγμένες (x, y) στις πολικές συντεταγμένες (r, θ) με x = r cos θ, y = r sin θ, ή r = x + y, θ = tan 1 y x, και να εφαρμόσουμε την μέθοδο του χωρισμού των μεταβλητών στις (r, θ). Γνωρίζουμε ότι η ΜΔΕ του Lapace στις (r, θ) μεταβλητές είναι u r r + 1 r u r + 1 r u θ θ =. Αναζητούμε λύσεις της μορφής u(r, θ) = R(r) Θ(θ) και εισάγοντας στην παραπάνω ΜΔΕ βρίσκουμε ότι θα πρέπει r R (r) + rr (r) R(r) = Θ (θ) Θ(θ) = λ. Επιβάλλοντας και τις συνοριακές συνθήκες u(r, ) =, u(r, π ) = έχουμε το εξής πρόβλημα 4 ιδιοτιμών Θ (θ) + λθ(θ) =, Θ() = Θ( π 4 ) =. λ =. Σε αυτή την περίπτωση έχουμε ότι Θ(θ) = A θ + B, και επιβάλλοντας τις συνοριακές συνθήκες παίρνουμε ότι A = B =, οπότε δεν υπάρχει μητετριμμένη λύση σε αυτήν την περίπτωση κι άρα δεν υπάρχει ιδιοτιμή και κατ επέκταση ιδιολύση. λ = ω <, (ω > ). Επειδή η συνάρτηση Θ(θ) είναι περιοδική, αφού η μεταβλητή θ είναι γωνία, κι επειδή σε αυτήν την περίπτωση έχουμε εκθετικές λύσεις οι οποίες δεν είναι περιοδικές συναρτήσεις, δεν μπορεί να αποτελούν ιδιοσυναρτήσεις. λ = ω >, (ω > ). Σε αυτή την περίπτωση Θ(θ) = A cos ω θ + B sin ω θ, κι επιβάλλοντας τις συνοριακές συνθήκες παίρνουμε ότι θα πρέπει A =, B sin ( ωπ 4 ) =. (6.1)

16 δηλαδή A =, και ω = 4 n, n = 1,, 3,. Άρα έχουμε τις ιδιοτιμές και τις αντίστοιχες ιδιοσυναρτήσεις λ = 16 n, Θ n (θ) = sin(4 n θ), n = 1,, 3, Από την άλλη, για λ = 16 n, η ΣΔΕ τύπου Euer για την R(r) έχει την γενική λύση r R (r) + rr (r) 16n R(r) =, R(r) = Γ r 4 n + Δr 4 n. Από την συνοριακή συνθήκη u(r, ) = για r = έχουμε ότι θα πρέπει u(, ) =, οπότε ο όρος με r 4 n που απειρίζεται όταν r δεν πρέπει να υπάρχει και συνεπώς θα πρέπει Δ =. Οπότε έχουμε αντίστoιχες ιδιοσυναρτήσεις R n (r) = r 4 n. Συνολικά, οι ιδιολύσεις του προβλήματος είναι u n (r, θ) = R n (r)θ n (θ) = r 4 n sin(4nθ), n = 1,, 3, Γράφουμε την λύση σαν ένα άπειρο άθροισμα από γραμμικούς συνδυασμούς των ιδιολύσεων και έχουμε u(r, θ) = A n r 4 n sin(4nθ), n = 1,, 3, όπου οι συντελεστές A n θα προσδιορισθούν από την συνοριακή συνθήκη u(1, θ) = sin(4 θ), δηλαδή u(1, θ) = A n sin(4nθ) = sin(4 θ), n = 1,, 3, Η παραπάνω σειρά Fourier είναι ήδη αναπτυγμένη σε μια σειρά ημιτόνων όπου θα πρέπει A n = για n 4, n = 1,, 3,, και A 4 = 1. Οπότε u(r, θ) = r 4 sin(4 θ), η οποία χρησιμοποιώντας την τριγωνομετρική ταυτότητα sin(4 θ) = 4 cos 3 θ sin θ 4 cos θ sin 3 θ, στις Καρτεσιανές συντεταγμένες (x, y) παίρνει την μορφή u(x, y) = 4 x 3 y 4xy 3. Σχήμα 8: Γραφική παράσταση της λύσης.

κι επιβάλλοντας τις συνοριακές συνθήκες παίρνουμε ότι θα πρέπει

κι επιβάλλοντας τις συνοριακές συνθήκες παίρνουμε ότι θα πρέπει Πρόβλημα 22. Θεωρούμε το ακόλουθο πρόβλημα συνοριακών τιμών για τη εξίσωση του Laplace u + u = 0, 1 < < 1, 1 < < 1, u(, 1) = f(), u(, 1) = 0, u( 1, ) = 0, u(1, ) = 0. α) Σωστό ή λάθος; Αν f( ) = f() είναι

Διαβάστε περισσότερα

ΜΔΕ Άσκηση 6 Α. Τόγκας

ΜΔΕ Άσκηση 6 Α. Τόγκας Πρόβλημα 15. Για κάθε μια αό τις ακόλουθες αρχικές τιμές θερμοκρασίας i) να βρεθεί η λύση στην μορφή μια σειράς Fourier της εξίσωσης της θερμότητας με εριοδικές συνοριακές συνθήκες u t = u x x < x

Διαβάστε περισσότερα

Μερικές Διαφορικές Εξισώσεις

Μερικές Διαφορικές Εξισώσεις Πανειστήμιο Πατρών, Τμήμα Μαθηματικών Μερικές Διαφορικές Εξισώσεις Χειμερινό εξάμηνο ακαδημαϊκού έτους 17-18, Διδάσκων: Α.Τόγκας 3ο φύλλο ροβλημάτων Ονοματεώνυμο - ΑΜ: ΜΔΕ 3ο φύλλο ροβλημάτων Α. Τόγκας

Διαβάστε περισσότερα

Μερικές Διαφορικές Εξισώσεις

Μερικές Διαφορικές Εξισώσεις Πανεπιστήμιο Πατρών, Τμήμα Μαθηματικών Μερικές Διαφορικές Εξισώσεις Χειμερινό εξάμηνο ακαδημαϊκού έτους 24-25, Διδάσκων: Α.Τόγκας ο φύλλο προβλημάτων Ονοματεπώνυμο - ΑΜ: ΜΔΕ ο φύλλο προβλημάτων Α. Τόγκας

Διαβάστε περισσότερα

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x ΕΥΓΕΝΙΑ Ν. ΠΕΤΡΟΠΟΥΛΟΥ ΕΠΙΚ. ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ «ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ» ΠΑΤΡΑ 2015 1 Ασκήσεις 1η ομάδα ασκήσεων 1. Να χαρακτηρισθούν πλήρως

Διαβάστε περισσότερα

= λ. u t = u xx UT = U T T T = U U. Οσον αφορά τη χρονική εξίσωση έχουμε. T + λt =0 T (t) =e λt. ενώ για τη χωρική

= λ. u t = u xx UT = U T T T = U U. Οσον αφορά τη χρονική εξίσωση έχουμε. T + λt =0 T (t) =e λt. ενώ για τη χωρική Prìlhm Το φυσικό πρόβλημα είναι: τοίχος σε επαφή με λουτρό θερμοκρασίας T = αριστερά και μονωμένος δεξιά, με αρχική θερμοκρασία T =.Θέτουμεu(x, t) = U(x)T (t), οπότεu t = UT και u xx = U T, και προχωράμε

Διαβάστε περισσότερα

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/2017. Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης. dy dx = 2y + x 2 y 2 2x

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/2017. Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης. dy dx = 2y + x 2 y 2 2x Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/017 Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης dx y + x y. x Παρατηρούμε ότι η δ.ε. είναι ομογενής. Πράγματι, dx y x + 1 x y x y x + 1 (

Διαβάστε περισσότερα

Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους

Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους ΜΑΘΗΜΑΤΙΚΑ, 6-7 ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΠΙΚ. ΚΑΘ. ΣΤΑΥΡΟΣ ΤΟΥΜΠΗΣ Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους 6-7. Περιοδικές Συναρτήσεις) Έστω συνεχής συνάρτηση f : R R περιοδική

Διαβάστε περισσότερα

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017. Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες. Η πρώτης τάξης διαφορική εξίσωση

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017. Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες. Η πρώτης τάξης διαφορική εξίσωση Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017 Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες Η πρώτης τάξης διαφορική εξίσωση M(x, y) + (x, y)y = 0 ή ισοδύναμα, γραμμένη στην μορφή M(x,

Διαβάστε περισσότερα

Διαφορικές Εξισώσεις.

Διαφορικές Εξισώσεις. Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 215-16. Λύσεις ενδέκατου φυλλαδίου ασκήσεων. 1. Λύστε το πρόβλημα συνοριακών συνθηκών u xx + u yy =, u(x, ) = u(x, π) =, u(, y) =, u(a, y) = sin 2y + 4 sin 5y, < x

Διαβάστε περισσότερα

Διαφορικές Εξισώσεις.

Διαφορικές Εξισώσεις. Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 05-6. Λύσεις δεύτερου φυλλαδίου ασκήσεων.. Βρείτε όλες τις λύσεις της εξίσωσης Bernoulli x y = xy + y 3 καθορίζοντας προσεκτικά το διάστημα στο οποίο ορίζεται καθεμιά

Διαβάστε περισσότερα

Λύσεις στο Επαναληπτικό Διαγώνισμα 2

Λύσεις στο Επαναληπτικό Διαγώνισμα 2 Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Λύσεις στο Επαναληπτικό Διαγώνισμα 2 Για τυχόν παρατηρήσεις, απορίες ή λάθη που θα βρείτε, στείλτε μου

Διαβάστε περισσότερα

Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς. Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς

Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς. Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς Οι εξισώσεις Bernoulli αποτελούν την κλάση των μη γραμμικών διαφορικών εξισώσεων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY)

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) 3.1 ΘΕΩΡΙΑ-ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση, ή απεικόνιση όπως ονομάζεται διαφορετικά, είναι μια αντιστοίχιση μεταξύ δύο συνόλων,

Διαβάστε περισσότερα

Διαφορικές Εξισώσεις.

Διαφορικές Εξισώσεις. Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 2015-16. Λύσεις του έβδομου φυλλαδίου ασκήσεων. 1. Λύστε την παρακάτω δ.ε. με τη δοσμένη αρχική συνθήκη. Σχεδιάστε τις χαρακτηριστικές καθώς και το γράφημα της λύσης

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική Ι

Κλασική Ηλεκτροδυναμική Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΤΕΧΝΙΚΕΣ ΥΠΟΛΟΓΙΣΜΟΥ ΗΛΕΚΤΡΙΚΟΥ ΔΥΝΑΜΙΚΟΥ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Άλγεβρας Β τάξης Γενικού Λυκείου 4o Θέμα. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (22/11/2014)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Άλγεβρας Β τάξης Γενικού Λυκείου 4o Θέμα. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (22/11/2014) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άλγεβρας Β τάξης Γενικού Λυκείου 4o Θέμα Εκφωνήσεις Λύσεις των θεμάτων Έκδοση η (//04) Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα συλλογικής δουλειάς των Επιμελητών των φακέλων του Λυκείου

Διαβάστε περισσότερα

Εισαγωγή. Κεφάλαιο Διαφορικές εξισώσεις

Εισαγωγή. Κεφάλαιο Διαφορικές εξισώσεις Κεφάλαιο Εισαγωγή Θα παρουσιάσουμε τις διαφορικές εξισώσεις και τα αντίστοιχα προβλήματα αρχικών και συνοριακών τιμών που θα συναντήσουμε στα επόμενα κεφάλαια. Επίσης, θα δούμε ορισμένες ιδιότητες και

Διαβάστε περισσότερα

Μαθηματική Εισαγωγή Συναρτήσεις

Μαθηματική Εισαγωγή Συναρτήσεις Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας Διανύσματα Καστοριά,

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 25/9/2017 Διδάσκων: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 25/9/2017 Διδάσκων: Ι. Λυχναρόπουλος Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 5/9/07 Διδάσκων: Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) Να δειχθεί ότι το πεδίο F( x, y) = y cos x + y,sin x

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

Λύση Εξίσωσης Laplace: Χωρισμός Μεταβλητών

Λύση Εξίσωσης Laplace: Χωρισμός Μεταβλητών Λύση Εξίσωσης Laplace: Χωρισμός Μεταβλητών Δομή Διάλεξης Μέθοδος χωριζόμενων μεταβλητών σε καρτεσιανές συν/νες (οριακές συνθήκες σε επίπεδο). Μέθοδος χωριζόμενων μεταβλητών σε σφαιρικές συν/νες (οριακές

Διαβάστε περισσότερα

Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE ΚΕΦΑΛΑΙΟ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΣΤΗΝ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΔΙΑΦΟΡΙΚΩΝ KAI ΟΛΟΚΛΗΡΩΤΙΚΟ-ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΜΕ ΣΤΑΘΕΡΟΥΣ ΣΥΝΤΕΛΕΣΤΕΣ O μετασχηματισμός lc-ο αντίστροφος μετασχηματισμός

Διαβάστε περισσότερα

Β Λυκείου - Ασκήσεις Συναρτήσεις. x1+ 5 x2 + 5 (x1+ 5)(x2 2) (x2 + 5)(x1 2) = = = x 2 x 2 (x 2)(x 2) = = (x 2)(x 2) (x 2)(x 2)

Β Λυκείου - Ασκήσεις Συναρτήσεις. x1+ 5 x2 + 5 (x1+ 5)(x2 2) (x2 + 5)(x1 2) = = = x 2 x 2 (x 2)(x 2) = = (x 2)(x 2) (x 2)(x 2) Να μελετηθεί η συνάρτηση Β Λυκείου - Ασκήσεις Συναρτήσεις x+ 5 f(x = ως προς τη μονοτονία. x Το πεδίο ορισμού της f(x είναι το {}. Διακρίνουμε δύο περιπτώσεις: Έστω x1 < x

Διαβάστε περισσότερα

Διαφοριϰές Εξισώσεις (ΜΕΜ 271) Λύσεις Θεμάτων Εξέτασης Ιούνη 2019

Διαφοριϰές Εξισώσεις (ΜΕΜ 271) Λύσεις Θεμάτων Εξέτασης Ιούνη 2019 Διαφοριϰές Εξισώσεις ΜΕΜ 71 Λύσεις Θεμάτων Εξέτασης Ιούνη 19 Εστω η μη γραμμιϰή διαφοριϰή εξίσωση ρώτης τάξης Α 1. Δείξτε ότι η διαφοριϰή εξίσωση δεν είναι αϰριβής. Λύση. Η αντίστοιχη διαφοριϰή μορφή είναι

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 2. H εξίσωση θερμότητας.

KΕΦΑΛΑΙΟ 2. H εξίσωση θερμότητας. 1 Εισαγωγή KΕΦΑΛΑΙΟ H εξίσωση θερμότητας Εστω είναι ανοικτό σύνολο του με γνωστή θερμοκρασία στο σύνορό του κάθε χρονική στιγμή και γνωστή αρχική θερμοκρασία σε κάθε σημείο του Τότε οι φυσικοί νόμοι μας

Διαβάστε περισσότερα

Μαθηματική Εισαγωγή Συναρτήσεις

Μαθηματική Εισαγωγή Συναρτήσεις Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς Καστοριά, Ιούλιος 14 A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας

Διαβάστε περισσότερα

(i) f(x, y) = xy + iy (iii) f(x, y) = e y e ix. f(z) = U(r, θ) + iv (r, θ) ; z = re iθ

(i) f(x, y) = xy + iy (iii) f(x, y) = e y e ix. f(z) = U(r, θ) + iv (r, θ) ; z = re iθ ΜΑΘΗΜΑΤΙΚΗ ΦΥΣΙΚΗ (ΜΕΤΑΠΤΥΧΙΑΚΟ) 6 Νοεμβρίου 07 Αναλυτικές συναρτήσεις Άσκηση (i) Δείξτε ότι η συνάρτηση f(z) είναι αναλυτική σε χωρίο D του μιγαδικού επιπέδου εάν και μόνο εάν η if(z) είναι αναλυτική

Διαβάστε περισσότερα

= R{(a + jb)e j2π 3 4 t } (6) a + jb = j2.707 = e j π (7) A = (9) f 0 = 3 4

= R{(a + jb)e j2π 3 4 t } (6) a + jb = j2.707 = e j π (7) A = (9) f 0 = 3 4 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 7-8 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής εύτερη Σειρά Ασκήσεων - Λύσεις Ηµεροµηνία Ανάθεσης

Διαβάστε περισσότερα

x(t) 2 = e 2 t = e 2t, t > 0

x(t) 2 = e 2 t = e 2t, t > 0 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 216-17 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις σε Σήµατα και Συστήµατα Ασκηση

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Άσκηση 1. Έστω ότι η συνάρτηση f: R R είναι γνησίως αύξουσα στο R και η γραφική της παράσταση τέµνει τον άξονα y y στο. Να λύσετε την ανίσωση: f(x 9)

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΣΤΟΙΧΕΙΩΔΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

2.1 ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗ

2.1 ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗ ΚΕΦΑΛΑΙΟ Ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ. ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ ΣΥΝΑΡΤΗΣΗΣ Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β λέγεται μια διαδικασία (κανόνας), με την οποία κάθε στοιχείο του

Διαβάστε περισσότερα

website:

website: Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 6 Μαρτίου 2017 1 Εισαγωγή Κάθε φυσικό σύστημα

Διαβάστε περισσότερα

y 1 (x) f(x) W (y 1, y 2 )(x) dx,

y 1 (x) f(x) W (y 1, y 2 )(x) dx, Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 07/1/017 Μέρος 1ο: Μη Ομογενείς Γραμμικές Διαφορικές Εξισώσεις Δεύτερης Τάξης Θεωρούμε τη γραμμική μή-ομογενή διαφορική εξίσωση y + p(x) y + q(x) y = f(x), x

Διαβάστε περισσότερα

2. Ανάλυση και Σύνθεση κυματομορφών με την μέθοδο Fourier

2. Ανάλυση και Σύνθεση κυματομορφών με την μέθοδο Fourier 2.1 2. Ανάλυση και Σύνθεση κυματομορφών με την μέθοδο Fourier 2.1 Εισαγωγή Η βασική ιδέα στην ανάλυση των κυματομορφών με την βοήθεια της μεθόδου Fourier συνίσταται στο ότι μία κυματομορφή μιας οποιασδήποτε

Διαβάστε περισσότερα

Πρόλογος. Κατάλογος Σχημάτων

Πρόλογος. Κατάλογος Σχημάτων Περιεχόμενα Πρόλογος Κατάλογος Σχημάτων v xv 1 ΜΔΕ πρώτης τάξης 21 1.1 Γενικότητες........................... 21 1.2 Εισαγωγή............................ 24 1.2.1 Γεωμετρικές θεωρήσεις στο πρόβλημα της

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ

Διαβάστε περισσότερα

(β) Από την έκφραση (22) και την απαίτηση (20) βλέπουμε ότι η συνάρτηση Green υπάρχει αρκεί η ομογενής εξίσωση. ( L z) ( x) 0

(β) Από την έκφραση (22) και την απαίτηση (20) βλέπουμε ότι η συνάρτηση Green υπάρχει αρκεί η ομογενής εξίσωση. ( L z) ( x) 0 Τρόποι Κατασκευής Εάν οι ιδιοσυναρτήσεις του διαφορικού τελεστή L αποτελούν ένα ορθοκανονικό L ( ) ( ) (7) και πλήρες σύστημα συναρτήσεων ( ) m( ), m (8) και εάν τότε η εξίσωση Gree ( ) ( ) ( ) (9) z ()

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier 1. Ανάπτυγμα σήματος σε Σειρά Fourier

Διαβάστε περισσότερα

y[n] ay[n 1] = x[n] + βx[n 1] (6)

y[n] ay[n 1] = x[n] + βx[n 1] (6) Ασκήσεις με το Μετασχηματισμό Fourier Διακριτού Χρόνου Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 8 Οκτωβρίου 015 1. Εστω το

Διαβάστε περισσότερα

~ 1 ~ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 2014 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

~ 1 ~ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 2014 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ~ ~ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 04 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Δείτε στις «Σημειώσεις Μιγαδικού Λογισμού» β) Η συνάρτηση f ( ) γράφεται f x y + x + y x y + x + y xy ( ) ( ) ( ) ( ) Το πραγματικό και

Διαβάστε περισσότερα

1 of 79 ΘΕΜΑ 2. Δίνεται η συνάρτηση f(x) = x 2 4x + 5, x R

1 of 79 ΘΕΜΑ 2. Δίνεται η συνάρτηση f(x) = x 2 4x + 5, x R 1 of 79 Δίνεται η συνάρτηση f(x) = x 2 4x + 5, x R α) Να αποδείξετε ότι η f γράφεται στη μορφή f(x) = (x- 2) 2 + 1. (Μονάδες 12) β) Στο σύστημα συντεταγμένων που ακολουθεί, να παραστήσετε γραφικά τη συνάρτηση

Διαβάστε περισσότερα

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες

Διαβάστε περισσότερα

Κεφαλαιο 7: Η ΜΠΣ για ελλειπτικά προβλήματα με μη-ομαλές λύσεις

Κεφαλαιο 7: Η ΜΠΣ για ελλειπτικά προβλήματα με μη-ομαλές λύσεις Κεφαλαιο 7: Η ΜΠΣ για ελλειπτικά προβλήματα με μη-ομαλές λύσεις Όπως είδαμε μέχρι τώρα η ομαλότητα της ακριβούς λύσης επηρεάζει τις εκτιμήσεις σφάλματος με τέτοιο τρόπο ώστε ολα όσα αποδείξαμε ισχύουν

Διαβάστε περισσότερα

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει 8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί Η ΠΑΡΑΓΩΓΟΣ. Η ΕΝΝΟΙΑ ΤΗΣ ΑΝΑΛΥΤΙΚΗΣ ΣΥΝΑΡΗΣΗΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 1: Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Εισαγωγή στα Σήματα 1. Σκοποί της Θεωρίας Σημάτων 2. Κατηγορίες Σημάτων 3. Χαρακτηριστικές Παράμετροι

Διαβάστε περισσότερα

2 ο κεφάλαιο: Ανάλυση και Σύνθεση κυματομορφών με τον Μετασχηματισμό Fourier

2 ο κεφάλαιο: Ανάλυση και Σύνθεση κυματομορφών με τον Μετασχηματισμό Fourier 2 ο κεφάλαιο: Ανάλυση και Σύνθεση κυματομορφών με τον Μετασχηματισμό Fourier Η βασική ιδέα στην ανάλυση των κυματομορφών με την βοήθεια του μετασχηματισμού Fourier συνίσταται στο ότι μία κυματομορφή

Διαβάστε περισσότερα

c 2 t 2 = 0 (5) t = 0 (6)

c 2 t 2 = 0 (5) t = 0 (6) 15 Απριλίου 2011 (ΔΕΜΠ) Πολλά σημαντικά επιστημονικά προβλήματα στο χώρο της φυσικής περιγράφονται από διαφορικές εξισώσεις με μερικές παραγώγους (ΔΕΜΠ). Συνήθως το φυσικό φαινόμενο που μελετάμε παριστάνεται

Διαβάστε περισσότερα

1.1 Βασικές Έννοιες των Διαφορικών Εξισώσεων

1.1 Βασικές Έννοιες των Διαφορικών Εξισώσεων Κεφάλαιο 1 Εισαγωγικά Στο κεφάλαιο αυτό θα παρουσιάσουμε τις βασικές έννοιες και ορισμούς των Διαφορικών Εξισώσεων. Στο εδάφιο 1.1 παρουσιάζονται οι βασικές έννοιες και ορισμοί των διαφορικών εξισώσεων

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4_095. Δίνονται οι ευθείες ε 1: λx + y = 1 και ε : x + λy = λ α) Να βρείτε για ποιες τιμές του λ οι δύο ευθείες τέμνονται και να γράψετε τις συντεταγμένες του κοινού τους σημείου συναρτήσει

Διαβάστε περισσότερα

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 26/10/2017. Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 26/10/2017. Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς Συνθεις Διαφορικές Εξισώσεις Ι Ασκσεις - 26/0/207 Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς Οι εξισώσεις Bernoulli αποτελούν την κλάση των μη γραμμικών διαφορικών εξισώσεων πρώτης τάξης της

Διαβάστε περισσότερα

lim x)) = lim f( x) lim (f( x)) x)) x 2 y x 2 + y 2 = 0 r 3 cos 2 θsinθ r 2 (cos 2 θ + sin 2 θ) = lim

lim x)) = lim f( x) lim (f( x)) x)) x 2 y x 2 + y 2 = 0 r 3 cos 2 θsinθ r 2 (cos 2 θ + sin 2 θ) = lim Ορια Πραγματικών Συναρτήσεων Εστω f : A R n R. Το καλείται σημείο συσσώρευσης του Α και γράφουμε: f x = b, b R ε > 0, δε = δ > 0 : f x b < ε, για κάθε x A με 0 < x < δ. Γεωμετρική Ερμηνεία της Εννοιας

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. Να εξετάσετε αν είναι ίσες οι συναρτήσεις f, g όταν: x x 2 x x. x x g x. ln x ln x 1 και

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. Να εξετάσετε αν είναι ίσες οι συναρτήσεις f, g όταν: x x 2 x x. x x g x. ln x ln x 1 και Α ΟΜΑΔΑ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Να εξετάσετε αν είναι ίσες οι συναρτήσεις, όταν: () με R και (). Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ Το πεδίο ορισμού της είναι A R. Επομένως A A R Α Θα εξετάσουμε αν για κάθε R ισχύει.

Διαβάστε περισσότερα

Σύνθεση ή σύζευξη ταλαντώσεων;

Σύνθεση ή σύζευξη ταλαντώσεων; Σύνθεση ή σύζευξη ταλαντώσεων; Σώμα Σ μάζας προσδένεται στο ένα άκρο οριζόντιου ελατηρίου σταθεράς το άλλο άκρο του οποίου είναι ακλόνητα στερεωμένο. Πάνω στο πρώτο σώμα στερεώνεται δεύτερο ελατήριο σταθεράς,

Διαβάστε περισσότερα

Ζ ΕΝΟΤΗΤΑ. Μελέτη βασικών συναρτήσεων. Ζ.1 (7.1 παρ/φος σχολικού βιβλίου) Ζ.2 (7.2 παρ/φος σχολικού βιβλίου) Ζ.3 (7.3 παρ/φος σχολικού βιβλίου) 2

Ζ ΕΝΟΤΗΤΑ. Μελέτη βασικών συναρτήσεων. Ζ.1 (7.1 παρ/φος σχολικού βιβλίου) Ζ.2 (7.2 παρ/φος σχολικού βιβλίου) Ζ.3 (7.3 παρ/φος σχολικού βιβλίου) 2 Ζ ΕΝΟΤΗΤΑ Μελέτη βασικών συναρτήσεων Ζ.1 (7.1 παρ/φος σχολικού βιβλίου) Μελέτη της συνάρτησης f(x) = αx Ζ. (7. παρ/φος σχολικού βιβλίου) Μελέτη της συνάρτησης f x α x Ζ.3 (7.3 παρ/φος σχολικού βιβλίου)

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 6 Β' Λυκείου. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων- Τριγωνομετρία

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 6 Β' Λυκείου. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων- Τριγωνομετρία ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 6 Β' Λυκείου Ον/μο:. ΕΠΑ.Λ. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων- Τριγωνομετρία 06-11-16 Θέμα 1 ο : Α.i. Τι ονομάζουμε γραμμική εξίσωση; (4 μον.) ii. Πότε μία συνάρτηση f ονομάζεται

Διαβάστε περισσότερα

Ασκήσεις στα Ολοκληρώματα, Αόριστο Ολοκλήρωμα, Ορισμένο Ολοκλήρωμα, Πολλαπλά Ολοκηρώματα για τα Γενικά Μαθηματικά ΙΙ, Τμήματος Χημείας Διδάσκων: Μιχάλης Ξένος, email : menos@cc.uoi.gr Μαρτίου. Να υπολογιστούν

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΑΛΓΕΒΡΑ ΘΕΜΑ A Α1. Να αποδείξετε ότι: αβ α β (Μονάδες 15) A. Χαρακτηρίστε ως Σωστό (Σ) ή Λάθος (Λ) τις ακόλουθες προτάσεις: 1. Η εξίσωση

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ 01-013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θέμα 1 ο Α. Έστω a ένας πραγματικός αριθμός. Να δώσετε τον ορισμό της απόλυτης

Διαβάστε περισσότερα

x y Ax By Εξίσωση Κύκλου Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και C ο κύκλος με κέντρο το σημείο Εφαπτομένη Κύκλου Η εφαπτομένη του κύκλου

x y Ax By Εξίσωση Κύκλου Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και C ο κύκλος με κέντρο το σημείο Εφαπτομένη Κύκλου Η εφαπτομένη του κύκλου ΚΥΚΛΟΣ Εξίσωση Κύκλου Έστω Oy ένα σύστημα συντεταγμένων στο επίπεδο και C ο κύκλος με κέντρο το σημείο O(, ) και ακτίνα ρ έχει εξίσωση y y ε Εφαπτομένη Κύκλου Η εφαπτομένη του κύκλου y ρ στο σημείο του

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΜΑ Α Άσκηση, μιγαδικοί αριθμοί να αποδείξετε ότι: Αν = Έχουμε: = ( ) ( ) ( ) ( ) = = =. Το τελευταίο ισχύει, άρα ισχύει και η ισοδύναμη αρχική σχέση.

Διαβάστε περισσότερα

Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις

Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις ẋ 1 f 1 (x 1 x 2 ) ẋ 2 f 2 (x 1 x 2 ) (501) Το σύστημα αυτό γράφεται σε διανυσματική

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 11. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 11. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 11 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Γραμμικοποίηση Ευστάθεια Απόκριση Συστημάτων 1 Β.Ε. που περιγράφονται από ΣΔΕ 1 ης τάξης 2 Πρόβλημα/Ερώτημα

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις.

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο. Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα.

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΔΕΚΕΜΒΡΙΟΥ 2011 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΔΕΚΕΜΒΡΙΟΥ 2011 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ [] ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΔΕΚΕΜΒΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Δείτε στις «Σημειώσεις Μιγαδικού Λογισμού» σελ β) Ας είναι ux (, ) = x+ cos( π ) και vx (, ) = cos( π x) το πραγματικό και το φανταστικό μέρος

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε γραφικά

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ Άλγεβρα Β Λυκείου, ο Κεφάλαιο ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ ΟΡΙΣΜΟΣ 1 Μια συνάρτηση ƒ λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (42)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (42) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Θέμα ο (4) -- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου - Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου - Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

(a) = lim. f y (a, b) = lim. (b) = lim. f y (x, y) = lim. g g(a + h) g(a) h g(b + h) g(b)

(a) = lim. f y (a, b) = lim. (b) = lim. f y (x, y) = lim. g g(a + h) g(a) h g(b + h) g(b) 1 ΑΝΑΛΥΣΗ ΙΙ Μερική Παράγωγος Μερικές Παράγωγοι Ορισμός 1: a) Εστω f(x y) : U R R μία συνάρτηση δύο μεταβλητών και (a b) ένα σημείο του U. Θεωρούμε ότι μεταβάλλεται μόνο το x ένω το y παραμένει σταθερό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (Θ.Ε. ΠΛΗ 1) 4 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Ημερομηνία Ανάρτησης 14 Φεβρουαρίου 014 Ημερομηνία Παράδοσης της εργασίας από τον Φοιτητή 14 Μαρτίου

Διαβάστε περισσότερα

x 2 + y 2 x y

x 2 + y 2 x y ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εαρινό Εξάμηνο 014-15 Τμήμα Μαθηματικών και Διδάσκων: Χρήστος Κουρουνιώτης Εφαρμοσμένων Μαθηματικών ΜΕΜ0 ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ Φυλλάδιο Προβλημάτων Κύκλος, Ελλειψη, Υπερβολή, Παραβολή

Διαβάστε περισσότερα

Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση

Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 2.1 Συνάρτηση Η έννοια της συνάρτησης είναι ϐασική σ όλους τους κλάδους των µαθη- µατικών, αλλά και πολλών άλλων επιστηµών. Ο λόγος είναι, ότι µορφοποιεί τη σχέση

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Θέμα 4 ο (2) -2- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΑΚΡΙΒΗ ΔΙΑΦΟΡΙΚΑ. u,υ / A ονομάζεται ακριβές διαφορικό όταν υπάρχει. df u x,y dx υ x,y dy. f u και. f y. 3 f. και

ΑΚΡΙΒΗ ΔΙΑΦΟΡΙΚΑ. u,υ / A ονομάζεται ακριβές διαφορικό όταν υπάρχει. df u x,y dx υ x,y dy. f u και. f y. 3 f. και Το άθροισμα u,d διαφορίσιμη συνάρτηση f / A Παράδειγμα υ, d, με με Το άθροισμα ΑΚΡΙΒΗ ΔΙΑΦΟΡΙΚΑ u,υ / A ονομάζεται ακριβές διαφορικό όταν υπάρχει df u,d υ,d f u f υ 6 d 9 d είναι ακριβές διαφορικό, διότι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο 2.1: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο 2.1: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο.: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ Β Έστω μια παραγωγίσιμη στο συνάρτηση, τέτοια ώστε για κάθε x

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii09/laii09.html Παρασκευή 0 Μαίου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ - ΑΚΡΟΤΑΤΑ

ΚΕΦΑΛΑΙΟ 1ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ - ΑΚΡΟΤΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΜΟΝΟΤΟΝΙΑ - ΑΚΡΟΤΑΤΑ Μονοτονία Συνάρτησης Έστω οι συναρτήσεις f, g, h, των οποίων οι γραφικές παραστάσεις φαίνονται στα επόμενα σχήματα («Σχήμα», «Σχήμα», «Σχήμα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι ΚΕΦΑΛΑΙΟ 3 Ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ. Ποια είναι η μορφή ενός συστήματος δύο γραμμικών εξισώσεων, δύο αγνώστων; Να δοθεί παράδειγμα.

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii08/laii08.html Παρασκευή 4 Μαίου

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

Διαφορικές Εξισώσεις Πρώτης Τάξης

Διαφορικές Εξισώσεις Πρώτης Τάξης Κεφάλαιο 2 Διαφορικές Εξισώσεις Πρώτης Τάξης Στο κεφάλαιο αυτό θα μελετήσουμε διαφορικές εξισώσεις πρώτης τάξης και θα διατυπώσουμε χωρίς απόδειξη βασικά θεωρήματα αυτών. Το εδάφιο 2.1 ασχολείται με γραμμικές

Διαβάστε περισσότερα

Γραμμική Διαφορική Εξίσωση 2 ου βαθμού

Γραμμική Διαφορική Εξίσωση 2 ου βαθμού //04 Γραμμική Διαφορική Εξίσωση ου βαθμού, με τη βοήθεια του αορίστου ολοκληρώματος, της χρήσιμης γραμμικής διαφορικής εξίσωσης πρώτου βαθμού af ( ) f ( ) cf ( ) g( ), ac,, σταθεροί πραγματικοί αριθμοί

Διαβάστε περισσότερα

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Ορισμός: Έστω Α, Β R. Πραγματική συνάρτηση πραγματικής μεταβλητής από το σύνολο Α στο σύνολο Β ονομάζουμε την διαδικασία κατά την οποία κάθε στοιχείο του συνόλου

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Φυσική Σημασία του Μετασχηματισμού Fourier Ο μετασχηματισμός Fourier

Διαβάστε περισσότερα

Θεωρία Βέλτιστου Ελέγχου Ασκήσεις

Θεωρία Βέλτιστου Ελέγχου Ασκήσεις Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Θεωρία Βέλτιστου Ελέγχου Νικόλαος Καραμπετάκης Τμήμα Α.Π.Θ. Θεσσαλονίκη, Οκτώβριος 3 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cretive

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ. Τμήμα Φαρμακευτικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λυμένες Ασκήσεις & Λυμένα Θέματα Εξετάσεων

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ. Τμήμα Φαρμακευτικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λυμένες Ασκήσεις & Λυμένα Θέματα Εξετάσεων ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Τμήμα Φαρμακευτικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Λυμένες Ασκήσεις & Λυμένα Θέματα Εξετάσεων ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 014 ΘΕΜΑ 1 Δίνεται ο πίνακας: 1) Να

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α Άσκηση Θεωρούμε τον παρακάτω ισχυρισμό: «Αν η συνάρτηση την» ορίζεται στο τότε δεν μπορεί να έχει κατακόρυφη ασύμπτωτη ) Να χαρακτηρίσετε τον παραπάνω ισχυρισμό γράφοντας

Διαβάστε περισσότερα

= 1. z n 1 = z z n = 1. f(z) = x 0. (0, 0) = lim

= 1. z n 1 = z z n = 1. f(z) = x 0. (0, 0) = lim ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ 1η Σειρά Ασκήσεων στη Μιγαδική Ανάλυση 1. Να λυθεί η εξίσωση: 4 1 + 3i. Λύση. Επειδή 1 + 3i e πi/3, οι λύσεις της εξίσωσης 4 1 + 3i

Διαβάστε περισσότερα

Θεωρητική μηχανική ΙΙ

Θεωρητική μηχανική ΙΙ ΟΣΑ ΓΡΑΦΟΝΤΑΙ ΕΔΩ ΝΑ ΤΑ ΔΙΑΒΑΖΕΤΕ ΜΕ ΣΚΕΠΤΙΚΟ ΒΛΕΜΜΑ. ΜΠΟΡΕΙ ΝΑ ΠΕΡΙΕΧΟΥΝ ΛΑΘΗ. Θεωρητική μηχανική ΙΙ Να δειχθεί ότι αν L x, L y αποτελούν ολοκληρώματα της κίνησης τότε και η L z αποτελεί ολοκλήρωμα της

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 2 Β' Λυκείου. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 2 Β' Λυκείου. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων Είμαστε τυχεροί που είμαστε δάσκαλοι ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 2 Β' Λυκείου Ον/μο:. ΕΠΑ.Λ. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων 05-10-1 Θέμα 1 ο : Α.i. Τι ονομάζουμε γραμμική εξίσωση; ( μον.) ii. Πότε

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Σειρά Fourier Ορθοκανονικές Συναρτήσεις Στοεδάφιοαυτόθαδιερευνήσουμεεάνκαικάτωαπό

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΕΞΙΣΩΣΗΣ ΚΥΜΑΤΟΣ ΣΤΟΥΣ ΚΥΜΑΤΟΔΗΓΟΥΣ ΔΙΑΦΟΡΩΝ ΔΙΑΤΟΜΩΝ

ΛΥΣΕΙΣ ΕΞΙΣΩΣΗΣ ΚΥΜΑΤΟΣ ΣΤΟΥΣ ΚΥΜΑΤΟΔΗΓΟΥΣ ΔΙΑΦΟΡΩΝ ΔΙΑΤΟΜΩΝ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ : Φυσικής και Εφαρμοσμένων Μαθηματικών Μάθημα : Εφαρμοσμένα Μαθηματικά Διδάσκων: Αν. καθηγητής Χρ. Σχοινάς Προαιρετική

Διαβάστε περισσότερα