b 2 k a 2 k a k b k +t 2 b 2 k 0 γιακάθε t R a k b k +t 2 b 2 k = 0
|
|
- Ναβουχοδονόσορ Βονόρτας
- 8 χρόνια πριν
- Προβολές:
Transcript
1 1.1. ΠΡΑΓΜΑΤΙΚΟ ΙΑΡΙΘΜΟ Ι 11 Προταση36(Ανισοτητα Cauchy-Schwarz)Αντα a k και b k είναιπραγματικοί αριθμοί, τότε ( n ( n )( n ) a k b k ) 2 Αποδειξη. Είναι εύκολο να δούμε ότι n (a k +tb k ) 2 = n a 2 k +2t a 2 k b 2 k n n a k b k +t 2 b 2 k 0 γιακάθε t R Ετσιλοιπόνηεξίσωσηδευτέρουβαθμούωςπρος t n a 2 k +2t n n a k b k +t 2 b 2 k = 0 θα έχει είτε μια πραγματική ρίζα είτε δυο συζυγείς μιγαδικές αλλιώς θα άλλαζε πρόσημο για κατάλληλες επιλογές του t. Αυτό σημαίνει ότι η διακρίνουσα είναι πάντοτε αρνητική ή μηδέν, δηλαδή ισχύει η ζητούμενη ανισότητα. Τοσύνολοτωνρητώναριθμών Qαποτελείταιαπότουςαριθμούς m n Z,n 0. με m,n Προταση37Υπάρχειέναςμοναδικόςθετικόςπραγματικόςαριθμός xτ.ω. x n = aόταν a 0με n Nοοποίοςσυμβολίζεταιως n xήx 1 n.ειδικότερα,υπάρχει μοναδικόςθετικόςαριθμός xτ.ω. x 2 = 2οοποίοςδενείναιρητόςαριθμός. Αποδειξη. Θα χρειαστούμε την ανισότητα (1+ε) n < 1+3 n ε (1.1) όπου ε (0, 1) την οποία θα αποδείξουμε αμέσως τώρα. Θα χρησιμοποιήσουμε επαγωγή. Για n = 1προφανώςισχύει 1 + ε < 1 + 3ε. Υποθέτουμεότιισχύει γιακάποιο nκαιθααποδείξουμεότιισχύεικαιγια n+1.οπότε (1+ε) n+1 = (1+ε) n (1+ε) < (1+3 n ε)(1+ε) = 1+(3 n ε+3 n +1)ε < 1+3 n+1 ε
2 12 ΚΕΦ ΑΛΑΙΟ1. ΣΤΟΙΧΕ ΙΑΑΠΕΙΡΟΣΤΙΚΟ ΥΛΟΓΙΣΜΟ Υ Στηνσυνέχειαθααποδείξουμετηνύπαρξημοναδικούαριθμού xτ.ω. x n = a. Ημοναδικότηταέπεταιαπότογεγονόςότι x n < y n όταν x < y.αν a = 0τότε x = 0.Υποθέτουμεότι a > 0καιορίζουμετοσύνολο E = {t R : t > 0, t n < a} Το Eείναιμηκενόαφούτο t 0 = a Eτοοποίοαποδεικνύεταιπολύεύκολα 1+a μεεπαγωγήστο n. Επίσηςτο Eείναιάνωφραγμένοαπότο 1 + aδιότιγια t 1έχουμεότι t < 1 + aενώγια t > 1έχουμεότι t t n < a < 1 + a. Απότοαξίωμα28προκύπτειότιτο Eέχει supremum,έστω xτοοποίοανήκει στο R.Προφανώς t 0 xκαιθααποδείξουμεότιστηνπραγματικότητα x n = a. Εστωότι x n < a.διαλέγουμε ε (0,1)τ.ω. ε < a xn.χρησιμοποιώνταςτην (3x) n ανισότητα 1.1 x n (1+ε) n < x n (1+3 n ε) = x n +(3x) n ε < x n +(a x n ) = a Αυτόσημαίνειότι x(1 + ε) E. Ομως x = supeκαιαυτόείναιάτοποάρα x n a. Εστωότι x n > a.διαλέγουμε ε (0,1)τ.ω. ε < xn a.οπότε 3 n a a(1+3n ε) < x n καιεπομένωςχρησιμοποιώνταςπάλιτηνανισότητα1.1προκύπτειότι Επειδή x 1+ε a < xn 1+3 n ε < ( x 1+ε ) n < xμπορούμεναβρούμεκάποιο t Eέτσιώστε ( ) n x < t n < a 1+ε τοοποίοείναιάτοποεπομένωςαναγκαστικά x n = a. Υπάρχειλοιπόνμοναδικόςθετικόςαριθμός xτ.ω. x 2 = 2. Αν xείναιρητός τότευπάρχουν n,m Nέτσιώστε x = m καιοnναμηνδιαιρείτον m. Τότε n καιοn 2 δενδιαιρείτον m 2 επομένωςανυποθέσουμεότι x 2 = m2 = 2θα n 2 οδηγηθούμεσεάτοπο.άρα 2 / Q.
3 1.1. ΠΡΑΓΜΑΤΙΚΟ ΙΑΡΙΘΜΟ Ι 13 ΕπομένωςισχύειότιQ RκαιτοσύνολοR Qαποτελείταιαπόπραγματικούς αριθμούς που δεν είναι ρητοί οι οποίοι ονομάζονται άρρητοι. Εστω a R. Με a θαεννοούμετοναριθμό aαν a > 0και aαν a < 0. Ονομάζεται απόλυτη τιμή του a και όπως βλέπουμε είναι πάντοτε θετικός αριθμός. Ισχύει η επόμενη ανισότητα για την απόλυτη τιμή, η οποία ονομάζεται τριγωνική ανισότητα, a b a+b a + b. (1.2) Η απόδειξη αφήνεται σαν άσκηση. Με [a]συμβολίζουμετοακέραιο μέροςτουαριθμού a,δηλαδήείναιοπροηγούμενος ακέραιος αριθμός πριν από τον αριθμό a και ισχύει ότι [a] a [a]+1 Προταση38(Ανισοτητα αριθμητικου-γεωμετρικου μεσου) Εστωότιοι a 1,, a n είναιμηαρνητικοίαριθμοί.τότε a 1 + +a n n n a 1 a 2 a n. Αποδειξη. Θα χρησιμοποιήσουμε την σχέση b 1 +b 2 + +b n > n (1.3) όταν n Nκαι b 1,,b n θετικοίπραγματικοίαριθμοίόχιόλοιίσοιμεταξύτους καιτέτοιοιώστε b 1 b 2 b n = 1.Ηαπόδειξητηςσχέσηςαυτήςείναιεπαγωγική. Για n = 2έχουμεότι 0 < ( b1 b 2 ) 2 = b1 +b 2 2 όπουχρησιμοποιήσαμετογεγονόςότι b 1 b 2.Επομένωςγια n = 2ισχύει. Εστωότιισχύειγιακάποιο k N.Θααποδείξουμεότιισχύεικαιγια k +1. Μπορούμεναυποθέσουμε,χωρίςβλάβητηςγενικότητας,ότι b 1 b j b k+1 όπου j = 1,2,,k +1και b 1 < b k+1. Τότεαναγκαστικά b 1 < 1 < b k+1 διότι αλλιώς b 1 b 2 b n 1.Άρα,έχουμεότι b 2 + +b k +b 1 b k k
4 14 ΚΕΦ ΑΛΑΙΟ1. ΣΤΟΙΧΕ ΙΑΑΠΕΙΡΟΣΤΙΚΟ ΥΛΟΓΙΣΜΟ Υ από την υπόθεση της επαγωγής. Επομένως, ισχύει ότι b 1 + +b k+1 = (b 1 b k+1 +b 2 + +b k )+1 +(b k+1 1)(1 b 1 ) k +1+(b k+1 1)(1 b 1 ) > k +1 Άρα, ισχύει και για k + 1 επομένως, επαγωγικά, ισχύει το ζητούμενο. Στην συνέχεια θα αποδείξουμε την ανισότητα του αριθμητικού- γεωμετρικού μέσου. Ηανισότηταείναιπροφανήςγια n = 1ήόταν a j = 0γιακάποιο jή όταν a 1 = = a n. Επομένως,υποθέτουμεότι n > 1, a j > 0γιακάθε jκαι a 1 < a n. Θέτουμε G = n a 1 a 2 a n > 0καισυμβολίζουμεμε b j = a j. Τότε G b 1 b 2 b n = 1, b j > 0και b 1 < b n.επομένως,ισχύειότι b 1 +b 2 + +b n > n καιαντικαθιστώνταςτα b j προκύπτειηανισότητατουαριθμητικού-γεωμετρικού μέσου. Προταση39Αν a,bείναιπραγματικοίαριθμοίκαι a < bτότευπάρχειέναςρητός αριθμός cκαιέναςάρρητος dστοδιάστημα (a,b). Αποδειξη. Χρησιμοποιώντας την Αρχιμήδεια ιδιότητα των φυσικών αριθμών 1 διαλέγουμε κάποιο s N τέτοιο ώστε < sοπότε 1 < b a. Εστω b a s z = [sa] + 1 Zοπότε z 1 sa < zκαιεπομένως a < z a + 1 < b. s s Ορητόςαριθμός c = z βρίσκεταιστοδιάστημα (a,b). s Θα αποδείξουμε ότι υπάρχει άρρητος αριθμός στο διάστημα (a, b). Οπως προη- ( γούμενα, μπορούμε να βρούμε έναν ρητό αριθμό u στο διάστημα a 2, b 2 ).Θέτουμε d = u 2καιπροκύπτειότι d (a,b).είναιόμωςεύκολοναδούμεότιο d είναι άρρητος. Στην συνέχεια θα παραθέσουμε ορισμένες ασκήσεις για την καλύτερη κατανόηση των εννοιών. Ασκηση40 Εστω A R.Θέτουμε A = {x R : x A}.Αποδείξτεότι sup( A) = infa inf( A) = supa
5 1.1. ΠΡΑΓΜΑΤΙΚΟ ΙΑΡΙΘΜΟ Ι 15 Αποδειξη. Θα αποδείξουμε την πρώτη ισότητα, η δεύτερη είναι παρόμοια. Αςυποθέσουμεότιτο Aείναιφραγμένοαπόκάτωκαιθέτουμε a = infa. Τότε x aγιακάθε x Aκαιγιακάθε ε > 0υπάρχει x Aτέτοιοώστε x < a+ε.πολλαπλασιάζονταςτιςανισότητεςμε 1προκύπτειότι x aγια κάθε x ( A)καιγιακάθε ε > 0υπάρχει x ( A)τέτοιοώστε x > a ε. Αυτό σημαίνει ότι a = sup( A). Εάντο Aδενείναιφραγμένοαπόκάτω,τότετο Aδενείναιάνωφραγμένο καιεπομένως sup( A) = infa = +. Ασκηση41 Εστω Aκαι Bυποσύνολατου R.Αποδείξτεότι sup(a B) = max{supa,supb} inf(a B) = min{infa,infb} Αποδειξη. Θα αποδείξουμε την πρώτη ισότητα, η δεύτερη είναι παρόμοια. Υποθέτουμεότιτα Aκαι Bείναιάνωφραγμένα.Θέτουμε a = supaκαι b = supbκαιυποθέτουμεχωρίςβλάβητηςγενικότηταςότι a b.θααποδείξουμε ότι sup(a B) = b. Γιακάθε x A Bέχουμεότι x b. Επίσης,για κάθε ε > 0υπάρχεικάποιο x B τέτοιοώστε x > b εκαιπροφανώς x A B. Επομένωςπροκύπτειηπρώτηισότητα. Στηνπερίπτωσηόπουτα σύνολα Aκαι Bδενείναιάνωφραγμένατότεκαιτο A Bδενείναιεπίσης. Επομένως sup(a B) = + καιέτσιπροκύπτειεπίσηςτοαποτέλεσμααφού max{+, c} = max{+, + } Τοπολογική δομή του R Σε αυτή την ενότητα θα αναφέρουμε μερικούς βασικούς ορισμούς και θα διατυπώσουμε(χωρίς απόδειξη) μερικά αποτελέσματα που αφορούν την τοπολογική δομή του R, δεν θα χρησιμοποιήσουμε όμως κανένα από τα αποτελέσματα αυτά στην συνέχεια. Θαονομάζουμεε περιοχήτουσημείουa Rτοανοιχτόδιάστημα(a ε,a+ε) (όπου ε > 0)καισυμβολίζεταιμε ρ(a,ε) = {x R : x a < ε}. Τοσημείο a Aονομάζεταιεσωτερικόσημείοτου Aαννυπάρχει ε-περιοχήτου aπουνα ανήκειστο A.Θαονομάζουμεμεμονωμένοτοσημείο a Aότανυπάρχει ε > 0 τ.ω. ρ(a,ε) A = {a}.σημείοσυσσώρευσηςτου Aονομάζεταιτοσημείο a R τ.ω. γιακάθε ε > 0ισχύει ρ(a,ε) A. Ενασύνολο A Rονομάζεται
6 16 ΚΕΦ ΑΛΑΙΟ1. ΣΤΟΙΧΕ ΙΑΑΠΕΙΡΟΣΤΙΚΟ ΥΛΟΓΙΣΜΟ Υ ανοιχτό όταν αποτελείται μόνο από εσωτερικά σημεία. Κλειστό ονομάζεται όταν το συμπλήρωμα του στο R είναι ανοιχτό. Προταση42Τασύνολα R, είναιανοιχτάκαικλειστάσύνολα. Ητομήπεπερασμένου πλήθους ανοιχτών συνόλων είναι ανοιχτό ενώ η ένωση οσωνδήποτε ανοιχτών είναι ανοιχτό σύνολο. Η ένωση πεπερασμένου πλήθους κλειστών είναι κλειστό σύνολο. Η τομή οσωνδήποτε κλειστών είναι κλειστό. Προταση43Αν a Rείναισημείοσυσσώρευσηςτου A Rτότεσεκάθε περιοχή του a υπάρχουν άπειρα στοιχεία του A. Προταση44 Εναυποσύνολο Aτου Rείναικλειστόαννπεριέχειόλατασημεία συσσώρευσής του. Θεωρημα 45(Bolzano-Weierstrass) Κάθε άπειρο και φραγμένο υποσύνολο του R έχει ένα τουλάχιστο σημείο συσσώρευσης. Για μια απόδειξη του τελευταίου θεωρήματος χρησιμοποιώντας ακολουθίες αριθμώνδείτετα132και139. Αποδείξεις και βαθύτερη ανάλυση στα παραπάνω θέματα μπορεί να βρει κανείς σταβιβλία[8],[10],[12],[30],[62]. 1.2 Μιγαδικοί Αριθμοί Από το θεώρημα 20 προκύπτει ότι δεν υπάρχει πραγματικός αριθμός που το τετράγωνό του είναι αρνητικός αριθμός. Για τον λόγο αυτόν θα επεκτείνουμε το σύστημα των αριθμών με τέτοιον τρόπο ώστε οι τετραγωνικές ρίζες να υπάρχουν πάντοτε.ορίζουμεέναννέοαριθμό,τον iκαιτουδίνουμετηνιδιότητα i 2 = 1. Ετσι, προκύπτουν οι λεγόμενοι μιγαδικοί αριθμοί οι οποίοι έχουν την μορφή a+ib όπου a,b R. Οαριθμός aονομάζεταιτοπραγματικόμέροςτουμιγαδικού αριθμούκαισυμβολίζεταιμε Re(x)όταν x = a+ibκαιοαριθμός bονομάζεται το φανταστικό μέρος του μιγαδικού αριθμού και συμβολίζεται με Im(x). Θα λέμε ότι δυο μιγαδικοί αριθμοί είναι ίσοι όταν έχουν ίσα πραγματικά μέρη και ίσα φανταστικά μέρη. Μεβάσητηνιδιότητα i 2 = 1προκύπτουνδιάφορεςιδιότητεςτωνμιγαδικών αριθμών. Εστω z 1 = a 1 +ib 1 και z 2 = a 2 +ib 2.Τογινόμενότουςείναιωςεξής, z 1 z 2 = a 1 a 2 +ia 1 b 2 +ib 1 a 2 +i 2 b 1 b 2 = a 1 a 2 b 1 b 2 +i(a 1 b 2 +b 1 a 2 )
7 1.2. ΜΙΓΑΔΙΚΟ ΙΑΡΙΘΜΟ Ι 17 Η πρόσθεση δυο μιγαδικών αριθμών είναι ως εξής, Ηδιαίρεσημπορείναγίνειωςεξής, z 1 +z 2 = (a 1 +a 2 )+i(b 1 +b 2 ) z 1 z 2 = a 1 +ib 1 a 2 +ib 2 = (a 1 +ib 1 )(a 2 ib 2 ) (a 2 +ib 2 )(a 2 ib 2 ) = a 1a 2 +b 1 b 2 +i(b 1 a 2 a 1 b 2 ) a 2 2 +b 2 2 = a 1a 2 +b 1 b 2 a 2 2 +b 2 2 +i b 1a 2 a 1 b 2 a 2 2 +b 2 2 Αν z = a+ibτότεομιγαδικόςαριθμός z = a ibονομάζεταισυζυγήςτου z. Ανγιαδυομιγαδικούςαριθμούςz 1 καιz 2 ισχύειότιz 1 z 2 = 0τότεαναγκαστικά έναςαπότουςδυοείναιίσοςμετομηδέν.πράγματι, z 1 z 2 = a 1 a 2 b 1 b 2 +i(a 1 b 2 +b 1 a 2 ) = 0+i0 Επομένως, προκύπτουν δυο εξισώσεις a 1 a 2 b 1 b 2 = 0 a 1 b 2 +b 1 a 2 = 0 Υψώνουμε στο τετράγωνο τις δυο αυτές ισότητες και έπειτα τις προσθέτουμε κατάμέληγιαναπάρουμε (a 2 1 +b 2 1)(a 2 2 +b 2 2) = 0 Άρα, τουλάχιστονμιαεκτωνδυοπαρενθέσεωνείναιίσημετομηδέν, έστω a 2 1 +b 2 1 = 0.Γιαναισχύειαυτόαναγκαστικάπρέπειναισχύει a 1 = b 1 = 0. Τοάθροισματων zκαι zείναιίσομε 2aόταν z = a+ibενώτογινόμενοτων συζυγώνείναιίσομε a 2 + b 2. Άρα,τοάθροισμακαιτογινόμενοδυοσυζυγών αριθμώνείναιπάντοτεπραγματικόςαριθμός.ηδιαφορά z z = 2ib,έχειδηλαδή πραγματικό μέρος ίσο με το μηδέν. Το πηλίκο δηλαδή είναι μιγαδικός αριθμός. z z = a2 b 2 +i2ab a 2 +b 2 = a2 b 2 a 2 +b 2 +i 2ab a 2 +b 2
8 18 ΚΕΦ ΑΛΑΙΟ1. ΣΤΟΙΧΕ ΙΑΑΠΕΙΡΟΣΤΙΚΟ ΥΛΟΓΙΣΜΟ Υ Θεωρημα 46 Ο συζυγής του αθροίσματος, της διαφοράς, του γινομένου και του πηλίκου δυο μιγαδικών αριθμών ισούται με το αντίστοιχο άθροισμα, διαφορά, γινόμενοκαιπηλίκοτωνσυζυγώντους.δηλαδή,ισχύει x±y = x±ȳ, xy = xȳ και x 1 y = x ȳ. Αποδειξη. Εστωδυομιγαδικοίαριθμοί x = a 1 + ib 1 και y = a 2 + ib 2. Το άθροισμάτουςείναι x+y = a 1 +a 2 +i(b 1 +b 2 )καιοσυζυγήςτουαθροίσματος είναι x+y = a 1 + a 2 i(b 1 + b 2 ). Τοάθροισματωνσυζυγώνείναι x + ȳ = a 1 +a 2 i(b 1 +b 2 ) = x+y. Για το γινόμενο έχουμε xy = a 1 a 2 b 1 b 2 i(a 1 b 2 +b 1 a 2 ) = xȳ Παρομοίως και τα υπόλοιπα. Εστω ένα πολυώνυμο P(z) = a 0 z n + +a n όπου zμιγαδικόςαριθμός,δηλαδή z = a + ibκαι a 0,,a n επίσηςμιγαδικοί αριθμοί. Τότε, σύμφωνα με τα προηγούμενα η τιμή P(z) είναι επίσης μιγαδικός αριθμόςενγένει.ανοισυντελεστές a k είναιπραγματικοίαριθμοίτότεπροφανώς ισχύειότι ā k = a k καιεπομένως P(z) = a 0 z n + +a n = P( z)σύμφωναμετο θεώρημα46. Εστω z 1 μιαρίζατουπολυωνύμουμεπραγματικούςσυντελεστές, δηλαδή P(z 1 ) = 0. Άρα P(z 1 ) = P( z 1 ) = 0οπότεπροκύπτειότικαιο z 1 είναι επίσης ρίζα του πολυωνύμου. Συνεπώς, σε κάθε πολυώνυμο με πραγματικούς συντελεστέςαν zείναιμιαρίζατουτότεθαείναικαιησυζυγήςεπίσηςρίζατου πολυωνύμου.
9 1.2. ΜΙΓΑΔΙΚΟ ΙΑΡΙΘΜΟ Ι Οι Μιγαδικοί Αριθμοί ως Διανύσματα (αʹ) Γεωμετρική Αναπαράσταση Μιγαδικών Αριθμών (βʹ) Πρόσθεση Διανυσμάτων Εφόσον κάθε μιγαδικός αριθμός z = x + iy αποτελείται από δυο πραγματικούς αριθμούς, δηλαδή ένα ζευγάρι (x, y), τότε μπορεί να τον αναπαραστήσουμε γεωμετρικά(δεςσχήμα1.1αʹ)μεένασημείοτου R 2 ήαλλιώςμεέναδιάνυσμαμεαρχή τηναρχήτωναξόνωνκαιτέλοςτοσημείο (x,y). Ετσι,αν rείναιηευκλείδεια απόσταση του σημείου (x, y)(ή αλλιώς το μήκος του αντίστοιχου διανύσματος) και φηγωνίαπουσχηματίζειτοδιάνυσμαμετονάξονατων xτότεμπορούμενα γράψουμε z = x+iy = r(cosφ+isinφ).ημορφήαυτήείναισεπολική μορφή όπωςλέμε. Οαριθμός rονομάζεταιηαπόλυτη τιμήτουμιγαδικούαριθμού z καισυμβολίζεταιμε x+iy ενώηφονομάζεταιηγωνίατουμιγαδικούαριθμού x+iy.επομένως,ισχύειότι r = x 2 +y 2 και tanφ = y x. Οτανπροσθέτουμε δυομιγαδικούςαριθμούς x = a 1 +ib 1 και y = a 2 +ib 2 είναισανναπροσθέτουμε τα αντίστοιχα διανύσματα που παράγουν, δες σχήμα 1.1βʹ. Αν υπολογίσουμε το γινόμενο δυο μιγαδικών αριθμών στην πολική μορφή τους θα έχουμε x 1 x 2 = r 1 r 2 (cosθ 1 +isinθ 1 )(cosθ 2 +isinθ 2 ) = r 1 r 2 (cos(θ 1 +θ 2 )+isin(θ 1 +θ 2 )) όπου χρησιμοποιήσαμε γνωστές τριγωνομετρικές ταυτότητες. Από την σχέση αυτή προκύπτει η φόρμουλα του De Moivre για το γινόμενο n ίσων παραγόντων, x n = r n (cosnθ +isinnθ) (φόρμουλατου De Moivre)
10 20 ΚΕΦ ΑΛΑΙΟ1. ΣΤΟΙΧΕ ΙΑΑΠΕΙΡΟΣΤΙΚΟ ΥΛΟΓΙΣΜΟ Υ Εύκολα μπορούμε τώρα να δούμε ότι ένας οποιοσδήποτε μιγαδικός αριθμός z = r(cosθ + isinθ)έχειακριβώς n-ρίζες n-οστήςτάξης. Αυτέςοιρίζεςείναιοι επόμενοι μιγαδικοί αριθμοί, ( x 1 = n r cos θ n +isin θ ) n. x n = n r ( cos θ +(n 1)2π +isin θ +(n 1)2π ) n n Μετάτονμιγαδικόαριθμόμεγωνία θ+(n 1)2π οι αριθμοί επαναλαμβάνονται. n Εύκολαβλέπουμεότιγιαένανμιγαδικόαριθμό zτογινόμενομετονσυζυγή τουμαςδίνειτηναπόλυτητιμήτου zστοτετράγωνο,δηλαδή z z = z 2 = r 2. Επίσης,ανz 1 = a 1 +ib 1 καιz 2 = a 2 +ib 2 δυομιγαδικοίαριθμοί,τότεz 1 z 2 + z 1 z 2 = 2(a 1 a 2 +b 1 b 2 ) = 2Re(z 1 z 2 )όπουμε Re(z)συμβολίζουμετοπραγματικόμέρος του μιγαδικού αριθμού z. Ισχύει και στους μιγαδικούς η τριγωνική ανισότητα, δηλαδή ισχύει ότι z 1 z 2 z 1 +z 2 z 1 + z 2 (τριγωνικήανισότητα) όπου z 1,z 2 μιγαδικοίαριθμοί. Γιανααποδείξουμετηνδεξιάανισότηταεργαζόμαστε ως εξής, Συνεπώς z 1 +z 2 2 = (z 1 +z 2 )(z 1 +z 2 ) = (z 1 +z 2 )( z 1 + z 2 ) = z z 2 2 +z 1 z 2 + z 1 z 2 z 1 +z 2 2 ( z 1 + z 2 ) 2 = 2(Re(z 1 z 2 ) z 1 z 2 ) Επειδή Re(z) = a z = a 2 +b 2 γιακάθεμιγαδικόαριθμό z = a + ibκαι επίσης z 1 z 2 = z 1 z 2 προκύπτειότι Re(z 1 z 2 ) z 1 z 2 0. Ηαριστερή ανισότητα της τριγωνικής ανισότητας αποδεικνύεται παρόμοια. Μελετώντας διεξοδικότερα τους μιγαδικούς αριθμούς και τις μιγαδικές συναρτήσεις μπορούμε να ορίσουμε την εκθετική συνάρτηση με μιγαδικό όρισμα ως την δυναμοσειρά e z = 1+z + z2 2! + + zn n! +
11 1.3. ΣΥΝΑΡΤ ΗΣΕΙΣ 21 όπου z = a+ibμιγαδικόςαριθμός.παρόμοια,ορίζονταιοισυναρτήσεις sinκαι cos με μιγαδικό όρισμα μέσω των δυναμοσειρών sinz = z z3 3! + z5 5! cosz = 1 z2 2! + z4 4! Οι ιδιότητες που έχουμε αποδείξει για την εκθετική και τις τριγωνομετρικές συναρτήσεις παραμένουν σε ισχύ ακόμη και με μιγαδικό όρισμα. Αν αναπτύξουμε σεδυναμοσειράτην e iz μετάαπόκατάλληληαναδιάταξητωνόρωνμπορείνα αποδειχθεί ότι e iz = cosz +isinz (φόρμουλατου Euler) Χρησιμοποιώντας τις ιδιότητες των συναρτήσεων αυτών προκύπτει η εξής αναπαράσταση των τριγωνομετρικών συναρτήσεων sinz = eiz e iz 2i και cosz = eiz +e iz Τέλος, σε πολικές συντεταγμένες ισχύει ότι 2 (τύποι του Euler) (1.4) z = r(cosθ +isinθ) = re iθ Περισσότερα μπορεί να βρει κανείς στο βιβλίο[30]. 1.3 Συναρτήσεις Σε αυτή την ενότητα θα ασχοληθούμε με τις συναρτήσεις, όρια και συνέχεια συναρτήσεων, παραγώγους και εφαρμογές τους. Εστω I R. Συνάρτησηείναιμιααπεικόνισητου Rστο R. Οπωςσυχνά λέμε, είναι μια μηχανή που την τροφοδοτείς με πραγματικούς αριθμούς και σου επιστρέφει πραγματικούς αριθμούς. Το σύνολο από το οποίο διαλέγεις αριθμούς για την συνάρτηση λέγεται πεδίο ορισμού ενώ το σύνολο που σου επιστρέφει η συνάρτηση λέγεται πεδίο τιμών. Συνήθως συμβολίζουμε την συνάρτηση ως εξής, f(x) : I R. Με f συμβολίζουμετηνσυνάρτηση, με xτοόρισμα τηςκαιμεταυπόλοιπαεννοούμεότιηf παίρνειτιμέςαπότοσύνολο I και
n+1 k=1 όπου για να πάρουμε την τρίτη ισότητα χρησιμοποιήσαμε την ταυτότητα που αποδείξαμε προηγούμενα.
1.1. ΠΡΑΓΜΑΤΙΚΟ ΙΑΡΙΘΜΟ Ι 9 Για την δεύτερη ταυτότητα θα χρησιμοποιήσουμε επαγωγή στο n. Ξεκινώντας για n = 2 διαπιστώνουμε ότι έχουμε την γνωστή ταυτότητα (a+b) 2 = a 2 +b 2 +2ab Υποθέτουμεότιισχύειγιακάποιο
Διάλεξη 1 - Σημειώσεις 1
Διάλεξη 1 - Σημειώσεις 1 Σύνολα Πως διαβάζουμε κάποιους συμβολισμούς: ανήκει και η άρνηση, δηλαδή δεν ανήκει υπάρχει για κάθε : τέτοιο ώστε. Επίσης το σύμβολο έχει την ερμηνεία «τέτοιο ώστε» και ή υπονοεί
ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού
ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ
Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1
ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου
Οι Μιγαδικοί Αριθμοί
Οι Μιγαδικοί Αριθμοί Οι μιγαδικοί αριθμοί αρχικά βοήθησαν στην επίλυση δευτεροβάθμιων εξισώσεων των οποίων η διακρίνουσα είναι αρνητική Το γενικότερο πρόβλημα βέβαια είναι ότι δεν υπάρχει πραγματικός αριθμός
ΣΗΜΕΙΩΣΕΙΣ. Η έννοια του μιγαδικού Το σύνολο των μιγαδικών. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού
ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ
Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:
Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Να γνωρίζει: α. την έννοια του μιγαδικού αριθμού και β. πότε δύο μιγαδικοί αριθμοί είναι ίσοι. Να μπορεί να βρίσκει: α. το άθροισμα,
I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr
I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο
Κεφάλαιο 0 Μιγαδικοί Αριθμοί
Κεφάλαιο 0 Μιγαδικοί Αριθμοί 0 Βασικοί ορισμοί και πράξεις Είναι γνωστό ότι δεν υπάρχει πραγματικός αριθμός που επαληθεύει την εξίσωση x Η ανάγκη επίλυσης τέτοιων εξισώσεων οδηγεί στο σύνολο των μιγαδικών
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά
Τριγωνομετρικά πολυώνυμα
Κεφάλαιο Τριγωνομετρικά πολυώνυμα Κύριες βιβλιογραφικές αναφορές για αυτό το Κεφάλαιο είναι οι Zygmund, Katznelson 4 και Stein and Shakarchi.. Μερικά βασικά περί μιγαδικών αριθμών Υποθέτουμε ως γνωστές
Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ
Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Το Σύνολο C των Μιγαδικών Αριθμών Είναι γνωστό ότι η εξίσωση x δεν έχει λύση στο σύνολο IR των πραγματικών αριθμών, αφού το τετράγωνο κάθε πραγματικού αριθμού είναι μη αρνητικός
ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ
ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού
Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΣΤΟΙΧΕΙΩΔΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης Το παρόν εκπαιδευτικό
I = 1. cos z. dz = = 1 z 2 cos z + 2z sin z + 2 cos z 2. z(z π) 3 dz. f(re iθ. f(z)
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ η Σειρά Ασκήσεων στη Μιγαδική Ανάλυση. Χρησιμοποιώντας τους ολοκληρωτικούς τύπους Cauchy υπολογίστε το ολοκλήρωμα I = πi z(z π) 3 dz,
2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ
ΚΕΦΑΛΑΙΟ Ο : ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ - ΕΝΟΤΗΤΕΣ :.... ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΜΕΘΟΔΟΛΟΓΙΑ : ΠΡΑΓΜΑΤΙΚΟ & ΦΑΝΤΑΣΤΙΚΟ ΜΕΡΟΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Έστω ένας μιγαδικός αριθμός,
Περιεχόμενα μεθόδευση του μαθήματος
Περιεχόμενα μεθόδευση του μαθήματος. Πως ορίζεται η έννοια. Το όριο. To f() f() ; f() εφόσον υπάρχει είναι μονοσήμαντα ορισμένο; εξαρτιέται από τα άκρα α, β των ( α, ) και (, β ) ;. Πως ορίζονται τα πλευρικά
4. ΣΤΟΙΧΕΙΩΔΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. (0.1) όπου z = x + iy. Όταν z = iy τότε ο ανωτέρω τύπος παίρνει την μορφή. e dz = (0.3)
4. ΣΤΟΙΧΕΙΩΔΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Η εκθετική συνάρτηση Η εκθετική συνάρτηση την σχέση e, ή exp( ) όπως εναλλακτικά συμβολίζεται, ορίζεται από x e = e (os y+ isin y) (0.) όπου = x + iy. Όταν = iy τότε ο ανωτέρω
Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής
D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί
α) () z i z iz i Αν z i τότε i( yi) i + + y y y ( y) i i y + 4y + 4, y y 4. Άρα z i. 4 β) ( z) z i z z i z ( i) z, οπότε ( z ) i z z Άρα z z γ) Αν z τ
Λυμένα θέματα στους Μιγαδικούς αριθμούς. Δίνονται οι μιγαδικοί z, w και u z w. α) Να αποδείξετε ότι ο μιγαδικός z είναι φανταστικός αν και μόνο αν ισχύει z z. β) Αν για τους z και w ισχύει: z + w z w,
sup(a + B) = sup A + sup B inf(a + B) = inf A + inf B.
Ασκήσεις, Φυλλάδιο. Βρειτε το συνολο Φ A ολων των ανω ϕραγματων του A, και το συνολο φ A ολων των κατω ϕραγματων του A, οταν: a) A = m :, m N}, b) A = + m 2. Βρειτε το if και sup οποτε υπαρχουν) των συνολων
Μιχάλης Παπαδημητράκης. Μιγαδική Ανάλυση. Τμήμα Μαθηματικών. Πανεπιστήμιο Κρήτης
Μιχάλης Παπαδημητράκης Μιγαδική Ανάλυση Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Περιεχόμενα Οι μιγαδικοί αριθμοί.. Οι μιγαδικοί αριθμοί..................................2 Το Ĉ, η στερεογραφική προβολή και
ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ
ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΕΚΔΟΣΕΙΣ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ τη ΘΕΩΡΙΑ με τις απαραίτητες διευκρινήσεις ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ
2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ο ΓΕΛ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β ΛΥΚΕΙΟΥ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ -4 ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Επιμέλεια: ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...
Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης
(a) (3a + 14β) + (2a β)i = 7 i (β) a(1 + i) + β(1 i) = 5 i) (1 + i)2 3 i. a + βi =
ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ-ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΛΥΣΗ ΕΠΙΜΕΛΕΙΑ: Καρράς Ιωάννης Μαθηματικός Ο μὲν κάλος ὄσσον ἴδην πέλεται κάλος ὀ δὲ κἄγαθος αὔτικα κὔστερον ἔσσεται. gxkarras@gmail.com 1. Να βρείτε τους αριθμούς
Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί Η ΠΑΡΑΓΩΓΟΣ. Η ΕΝΝΟΙΑ ΤΗΣ ΑΝΑΛΥΤΙΚΗΣ ΣΥΝΑΡΗΣΗΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης
12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο
ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες
2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ
ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.
ΠΡΟΛΟΓΟΣ. Επίσης. Ολες οι ασκήσεις ανα κεφάλαιο του Μαίου. Κλείνει με τις λύσεις όλων των θεμάτων του Μαίου
ΠΡΟΛΟΓΟΣ Το παρόν τεύχος δημιουργήθηκε για να διευκολύνει τους μαθητές στην ΆΜΕΣΗ κατανόηση των απαιτήσεων των πανελληνίων εξετάσεων δίνοντας τους τα θέματα των 4 χρόνων των κανονικών εξετάσεων του Μαίου
(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac
Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας
Ασκήσεις σχ. Βιβλίου σελίδας Α ΟΜΑ ΑΣ 1.
.. Ασκήσεις σχ. Βιβλίου σελίδας 94 97 Α ΟΜΑ ΑΣ. Να βρείτε τις τιµές του λ R, ώστε ο z (λ )( ) να είναι : πραγµατικός αριθµός φανταστικός αριθµός z λ λ 6 (λ ) (6 λ) z πραγµατικός 6 λ 0 λ 6 z φανταστικός
αβ (, ) τέτοιος ώστε f(x
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΜΑ Α Άσκηση α) Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [ αβ., ] Αν η f είναι συνεχής στο [ αβ, ]
). Πράγματι, στο διάστημα [ x, x 1 2 ικανοποιεί τις προϋποθέσεις του Θ.Μ.Τ. Επομένως, υπάρχει ξ x 1,
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 8 MAΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α A Αποδεικνύουμε το θεώρημα στην περίπτωση που
Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου
Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση
Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση
Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Υποδειγματικά Λυμένες Ασκήσεις Άλυτες Ασκήσεις ΛΑ Να βρείτε
Όριο και συνέχεια πραγματικής συνάρτησης
ΚΕΦΑΛΑΙΟ 4 Όριο και συνέχεια πραγματικής συνάρτησης Αγνοώ το πώς με βλέπει ο κόσμος αλλά στον εαυτό μου, φαίνομαι σαν να μην ήμουν τίποτα άλλο από ένα αγοράκι που παίζει στην ακρογιαλιά και κατά καιρούς
2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ
O z είναι πραγματικός, αν και μόνο αν Ο z είναι φανταστικός, αν και μόνο αν β) Αν και να αποδείξετε ότι ο αριθμός είναι πραγματικός, ενώ ο αριθμός είναι φανταστικός. 9. Να βρείτε το γεωμετρικό τόπο των
Συμπληρωματικά, διαβάστε όλο το Κεφάλαιο 2 των Μαθηματικών Θετικής Κατεύθυνσης της 3ης Λυκείου
Κεφάλαιο 2 Μιγαδικοί Αριθμοί Συμπληρωματικά, διαβάστε όλο το Κεφάλαιο 2 των Μαθηματικών Θετικής Κατεύθυνσης της 3ης Λυκείου Τα στοιχεία του συνόλου των μιγαδικών αριθμών είναι εκφράσεις της μορφής a+ib
Συναρτήσεις Όρια Συνέχεια
Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με
Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου
Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών
7. ΑΝΩΜΑΛΑ ΣΗΜΕΙΑ, ΠΟΛΟΙ ΚΑΙ ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ ΟΛΟΚΛΗΡΩΤΙΚΩΝ ΥΠΟΛΟΙΠΩΝ. και σε κάθε γειτονιά του z
7. ΑΝΩΜΑΛΑ ΣΗΜΕΙΑ, ΠΟΛΟΙ ΚΑΙ ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ ΟΛΟΚΛΗΡΩΤΙΚΩΝ ΥΠΟΛΟΙΠΩΝ Ένα σημείο λέγεται ανώμαλο σημείο της συνάρτησης f( ) αν η f( ) δεν είναι αναλυτική στο και σε κάθε γειτονιά του υπάρχει ένα τουλάχιστον
2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ
ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί
Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους
Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;
- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ R - ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ - ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΑΚΟΛΟΥΘΙΑΣ [Κεφ..6: Μη Πεπερασμένο Όριο στο R - Κεφ..7: Όρια Συνάρτησης
Ορισμένες σελίδες του βιβλίου
Ορισμένες σελίδες του βιβλίου 7. Θεωρούμε το σύνολο αναφοράς 0,,. Να οριστούν τα σύνολα: Α. των τριψηφίων αριθμών που σχηματίζουν τα στοιχεία του Ω. Β. των τριψηφίων αριθμών με διαφορετικά ψηφία Γ. των
Η ΑΞΙΩΜΑΤΙΚΉ ΘΕΜΕΛΙΩΣΗ ΤΩΝ ΠΡΑΓΜΑΤΙΚΏΝ ΑΡΙΘΜΩΝ ΚΑΙ Η ΕΙΣΑΓΩΓΗ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ. Αργύρης Φελλούρης Καθηγητής Ε.Μ.Π.
Η ΑΞΙΩΜΑΤΙΚΉ ΘΕΜΕΛΙΩΣΗ ΤΩΝ ΠΡΑΓΜΑΤΙΚΏΝ ΑΡΙΘΜΩΝ ΚΑΙ Η ΕΙΣΑΓΩΓΗ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ Αργύρης Φελλούρης Καθηγητής Ε.Μ.Π. Στις σύντομες σημειώσεις που ακολουθούν θα περιγράψουμε την αξιωματική θεμελίωση των
ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8
ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,
7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει
8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y
v y = 12x 2 y + 4y v(x, y) = 6x 2 y 2 + y 4 + y + c(x). f(z) = u(z, 0) + iv(z, 0) = z + i(z 4 + c), f(z) = iz 4 + z i.
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Εξετάσεις στη Μιγαδική Ανάλυση ΟΜΑΔΑ: Α 0 Ιουλίου, 0 Θέμα. (αʹ) Να βρεθεί η τιμή του a R για την οποία η συνάρτηση u(x, y) ax 3 y +4xy
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 17 Οκτωβρίου 2011
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 7 Οκτωβρίου 0 Ημερομηνία παράδοσης της Εργασίας: 5 Νοεμβρίου 0 Οι ασκήσεις
Απειροσ τικός Λογισμός ΙΙ Πρόχειρες Σημειώσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών
Απειροστικός Λογισμός ΙΙ Πρόχειρες Σημειώσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών - Περιεχόμενα Υπακολουθίες και βασικές ακολουθίες. Υπακολουθίες. Θεώρημα Bolzno Weierstrss.αʹ Απόδειξη με χρήση της
Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :
Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΜΑ Α Άσκηση, μιγαδικοί αριθμοί να αποδείξετε ότι: Αν = Έχουμε: = ( ) ( ) ( ) ( ) = = =. Το τελευταίο ισχύει, άρα ισχύει και η ισοδύναμη αρχική σχέση.
Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς
Σημειώσεις Ανάλυσης Ι 1. Οι ρητοί αριθμοί Θεωρούμε γνωστούς τους φυσικούς αριθμούς 1, 2, 3, και τις πράξεις (πρόσθεση - πολλαπλασιασμό)μεταξύ αυτών. Οι φυσικοί αριθμοί είναι επίσης διατεταγμένοι με κάποια
ΑΚΟΛΟΥΘΙΕΣ ΣΕΙΡΕΣ. Ορισμός 1. Μια 1 1 (ένα προς ένα) συνάρτηση με πεδίο ορισμού το και πεδίο τιμών ένα υποσύνολο X του, δηλαδή μία 1 1 συνάρτηση
ΑΚΟΛΟΥΘΙΕΣ ΣΕΙΡΕΣ 1. ΑΚΟΛΟΥΘΙΕΣ Ορισμός 1. Μια 1 1 (ένα προς ένα) συνάρτηση με πεδίο ορισμού το και πεδίο τιμών ένα υποσύνολο X του, δηλαδή μία 1 1 συνάρτηση : 1 λέγεται ακολουθία πραγματικών αριθμών ή
Να γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ρητοί και ποιοι άρρητοι;
Φυσικοί, Ακέραιοι, Ρητοί, Άρρητοι, Πραγματικοί, Απόλυτη Τιμή, Ομόσημοι, Ετερόσημοι, Αντίθετοι, Αντίστροφοι. Να γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ακέραιοι;
ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ
ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό σας. ΚΕΦΑΛΑΙΟ 1 1. Να συμπληρώσετε
Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ
Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών
Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΑΝΩΜΑΛΑ ΣΗΜΕΙΑ, ΠΟΛΟΙ ΚΑΙ ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ ΟΛΟΚΛΗΡΩΤΙΚΩΝ ΥΠΟΛΟΙΠΩΝ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος
Δώδεκα Αποδείξεις του. Θεμελιώδους Θεωρήματος της Άλγεβρας
Δώδεκα Αποδείξεις του Θεμελιώδους Θεωρήματος της Άλγεβρας Mία εκδοχή της αρχικής απόδειξης του Gauss f ( z) = T ( z) + iu ( z) T = r cos φ + Ar 1 cos(( 1) φ + α) + + L cosλ U = r si φ + Ar 1 si(( 1) φ
Δύο λόγια από τη συγγραφέα
Δύο λόγια από τη συγγραφέα Τα μαθηματικά ή τα λατρεύεις ή τα μισείς! Για να λατρέψεις κάτι πρέπει να το κατανοήσεις, για τη δεύτερη περίπτωση τα πράγματα μάλλον είναι λίγο πιο απλά. Στόχος αυτού του βιβλίου
1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.
Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή
Σημειώσεις για το μάθημα Μιγαδική Ανάλυση Ι. Θέμης Μήτσης. Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Ηράκλειο
Σημειώσεις ια το μάθημα Μιαδική Ανάλυση Ι Θέμης Μήτσης Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Ηράκλειο Στις σημειώσεις αυτές, αν η απόδειξη κάποιου θεωρήματος δεν δίνεται, τότε είτε είναι σχεδόν αυτολεξεί
n 5 = 7 ε (π.χ. ορίζοντας n0 = 1+ ε συνεπώς (σύμϕωνα με τις παραπάνω ισοδυναμίες) an 5 < ε. Επομένως a n β n 23 + β n+1
Θέμα 1 (α) Υποθέτουμε (προς απαγωγή σε άτοπο) ότι το σύνολο A έχει μέγιστο στοιχείο, έστω a = max A Τότε, εϕόσον a A, έχουμε a R Q και a M Ομως ο αριθμός μητρώου M είναι ρητός αριθμός, άρα (εϕόσον ο a
Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών Αριθμητικά σύνολα Ιδιότητες Περισσότερες ιδιότητες...
Περιεχόμενα Πρόλογος 5 Κεφάλαιο Βασικές αριθμητικές πράξεις 5 Τέσσερις πράξεις 5 Σύστημα πραγματικών αριθμών 5 Γραφική αναπαράσταση πραγματικών αριθμών 6 Οι ιδιότητες της πρόσθεσης και του πολλαπλασιασμού
ΑΣΚΗΣΕΙΣ. x + 5= 6 (1) και. x = 1, οπότε η (2) γίνεται 1 5x + 1= 7 x = 1 ΘΕΜΑ Β. Άσκηση 1. Να βρείτε τον αριθμό x R όταν. Λύση.
ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i. ΙΔΙΟΤΗΤΕΣ
Παράδειγμα 14.2 Να βρεθεί ο μετασχηματισμός Laplace των συναρτήσεων
Κεφάλαιο 4 Μετασχηματισμός aplace 4. Μετασχηματισμός aplace της εκθετικής συνάρτησης e Είναι Άρα a a a u( a ( a ( a ( aj F( e e d e d [ e ] [ e ] ( a e (c ji, με a (4.9 a a a [ e u( ] a, με a (4.3 Η σχέση
Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ
Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση
Σηµειώσεις. ιαφορικές Εξισώσεις- Μετασχηµατισµός Laplace- Σειρές Fourier. Nικόλαος Aτρέας
Σηµειώσεις ιαφορικές Εξισώσεις- Μετασχηµατισµός Lplce- Σειρές Fourier Nικόλαος Aτρέας ΘΕΣΣΑΛΟΝΙΚΗ 4 Περιεχόµενα Κεφάλαιο Επισκόπηση γνωστών εννοιών Σειρές πραγµατικών αριθµών Σειρές συναρτήσεων 3 Γενικευµένα
Ανάλυση Ι και Εφαρμογές Σημειώσεις από τις παραδόσεις Α. Γιαννόπουλος Τμήμα Φυσικής Πανεπιστήμιο Αθηνών Αθήνα 2018
Ανάλυση Ι και Εφαρμογές Σημειώσεις από τις παραδόσεις Α. Γιαννόπουλος Τμήμα Φυσικής Πανεπιστήμιο Αθηνών Αθήνα 08 Περιεχόμενα Το σύνολο των πραγματικών αριθμών. Φυσικοί, ακέραιοι και ρητοί αριθμοί............................
ΠΕΡΙΕΧΟΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΟΡΘΟΓΩΝΙΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ...23 ΑΠΟΛΥΤΗ ΤΙΜΗ. ΑΝΙΣΟΤΗΤΕΣ...15 ΚΕΦΑΛΑΙΟ 3 ΕΥΘΕΙΕΣ...32 ΚΕΦΑΛΑΙΟ 4 ΚΥΚΛΟΙ...43
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ. ΑΠΟΛΥΤΗ ΤΙΜΗ. ΑΝΙΣΟΤΗΤΕΣ...5 ΚΕΦΑΛΑΙΟ ΣΥΣΤΗΜΑΤΑ ΟΡΘΟΓΩΝΙΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ... ΚΕΦΑΛΑΙΟ ΕΥΘΕΙΕΣ... ΚΕΦΑΛΑΙΟ 4 ΚΥΚΛΟΙ...4 ΚΕΦΑΛΑΙΟ 5 ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΟΙ
Το βιβλίο αυτό αποτελεί τον πρώτο τόμο των Μαθηματικών Γʹ Λυκείου για τις
wwwzitigr Πρόλογος Το βιβλίο αυτό αποτελεί τον πρώτο τόμο των Μαθηματικών Γʹ Λυκείου για τις ομάδες προσανατολισμού: ç Θετικών σπουδών ç Οικονομίας και Πληροφορικής Αναπτύσσονται διεξοδικά τα κεφάλαια:
Ας ξεκινήσουμε υπενθυμίζοντας τον ορισμό της συνέχειας σε μετρικούς χώρους. διατυπώνεται και με τον ακόλουθο τρόπο: για κάθε σφαίρα
33.4.Συνεχείς συναρτήσεις Η έννοια της συνεχούς συνάρτησης είναι θεμελιώδης και μελετάται κατ αρχήν για συναρτήσεις μιας και κατόπιν δύο ή περισσότερων μεταβλητών στα μαθήματα του Απειροστικού Λογισμού.
ΦΕΒΡΟΥΑΡΙΟΣ Ο συντελεστής διεύθυνσης της εφαπτοµένης της γραφικής παράστασης τη f(x) στο σηµείο x ο είναι f x ) (Μονάδες 4)
Αµυραδάκη, Νίκαια (-493576) ΘΕΜΑ ΦΕΒΡΟΥΑΡΙΟΣ 3 Α. Πότε µια συνάρτηση f λέγεται παραγωγίσιµη στο ο ; Β. Τι σηµαίνει γεωµετρικά το θεώρηµα Rolle ; Γ. Να αποδείξετε ότι ( ) a = a ln a (Μονάδες 5) (Μονάδες
Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση
Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Θεωρία - Μέθοδοι Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση Επιλεγμένα θέματα «Σας εύχομαι, καλό κουράγιο και μεγάλη δύναμη
Ασκήσεις Απειροστικού Λογισμού ΙΙ Πρόχειρες Σημειώσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Περιεχόμενα Υπακολουθίες και ακολουθίες Cuchy Σειρές πραγματικών αριθμών 3 3 Ομοιόμορφη συνέχεια 3 4 Ολοκλήρωμα
R={α/ αρητός ή άρρητος αριθμός }
o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ Οι ρητοί και οι άρρητοι αριθμοί λέγονται πραγματικοί αριθμοί. Το σύνολο που περιέχει όλους τους πραγματικούς αριθμούς λέγεται σύνολο των πραγματικών αριθμών και συμβολίζεται με R.
6 Συνεκτικοί τοπολογικοί χώροι
36 6 Συνεκτικοί τοπολογικοί χώροι Έστω R διάστημα και f : R συνεχής συνάρτηση τότε, όπως γνωρίζουμε από τον Απειροστικό Λογισμό, η f έχει την ιδιότητα της ενδιάμεσου τιμής. Η ιδιότητα αυτή δεν εξαρτάται
Μαθηματικά Γ Γυμνασίου
Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 20 Νοεμβρίου 2012
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι ανανεωμένο στις 20 Νοεμβρίου 202 Τμήμα Θ Αποστολάτου & Π Ιωάννου Ακολουθίες - Όρια ακολουθιών Έστω η ακολουθία μια αριθμημένη σειρά δηλαδή) των αριθμών:
Διάλεξη 5: Συνέχεια συναρτήσεων και όρια στο άπειρο
Διάλεξη 5: Συνέχεια συναρτήσεων και όρια στο άπειρο Ακριβής ορισμός του πλευρικού ορίου Έστω ότι το πεδίο ορισμού της f x περιέχει ένα διάστημα d, c στα αριστερά του c. Η f x έχει αριστερό όριο L στο c
ΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ
ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ 10 ΕΠΑΝΑΛΗΨΕΙΣ ΑΠΟ ΠΡΟΗΓΟΥΜΕΝΕΣ ΤΑΞΕΙΣ α ) Ταυτότητες 1. (a-β)(a+β)=a - b. (a ± b ) = a ± ab + b 3 3 3 3. (a ± b ) = a ± 3a b + 3ab
Αριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Πεπερασμένες και Διαιρεμένες Διαφορές Εισαγωγή Θα εισάγουμε την έννοια των διαφορών με ένα
math-gr Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr
III Όριο Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ Πεπερασμένο Όριο στο Α Ορισμός Όριο στο : Όταν οι τιμές μιας συνάρτησης f προσεγγίζουν όσο θέλουμε έναν πραγματικό αριθμό,
ΚΕΦΑΛΑΙΟ 2 Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ»
ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ ο : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Α ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Πεδίο
Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί
ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΙΚΩΝ ΕΝΝΟΙΙΩΝ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Α ΤΑΞΗΣ Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί Α. 7. 1 1. Τι είναι τα πρόσημα και πως χαρακτηρίζονται οι αριθμοί από αυτά; Τα σύμβολα
Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες
Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ
ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.
ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα
Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Μαθηματικά Ενότητα 2: Διαφορικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
f(t) = (1 t)a + tb. f(n) =
Παράρτημα Αʹ Αριθμήσιμα και υπεραριθμήσιμα σύνολα Αʹ1 Ισοπληθικά σύνολα Ορισμός Αʹ11 (ισοπληθικότητα) Εστω A, B δύο μη κενά σύνολα Τα A, B λέγονται ισοπληθικά αν υπάρχει μια συνάρτηση f : A B, η οποία
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΜΑ Α Άσκηση z, z μιγαδικοί αριθμοί να αποδείξετε ότι: Αν z z = z z Έχουμε: z z = z z ( z z ) ( z z ) = z z z z = z z z z z z = z z z z. Το τελευταίο
Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5
Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Α Σύνολα αριθμών Για τα σύνολα των αριθμών γνωρίζουμε ότι N Z Q R. ) Το N= { 0,,,,... } είναι το σύνολο των φυσικών αριθμών. ) Το Z = { 0, ±, ±, ±,... } είναι το σύνολο
Μαθηματικά Και Στατιστική Στη Βιολογία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά Και Στατιστική Στη Βιολογία Ενότητα 8 : Μιγαδικοί Αριθμοί & Ακολουθίες Αριθμών Στέφανος Σγαρδέλης Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ
ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΡΙΣΜΟΙ ΑΠΟΔΕΙΞΕΙΣ ΕΡΩΤΗΣΕΙΣ : ΣΩΣΤΟ ΛΑΘΟΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ : ΜΙΓΑΔΙΚΟΙ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [α,β]. Αν η f είναι συνεχής στο [α,β]
ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ
ΜΕΡΟΣ Α ο ΚΕΦΑΛΑΙΟ. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών. Ονομάζεται αλγεβρική παράσταση μια παράσταση
Φ3: ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ
Φ: ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α ΘΕΩΡΙΑ ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΩΣΤΟΛΑΘΟΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΘΕΜΑ Β ΑΣΚΗΣΕΙΣ ΘΕΜΑ Γ ΑΣΚΗΣΕΙΣ ΘΕΜΑ Δ ΑΣΚΗΣΕΙΣ