Ευθυμίου Κ., Τσιγκλιφής Κ., Πελεκάσης Ν.
|
|
- Αθος Ελευθερίου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Απόκριση αξονοσυμμετρικής μικροφυσαλίδας σε ακουστικές διαταραχές Ευθυμίου Κ., Τσιγκλιφής Κ., Πελεκάσης Ν. Εργαστήριο Μηχανικής Ρευστών & Στροβιλομηχανών Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Χρηματοδότηση: Πρόγραμμα «Ηράκλειτος ΙΙ», Υ.ΠΑΙ.Θ.Π.Α. 8 ο Πανελλήνιο συνέδριο «Φαινόμενα ροής ρευστών», 16 & , Βόλος
2 Μικροφυσαλίδες (Contrast Agents) Φυσαλίδες που περιβάλλονται από ελαστική μεμβράνη Εμπεριέχουν χαμηλής πυκνότητας ρευστό, συνήθως διαλυτό στο αίμα Έχουν διάμετρο της τάξης 1 έως 10 μm Μεμβράνη μονής στοιβάδας από πολυμερές, λιπίδιο ή πρωτεΐνη πάχους της τάξης 1 έως 30 nm Κίνητρο PEG Lipid monolayer MI Βελτιωμένη απεικόνιση αιμάτωσης, μέσω μιας ακολουθίας υπερήχων χαμηλού και υψηλού Μηχανικού Δείκτη (MI) p Ac f Διαγνωστική ιατρική Μέθοδος υπερήχων Εκπομπή ισχυρού σήματος πίεσης από τη μικροφυσαλίδα, όταν διαταραχθεί το περιβάλλον ρευστό (boros et al. 2002, Frinking & de Jong, Postema et al., Ultrasound Med. Bio. 1998, 2004)
3 Θεραπεία ασθενειών εσωτερικών οργάνων Μεταφορά φαρμάκων στους ιστούς από τις μικροφυσαλίδες (Klibanov et al., adv. Drug Delivery Rev., 1999, Ferrara et al. Annu. Rev. Biomed., 2007) Γονιδιακή Θεραπεία Μέθοδος onoporation Δημιουργία πόρων στην επιφάνεια γειτονικών κυττάρων εξαιτίας του ροϊκού πεδίου που δημιουργεί η ταλαντούμενη μικροφυσαλίδα (Marmottant & Hilgenfeldt, Nature 2003) Ανάγκη για εξειδικευμένη σχεδίαση Contrast Agents, ώστε να επιτευχθεί ελεγχόμενη ταλάντωση ή/και καταστροφή τους Ανάγκη για ανάπτυξη μοντέλων που θα καλύπτουν ευρύτερο φάσμα της συμπεριφοράς των Contrast Agents (π.χ.: μη γραμμική συμπεριφορά του υλικού του κελύφους, παραμορφώσεις σχήματος της μικροφυσαλίδας, μεταφορά μάζας στη διεπιφάνεια φυσαλίδας ρευστού) Ανάγκη να κατανοηθούν οι πειραματικές παρατηρήσεις με σκοπό τον χαρακτηρισμό των Contrast Agents
4 Το κέλυφος της μικροφυσαλίδας παίζει πολύ σημαντικό ρόλο στο σχεδιασμό και τον έλεγχο της συμπεριφοράς της Διάγραμμα φάσης Στατική απόκριση μικροφυσαλίδας Condensed solid phase Condensed liquid phase (Wang et al. J. Phys. Chem. 1996) Παραμορφώνεται όταν διαχυθεί αέριο στο περιβάλλον ρευστό διαπερνώντας το κέλυφος (Borden & Longo, Langmuir, 2002) Δύο μηχανισμοί ανάκτησης σφαιρικού σχήματος: Αποβολή του πλεονάζοντος λιπιδίου (lipid shedding or budding) (Borden & Longo, Langmuir, 2002) Δημιουργία διπλής στοιβάδας (bilayer) (Lee et al., Annu. Rev. Phys. Chem, 2008) Ανακτούν εκ νέου το σφαιρικό τους σχήμα μέσω ενός μηχανισμού, ο οποίος ενώνει τα υδρόφοβα στελέχη του λιπιδίου
5 Δυναμική απόκριση μικροφυσαλίδας Οι μικροφυσαλίδες ταλαντώνονται εμφανίζοντας μεγαλύτερη συμπίεση απ ό,τι διόγκωση για μικρά πλάτη διαταραχών («Compression only» behavior), ενώ για μεγάλα πλάτη εμφανίζουν αντίθετη συμπεριφορά («Expansion only» behavior) (Marmottant et al., JAA, 2005) M. Overvelde, Ph. D Thesis (2010) Univ. Twente P 40kPa, 0.4 Ac BR 14 Όταν οι μικροφυσαλίδες εμφανίζουν «Compression only» συμπεριφορά, παραμορφώνονται κατά τη φάση της συμπίεσης
6 Αξονοσυμμετρικές ταλαντώσεις μικροφυσαλίδας, n e s P t P 1 cos t 2 v Liquid ρ, P st ξ=1 Potential incompressible flow st f f f Axis of symmetry Gas P G Αξονική συμμετρία r s θ σ hell ξ=0 G s, μ s, k B, δ Ιδανική, αστρόβιλη ροή υψηλού αριθμού Reynolds o Characteristic space and time scales: R, o Dimensionless parameters: f P f P 3 G R G / R Re l,2 d / Eq G R,2d Eq t,2d k B G R Ασυμπίεστο περιβάλλων ρευστό με ημιτονοειδή αλλαγή πίεσης στο άπειρο Ιδανικό αέριο εντός της φυσαλίδας που υπόκειται σε αδιαβατική μεταβολή B 2,2d Eq Πολύ λεπτό ιξωδοελαστικό κέλυφος του οποίου η συμπεριφορά χαρακτηρίζεται από καταστατικό νόμο (π.χ. Hooke, Mooney-Rivlin ή kalak) 2 l 3 R / G Eq Eq.2d Eq, Re G,2d =δg s G,2 We d G R 3,2d Eq Το κέλυφος παρουσιάζει καμπτική σταθερά η οποία καθορίζει τις τάσεις μαζί με τις μεταβολές καμπυλότητας Παράμετροι του κελύφους: μέτρο επιφανειακής διαστολής χ=3g s δ, διασταλτικό ιξώδες μ s, σταθερές b ή C για ψευδοπλαστικά ή διασταλτικά κελύφη αντίστοιχα και μέτρο δυσκαμψίας k B 2
7 Το ιξώδες του κελύφους είναι πολύ μεγαλύτερο από αυτό του υγρού (Re s <<Re l ) Επομένως οι ιξώδεις τάσεις του υγρού θεωρούνται αμελητέες Το εφαπτομενικό ισοζύγιο δυνάμεων στο κέλυφος ικανοποιείται από την ισορροπία των ιξωδών και ελαστικών τάσεων του κελύφους Ισοζύγιο δυνάμεων στη διεπιφάνεια μικροφυσαλίδας ρευστού: 1 2k m s n n r rs : PL I X n PG n n F F, ReL We We F F n Fe T, T qn s El qn : :, : vis n t s s El Vis Επιφανειακός τελεστής, Τανυστές ελαστικών και ιξωδών τάσεων Τανυστής διατμητικών τάσεων λόγω ροπών T : Τανυστής τάσεων Ισοζύγιο ροπών στη διεπιφάνεια μικροφυσαλίδας ρευστού: q m ( I nn), : s m Τανυστής ροπών
8 Καταστατικές σχέσεις για τις αναπτυσσόμενες ροπές: R m k I, I, k n k ( I nn) B 1 2 m s m R k :Μέση καμπυλότητα αναφοράς, : Αντίσταση του κελύφους σε λυγισμό, m k k m K vk m K vk B, B s s s s R K k k, K k k k B s s s s 2 3G s k B R : Λόγος Poisson Για αξονική συμμετρία και μικρές αποκλίσεις από τις καμπυλότητες αναφοράς R R ks, k (Bending measures of strain, Zarda et al. 1977) Σύμφωνα με τη θεωρία πλακών και κελυφών, 3D ελαστικό στερεό μικρού πάχους h (Timoshenko & Krieger, 1959) Σχηματικό διάγραμμα των τάσεων και των των ροπών που αναπτύσσονται σε ένα κομμάτι του σφαιρικού κελύφους
9 Καταστατικοί νόμοι κελύφους Γραμμική συμπεριφορά Νόμος Hooke Νόμος Kelvin Voigt με ιξώδεις τάσεις: T H G 1 s K K A A s Κ: μέτρο επιφανειακής διαστολής G s : μέτρο διάτμησης ν s : λόγος Poisson επιφάνειας ΔΑ/Α: Σχετική μεταβολή εμβαδού tress 2,0 1,5 1,0 0,5 0,0-0,5-1,0-1,5 train softening, b=0 train softening, b=1 train hardening, C=1 train hardening, C=5 Marmottant model Neo-Hookean Ψευδοπλαστικό υλικό (train softening) (π.χ.: λιπίδιο μονής στοιβάδας) Νόμος Mooney Rivlin (2D): 4 2 G 1 MR MR T 1 1 1, Ψ=1-b : βαθμός ομαλότητας Διασταλτικό υλικό (train hardening) (π.χ.: ερυθρά αιμοσφαίρια με κέλυφος από λιπίδιο διπλής στοιβάδας) Νόμος kalak: T G C C K , 1, 1 K -2,0-0,6-0,4-0,2 0,0 0,2 0,4 0,6 Isotropic train =ΔΑ/Α C: βαθμός επιφανειακής συμπιεστότητας
10 A M P L I T U D E 1,4 1,2 1,0 0,8 0,6 0,4 0,2 0,0-0, Παραμετρική ευστάθεια Συντονισμός Dynamic Buckling Req 3.6 m, Gs 80 MPa, 1 nm, s 20 Pa s, b 0, 0.5, l 998 kg 3, P st Pa, 1.07, v f 1.7 MHz, KBD 3.0d 14Nm m aturation - Harmonic resonance R(t) P 4 0,2 P tability, ε=2 8 tability, ε=3 v 0 =1.1 MHz, v 4 =2 MHz t imulation ε=2 P 0 P 4 P 6 1,4 1,2 1,0 0,8 0,6 0,4 0,0-0,2-0, R(t) P 7 train oftening membrane P 0 P 2 P 6 P 7 P 8 imulation ε=3 Transient Break-up t
11 Αξονοσυμμετρικές ταλαντώσεις μικροφυσαλίδας παρουσία γειτονικού τοιχώματος Σχηματική απεικόνιση Διέπουσες εξισώσεις P t P 1 cos t, 2 v st f f f z r, t Κινηματικές συνθήκες: r z r z z r r z dr n dz, n dt r z dt r z Ολοκληρωτική εξίσωση πάνω στις διεπιφάνειες φυσαλίδας και τοιχώματος: r z t r z t G r z r z d,,,,,,, b w r, z r, z Δυναμική συνθήκη στη διεπιφάνεια φυσαλίδας ρευστού: D 1 2km P P, G Fn k m s n Dt 2 n r z We Λόγω αξονοσυμμετρίας ισχύουν για τη φυσαλίδα: z r r n n b 0 στο 2 1 0, 1 (i.e. 0) G r, z, t r0, z0, t r0, z0, r, zdb n G r, z, tg r, z, r, zd r, z, t r, z, r, zd n 0 0 w 0 0 n w b w
12 Διέπουσες εξισώσεις (συν.) Θεώρηση στερεού τοιχώματος: Σε αυτή την περίπτωση θεωρούμε δεύτερη φυσαλίδα συμμετρικά ως προς τον άξονα r (θετικός ημιάξονας z) Rigid Wall 2 1 P t P 1 cos t, 2 v st f f f uz 0 r Η επίλυση των κινηματικών συνθηκών και της δυναμικής συνθήκης γίνεται με πεπερασμένα στοιχεία και προκύπτουν η θέση της διεπιφάνειας και το δυναμικό της ταχύτητας κοντά στη διεπιφάνεια. Λόγω της συμμετρίας λύνουμε μόνο για τη μία φυσαλίδα. Για την εύρεση της κάθετης ταχύτητας στη διεπιφάνεια επιλύουμε την ολοκληρωτική εξίσωση πάνω στις δύο διεπιφάνειες των φυσαλίδων με χρήση συνοριακών στοιχείων: r, z, t r, z, tg r, z, r, zd b b1 n b1 G r, z, t r0, z0, t r0, z0, r, zdb 1 n G r, z, tg r, z, r, zd r, z, t r, z, r, zd n 0 0 b2 0 0 b2 n b2 b2 Το πεδιακό σημείο (r 0,z 0 ) βρίσκεται τη μια φορά στη διεπιφάνεια της φυσαλίδας 1 και την άλλη στη διεπιφάνεια της 2
13 Διέπουσες εξισώσεις (συν.) z r, t Θεώρηση του τοιχώματος ως ελεύθερη επιφάνεια: Οι κινηματικές συνθήκες παραμένουν οι ίδιες και για το τοίχωμα. Δυναμική συνθήκη στη διεπιφάνεια τοιχώματος ρευστού: D 1 2km P P, st k m s n Dt 2 n r z We Η επίλυση τους γίνεται FEM και παίρνουμε τη θέση της διεπιφάνειας τοιχώματος ρευστού και το δυναμικό της ταχύτητας κοντά στη διεπιφάνεια Λόγω αξονοσυμμετρίας ισχύουν για το τοίχωμα: z r n 0 στο 0 (i.e. r 0) P t P 1 cos t, 2 v st f f f Στο άπειρο ισχύουν για το τοίχωμα: 2 r z 0 στο 1 (i.e. r 20 R0) n Το πεδιακό σημείο (r 0,z 0 ), που χρησιμοποιείται στην ολοκληρωτική εξίσωση, βρίσκεται τη μια φορά στη διεπιφάνεια της φυσαλίδας και την άλλη στη διεπιφάνεια του τοιχώματος
14 Διέπουσες εξισώσεις (συν.) z r, t Θεώρηση ελαστικού τοιχώματος: Θεωρούμε μικρό πάχος για το τοίχωμα (λεπτότοιχο). Επομένως χρησιμοποιούμε τη θεωρία κελυφών για τη μοντελοποίηση της ελαστικής του συμπεριφοράς. (Παρόμοια προσέγγιση με αυτή της μικροφυσαλίδας) Και σε αυτή την περίπτωση οι κινηματικές συνθήκες παραμένουν οι ίδιες για το τοίχωμα. Δυναμική συνθήκη στη διεπιφάνεια τοιχώματος ρευστού: D 1 2km P P, tr Fn k m s n Dt 2 n r z We Οι συνθήκες στο r=0 και r=20*r 0 παραμένουν οι ίδιες. P t P 1 cos t, 2 v st f f f Και εδώ, το πεδιακό σημείο (r 0,z 0 ), που χρησιμοποιείται στην ολοκληρωτική εξίσωση, βρίσκεται τη μια φορά στη διεπιφάνεια της φυσαλίδας και την άλλη στη διεπιφάνεια του τοιχώματος
15 Καταστατικοί νόμοι για τις ελαστικές τάσεις και ροπές Ισοζύγιο ορθών δυνάμεων και ροπών στη διεπιφάνεια φυσαλίδας-ρευστού και αντίστοιχα τοιχώματος-ρευστού Αριθμητική Μεθοδολογία r (, t ), τ ab, m ab z(, t) P G Δυναμική συνοριακή Συνθήκη (FEM) Αλγόριθμος επίλυσης, t t Αδιαβατικός νόμος για το αέριο εντός της φυσαλίδας 4 th order Runge-Kutta r (, t t), t n,t Ισοζύγιο εφαπτομενικών δυνάμεων στη διεπιφάνεια φυσαλίδας-ρευστού και αντίστοιχα τοιχώματος-ρευστού (FEM) Ολοκληρωτική εξίσωση Συνοριακά στοιχεία (ΒΕΜ) Κινηματική συνθήκη για την κάθετη διεύθυνση στη διεπιφάνεια (FEM) z (, t t)
16 Τρέχουσα & Μελλοντική εργασία Ανάπτυξη κώδικα για τη διακριτοποίηση των διεπιφανειών φυσαλίδας ρευστού και τοιχώματος - ρευστού Μελέτες περιπτώσεων (benchmarking) για αλληλεπίδραση φυσαλίδας χωρίς περίβλημα με: στερεό τοίχωμα ελεύθερη επιφάνεια ελαστικό τοίχωμα Παραμετρική μελέτη της απόστασης φυσαλίδας από το τοίχωμα και καθώς και των ιδιοτήτων του τελευταίου στο σκεδαζόμενο σήμα
17 Ευχαριστίες H παρούσα έρευνα έχει συγχρηματοδοτηθεί από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο - ΕΚΤ) και από εθνικούς πόρους μέσω του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» του Εθνικού Στρατηγικού Πλαισίου Αναφοράς (ΕΣΠΑ) - Ερευνητικό Χρηματοδοτούμενο Έργο: Ηράκλειτος ΙΙ. Επένδυση στην κοινωνία της γνώσης μέσω του Ευρωπαϊκού Κοινωνικού Ταμείου. Ευχαριστώ για την προσοχή σας!
Κωδικός Ακρωνύμιο CONTAGEUSNUMSTADY
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΕΡΕΥΝΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΕΠΙΤΡΟΠΗ ΕΡΕΥΝΩΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ Βόλος, 28 Μαίου 2015 Αρ.Πρωτ.: 11206
v = 1 ρ. (2) website:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Βασικές έννοιες στη μηχανική των ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 17 Φεβρουαρίου 2019 1 Ιδιότητες των ρευστών 1.1 Πυκνότητα Πυκνότητα
ΑΠΟΚΡΙΣΗ ΑΞΟΝΟΣΥΜΜΕΤΡΙΚΗΣ ΜΙΚΡΟΦΥΣΑΛΙΔΑΣ ΣΕ ΑΚΟΥΣΤΙΚΕΣ ΔΙΑΤΑΡΑΧΕΣ ΚΟΝΤΑ ΣΕ ΓΕΙΤΟΝΙΚΟ ΤΟΙΧΩΜΑ
9 η Επιστημονική Συνάντηση Πανελλήνιο Συνέδριο για τα Φαινόμενα Μηχανικής Ρευστών Αθήνα,- Δεκεμβρίου, ΑΠΟΚΡΙΣΗ ΑΞΟΝΟΣΥΜΜΕΤΡΙΚΗΣ ΜΙΚΡΟΦΥΣΑΛΙΔΑΣ ΣΕ ΑΚΟΥΣΤΙΚΕΣ ΔΙΑΤΑΡΑΧΕΣ ΚΟΝΤΑ ΣΕ ΓΕΙΤΟΝΙΚΟ ΤΟΙΧΩΜΑ Ευθυμίου
Ευθυμίου Κωνσταντίνου
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ & ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ Μεταπτυχιακή Εργασία: Μελέτη αλληλεπίδρασης φυσαλίδας χωρίς περίβλημα με γειτονικό τοίχωμα
Λύσεις 1ης σειράς ασκήσεων
Λύσεις 1ης σειράς ασκήσεων 1-13 Άσκηση 1 η : Μετατρέπουμε τα δεδομένα από το αγγλοσαξονικό σύστημα στο SI: Διάμετρος άξονα: Dax 3 ice 3i.5 c i 7.6 c.76 Πλάτος περιβλήματος: Wi 6 ice 6i.5 c i 15. c.15 Διάκενο
Επίδραση Υδατοδιαλυτών Επιφανειοδραστικών στη Ροή Υγρού Υµένα
ΡΟΗ 2012 8o Πανελλήνιο Συνέδριο "Φαινόµενα Ροής Ρευστών" Επίδραση Υδατοδιαλυτών Επιφανειοδραστικών στη Ροή Υγρού Υµένα Α. Γεωργαντάκη, Μ. Βλαχογιάννης, Β. Μποντόζογλου Πανεπιστήµιο Θεσσαλίας, Τµήµα Μηχανολόγων
Εφαρμοσμένη Υδραυλική. ΕΔΙΠ, Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών, ΑΠΘ
Εφαρμοσμένη Υδραυλική Πατήστε για προσθήκη Γ. Παπαευαγγέλου κειμένου ΕΔΙΠ, Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών, ΑΠΘ 1 Εισαγωγή Ρευστομηχανική = Μηχανικές ιδιότητες των ρευστών (υγρών και αερίων) Υδρομηχανική
κατά το χειµερινό εξάµηνο του ακαδηµαϊκού έτους ΕΜ-351 του Τµήµατος Εφαρµοσµένων Μαθηµατικών της Σχολής Θετικών
Ύλη που διδάχτηκε κατά το χειµερινό εξάµηνο του ακαδηµαϊκού έτους 2005-2006 στα πλαίσια του µαθήµατος ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑ ΥΛΙΚΩΝ Ι ΕΜ-351 του Τµήµατος Εφαρµοσµένων Μαθηµατικών της Σχολής Θετικών Επιστηµών
website:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 31 Μαρτίου 2019 1 Δυνάμεις μάζας και επαφής Δυνάμεις μάζας ή δυνάμεις όγκου ονομάζονται οι δυνάμεις που είναι
Ρευστoμηχανική Εισαγωγικές έννοιες. Διδάσκων: Άλκης Παϊπέτης Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Επιστήμης Υλικών
Ρευστoμηχανική Εισαγωγικές έννοιες Διδάσκων: Άλκης Παϊπέτης Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Επιστήμης Υλικών Εισαγωγή Περιεχόμενα μαθήματος Βασικές έννοιες, συνεχές μέσο, είδη, μονάδες διαστάσεις
Ευθυμίου Κωνσταντίνου
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ & ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ Διδακτορική Διατριβή: Αλληλεπίδραση μικροφυσαλίδας με ελαστικό περίβλημα (Contrast Agent)
1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΕΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ
η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΕΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Σκοπός της άσκησης Στην παρούσα εργαστηριακή άσκηση γίνεται μελέτη του Στρωτού Οριακού
Υδροδυναμική. Περιγραφή της ροής Μορφές ροών Είδη ροών Εξίσωση συνέχειας Εξίσωση ενέργειας Bernoulli
Υδροδυναμική Περιγραφή της ροής Μορφές ροών Είδη ροών Εξίσωση συνέχειας Εξίσωση ενέργειας Bernoulli Υδροδυναμική - γενικά Ρευστά σε κίνηση Τμήματα με διαφορετικές ταχύτητες και επιταχύνσεις Αλλαγή μορφής
ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ
ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ έκδοση DΥΝI-DCMB_2016b Copyright
Εργαστήριο Μηχανικής Ρευστών. Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό.
Εργαστήριο Μηχανικής Ρευστών Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό. Κυρκιμτζής Γιώργος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Γ Ημ/νία παράδοσης Εργασίας: Τετάρτη 24 Μαΐου 2 1 Θεωρητική Εισαγωγή:
ΝΕΥΤΩΝΙΚΑ ΚΑΙ ΜΗ ΝΕΥΤΩΝΙΚΑ ΡΕΥΣΤΑ
ΝΕΥΤΩΝΙΚΑ ΚΑΙ ΜΗ ΝΕΥΤΩΝΙΚΑ ΡΕΥΣΤΑ Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Ρεολογική συμπεριφορά ρευστών Υλική σχέση Νευτωνικά και μη νευτωνικά ρευστά Τανυστής ιξώδους Τάσης και ρυθμού
υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση
υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση Τεράστια σημασία του ιξώδους: Ύπαρξη διατμητικών τάσεων που δημιουργούν απώλειες ενέργειας Απαραίτητες σε κάθε μελέτη Είδη ροών Στρωτή ή γραμμική
Πρόχειρες Σημειώσεις
Πρόχειρες Σημειώσεις ΛΕΠΤΟΤΟΙΧΑ ΔΟΧΕΙΑ ΠΙΕΣΗΣ Τα λεπτότοιχα δοχεία πίεσης μπορεί να είναι κυλινδρικά, σφαιρικά ή κωνικά και υπόκεινται σε εσωτερική ή εξωτερική πίεση από αέριο ή υγρό. Θα ασχοληθούμε μόνο
Κινηματική ρευστών. Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του
301 Κινηματική ρευστών Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του Είδη ροής α) Σταθερή ή μόνιμη = όταν σε κάθε σημείο του χώρου οι συνθήκες ροής, ταχύτητα, θερμοκρασία, πίεση και πυκνότητα,
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΝΑΥΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΝΑΥΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ I. Εργαστηριακή Άσκηση
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΝΑΥΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΝΑΥΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ I Εργαστηριακή Άσκηση Μέτρηση Ιξώδους Επιμέλεια: Λάμπρος Καϊκτσής Μάρτιος
υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση
υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση Τεράστια σημασία του ιξώδους: Ύπαρξη διατμητικών τάσεων που δημιουργούν απώλειες ενέργειας Απαραίτητες σε κάθε μελέτη Είδη ροών Τυρβώδης ροή αριθμός
Υδροδυναμική. Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση: Στρωτή και τυρβώδης ροή Γραμμικές απώλειες
Υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση: Στρωτή και τυρβώδης ροή Γραμμικές απώλειες Τεράστια σημασία του ιξώδους: Ύπαρξη διατμητικών τάσεων που δημιουργούν απώλειες ενέργειας Είδη ροών
Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής
Εργαστήριο Μηχανικής Ρευστών Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Ονοματεπώνυμο:Κυρκιμτζής Γιώργος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Γ Ημερομηνία εκτέλεσης Πειράματος : 12/4/2000 Ημερομηνία
Διαφορική ανάλυση ροής
Διαφορική ανάλυση ροής Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών ΜΕ και ΔΕ ροής: Διαφορές Οριακές και αρχικές συνθήκες Οριακές συνθήκες: Φυσική σημασία αλληλεπίδραση του όγκου ελέγχου με το περιβάλλον
website:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Νευτώνια και μη Νευτώνια ρευστά Μαάιτα Τζαμάλ-Οδυσσέας 15 Απριλίου 2019 1 Καταστατικές εξισώσεις Νευτώνιου ρευστού Νευτώνια ή Νευτωνικά
Προσομοιωση Ροης με τη Μεθοδο lattice-boltzmann
Προσομοιωση Ροης με τη Μεθοδο lattice-boltzmann Υποψήφιος διδάκτορας: Γιάννης Γ. Ψυχογιός Σχολή Χημικών Μηχανικών Ε.Μ.Π Τριμελής Συμβουλευτική Επιτροπή Άγγελος Θ. Παπαϊωάννου, Αν. Καθηγητής Ε.Μ.Π (Επιβλέπων)
ΤΕΧΝΟΛΟΓΙΑ ΜΗ ΚΑΤΑΣΤΡΟΦΙΚΟΥ ΕΛΕΓΧΟΥ ΘΕΩΡΙΑ ο ΜΑΘΗΜΑ
ΤΕΧΝΟΛΟΓΙΑ ΜΗ ΚΑΤΑΣΤΡΟΦΙΚΟΥ ΕΛΕΓΧΟΥ ΘΕΩΡΙΑ 2017 7 ο ΜΑΘΗΜΑ Εισαγωγή Κύμα είναι η διάδοση των περιοδικών κινήσεων (ταλαντώσεων) που κάνουν τα στοιχειώδη σωματίδια ενός υλικού γύρω από τη θέση ισορροπίας
Η Φυσική των ζωντανών Οργανισμών (10 μονάδες)
Η Φυσική των ζωντανών Οργανισμών (10 μονάδες) Δεδομένα: Κανονική Ατμοσφαιρική Πίεση, P 0 = 1.013 10 5 Pa = 760 mmhg Μέρος A. Η φυσική του κυκλοφορικού συστήματος. (4.5 μονάδες) Q3-1 Στο Μέρος αυτό θα μελετήσετε
ΝΕΥΤΩΝΙΚΑ ΚΑΙ ΜΗ ΝΕΥΤΩΝΙΚΑ ΡΕΥΣΤΑ. 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών
ΝΕΥΤΩΝΙΚΑ ΚΑΙ ΜΗ ΝΕΥΤΩΝΙΚΑ ΡΕΥΣΤΑ 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Ρεολογική συμπεριφορά ρευστών Υλική σχέση Νευτωνικά και μη νευτωνικά ρευστά Τανυστής ιξώδους Τάσης και ρυθμού παραμόρφωσης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΦΑΣΗ Β- CASE STUDIES ΕΦΑΡΜΟΓΗΣ ΕΜΠΟΡΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ
Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής
501 Ορμή και Δυνάμεις Θεώρημα Ώθησης Ορμής «Η μεταβολή της ορμής ενός σώματος είναι ίση με την ώθηση της δύναμης που ασκήθηκε στο σώμα» = ή Το θεώρημα αυτό εφαρμόζεται διανυσματικά. 502 Θεώρημα Ώθησης
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Εργαστήριο Ρευστομηχανικής & Στροβιλομηχανών Μεταπτυχιακή Εργασία Αριθμητική Μελέτη Στατικής Παραμόρφωσης Φυσαλίδας με Ελαστικό Περίβλημα
Μέθοδοι μέτρησης μηχανικών ιδιοτήτων κυττάρων και μοντέλα κυτταρικής μηχανικής συμπεριφοράς
ΕΜΒΙΟΜΗΧΑΝΙΚΗ ΒΙΟΪΑΤΡΙΚΗ ΤΕΧΝΟΛΟΓΙΑ Μέθοδοι μέτρησης μηχανικών ιδιοτήτων κυττάρων και μοντέλα κυτταρικής μηχανικής συμπεριφοράς Πετρόπουλος Ηλίας Σωτηρόπουλος Εμμανουήλ Μέθοδοι μέτρησης των μηχανικών ιδιοτήτων
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ
Ενότητα 9: Ασκήσεις. Άδειες Χρήσης
Μηχανική των Ρευστών Ενότητα 9: Ασκήσεις Βασίλειος Λουκόπουλος, Επίκουρος Καθηγητής Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Σκοπός της άσκησης Στην παρούσα εργαστηριακή άσκηση γίνεται μελέτη του Στρωτού
Εισαγωγή Διάκριση των ρευστών
ΥΔΡΑΥΛΙΚΗ Εισαγωγή στην Υδραυλική Αντικείμενο Πυκνότητα και ειδικό βάρος σωμάτων Συστήματα μονάδων Ιξώδες ρευστού, επιφανειακή τάση, τριχοειδή φαινόμενα Υδροστατική πίεση Εισαγωγή Ρευστομηχανική = Μηχανικές
ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ
Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 5 ο : Το οριακό
Άσκηση 9. Προσδιορισμός του συντελεστή εσωτερικής
1.Σκοπός Άσκηση 9 Προσδιορισμός του συντελεστή εσωτερικής τριβής υγρών Σκοπός της άσκησης είναι ο πειραματικός προσδιορισμός του συντελεστή εσωτερικής τριβής (ιξώδες) ενός υγρού. Βασικές θεωρητικές γνώσεις.1
p = p n, (2) website:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Ιδανικά ρευστά Μαάιτα Τζαμάλ-Οδυσσέας 7 Απριλίου 2019 1 Καταστατικές εξισώσεις ιδανικού ρευστού Ιδανικό ρευστό είναι ένα υποθετικό
ΠEPIEXOMENA. σελ. iii ΠΡΟΛΟΓΟΣ KEΦAΛAIO 1 ΟΡΘΕΣ ΚΑΙ ΙΑΤΜΗΤΙΚΕΣ ΤΑΣΕΙΣ,
v ΠEPIEXOMENA ΠΡΟΛΟΓΟΣ ΠEPIEXOMENA iii v KEΦAΛAIO 1 ΟΡΘΕΣ ΚΑΙ ΙΑΤΜΗΤΙΚΕΣ ΤΑΣΕΙΣ, ΣΧΕ ΙΑΣΜΟΣ ΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ 1 1.1 Εισαγωγή 1 1.2 H µέθοδος των τοµών 2 1.3 Ορισµός της τάσης 3 1.4 Ο τανυστής των τάσεων
ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ
Θέμα Α ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ - NEO ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 3 ΙΟΥΝΙΟΥ 06 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ. Μεταπτυχιακή Εργασία
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ Μεταπτυχιακή Εργασία ΠΡΟΣΟΜΟΙΩΣΗ ΣΤΑΤΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΜΙΚΡΟΦΥΣΑΛΙΔΑΣ (Contrast Agent)
ΑΡΙΘΜΗΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΑΛΛΗΛΕΠΙΔΡΑΣΗΣ ΜΙΚΡΟΦΥΣΑΛΙΔΑΣ ΜΕ ΕΛΑΣΤΙΚΗ ΕΠΙΣΤΡΩΣΗ ΜΕ ΣΤΕΡΕΟ ΤΟΙΧΩΜΑ ΜΕΣΑ ΣΕ ΙΞΩΔΗ ΡΟΗ
ΑΡΙΘΜΗΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΑΛΛΗΛΕΠΙΔΡΑΣΗΣ ΜΙΚΡΟΦΥΣΑΛΙΔΑΣ ΜΕ ΕΛΑΣΤΙΚΗ ΕΠΙΣΤΡΩΣΗ ΜΕ ΣΤΕΡΕΟ ΤΟΙΧΩΜΑ ΜΕΣΑ ΣΕ ΙΞΩΔΗ ΡΟΗ Μ. Βλαχομήτρου, Ν. Πελεκάσης Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Θεσσαλίας, 38334 Βόλος
Εισαγωγή στην Αστρόβιλη Άκυκλη Ροή
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΑΕΡΟΔΥΝΑΜΙΚΗ Διδάσκων: Δρ. Ριζιώτης Βασίλης Εισαγωγή στην Αστρόβιλη Άκυκλη Ροή Άδεια Χρήσης
Φυσική Ο.Π. Γ Λυκείου
Φυσική Ο.Π. Γ Λυκείου ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις (Α-Α) και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Α) Δύο σώματα συγκρούονται κεντρικά
Γενικευμένα Mονοβάθμια Συστήματα
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Γενικευμένα Mονοβάθμια Συστήματα Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Δυναμική Ανάλυση Ραβδωτών Φορέων 1 1. Είδη γενικευμένων μονοβαθμίων συστημάτων xu
ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΙΙ
ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΝΑΥΠΗΓΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΙΙ ΣΤΡΕΨΗ ΕΠΙΜΕΛΕΙΑ: ΔΡ Σ. Π. ΦΙΛΟΠΟΥΛΟΣ ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή Μηχανικές ιδιότητες Στρέψη κυλινδρικών ράβδων Ελαστική περιοχή Πλαστική
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΜΑΘΗΜΑ ΤΑΞΗ Γ ΛΥΚΕΙΟΥ ΟΝΟΜ/ΜΟ: ΗΜΕΡ/ΝΙΑ ΚΑΘ/ΤΕΣ ΓΙΑΡΕΝΟΠΟΥΛΟΣ Λ. ΚΟΥΣΟΥΛΗΣ Δ.
ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΤΑΞΗ Γ ΛΥΚΕΙΟΥ ΟΝΟΜ/ΜΟ: ΗΜΕΡ/ΝΙΑ 15-1-017 ΚΑΘ/ΤΕΣ ΓΙΑΡΕΝΟΠΟΥΛΟΣ Λ. ΚΟΥΣΟΥΛΗΣ Δ. ΒΑΘΜΟΣ: /100, /0 Θέμα 1ο 1. Αν η εξίσωση ενός αρμονικού κύματος είναι y =10ημ(6πt
Reynolds. du 1 ξ2 sin 2 u. (2n)!! ( (http://www.natgeotv.com/uk/street-genius/ videos/bulletproof-balloons) n=0
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ. Τσίγκανου & Ν. Βλαχάκη, Μαΐου 7 Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία ( = bonus ερωτήματα) Ονοματεπώνυμο:,
3 η ΕΝΟΤΗΤΑ ΦΥΣΙΚΕΣ ΚΑΙ ΜΗΧΑΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΤΕΧΝΙΚΑ ΥΛΙΚΑ 3 η ΕΝΟΤΗΤΑ ΦΥΣΙΚΕΣ ΚΑΙ ΜΗΧΑΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ Ε. Βιντζηλαίου (Συντονιστής), Ε. Βουγιούκας, Ε. Μπαδογιάννης Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3
ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 Ιξώδες Ταχύτητα διάτμησης Αριθμός Reynolds Διδάσκων Δρ. Παντελής Σ. Αποστολόπουλος (Επίκουρος
ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ ΚΑΙ ΕΦΑΡΜΟΣΜΕΝΗ ΥΔΡΑΥΛΙΚΗ. Τμήμα Μηχανικών Περιβάλλοντος Γ εξάμηνο
ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ ΚΑΙ ΕΦΑΡΜΟΣΜΕΝΗ ΥΔΡΑΥΛΙΚΗ Τμήμα Μηχανικών Περιβάλλοντος Γ εξάμηνο ΜΟΥΤΣΟΠΟΥΛΟΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΛΕΚΤΟΡΑΣ ΤΜΗΜΑΤΟΣ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΠΟΛΙΤΙΚΟΣ ΜΗΧΑΝΙΚΟΣ -Ειδικότητα Υδραυλική Πανεπιστήμιο
8.3.3 Αναλυτική Μέθοδος Σχεδιασμού Υπόγειων Αγωγών σε ιασταυρώσεις με Ενεργά Ρήγματα. George Mylonakis
8.3.3 Αναλυτική Μέθοδος Σχεδιασμού Υπόγειων Αγωγών σε ιασταυρώσεις με Ενεργά Ρήγματα George Mylonakis Παρουσίαση Προβλήματος z β y α Παρουσίαση Προβλήματος z f β y z y α Παρουσίαση Προβλήματος z f β y
ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΦΥΣΙΚΗ ΙΙ (ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ι) η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ, Αγωγοί Διηλεκτρικά. Ν. Τράκας, Ι. Ράπτης Ζωγράφου 27.3.
ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΦΥΣΙΚΗ ΙΙ (ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ι) 8-9 η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ Αγωγοί Διηλεκτρικά Ν. Τράκας Ι. Ράπτης Ζωγράφου 7.3.9 Να επιστραφούν λυμένες μέχρι.4.9 οι ασκήσεις 3 4 5 [ΠΡΟΣΟΧΗ: Οι λύσεις
Πίνακας Περιεχομένων 7
Πίνακας Περιεχομένων Πρόλογος...5 Πίνακας Περιεχομένων 7 1 Εξισώσεις Ροής- Υπολογιστική Μηχανική Ρευστών...15 1.1 ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ.....15 1.1.1 Γενικά θέματα. 15 1.1.2 Υπολογιστικά δίκτυα...16
«ΦΑΕΘΩΝ: Λογισμικό για Ανάλυση Κρίσιμων Διατμητικά Υποστυλωμάτων Οπλισμένου Σκυροδέματος»
«ΦΑΕΘΩΝ: Λογισμικό για Ανάλυση Κρίσιμων Διατμητικά Υποστυλωμάτων Οπλισμένου Σκυροδέματος» Κωνσταντίνος Γ. Μεγαλοοικονόμου Ερευνητής Μηχανικός Κέντρο Συστημάτων Έγκαιρης Προειδοποίησης Γερμανικό Ερευνητικό
Ανασκόπηση εννοιών ρευστομηχανικής
Υδραυλική &Υδραυλικά Έργα Ανασκόπηση εννοιών ρευστομηχανικής Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Φωτογραφίες σχηματισμού σταγόνων νερού Φωτογραφίες schlieren θερμικά
ΕΠΙΛΟΓΗ ΥΛΙΚΩΝ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΠΡΟΪΟΝΤΩΝ. Δυσκαμψία & βάρος: πυκνότητα και μέτρα ελαστικότητας
ΕΠΙΛΟΓΗ ΥΛΙΚΩΝ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΠΡΟΪΟΝΤΩΝ Δυσκαμψία & βάρος: πυκνότητα και μέτρα ελαστικότητας Αντοχή και Δυσκαμψία (Strength and Stiffness) Η τάση (stress) εφαρμόζεται σ ένα υλικό μέσω της φόρτισής του Παραμόρφωση
και επιτάχυνση μέτρου 1 4m/s. Ποια από τις παρακάτω προτάσεις είναι η σωστή;
Ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΜΑ Α Α1. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση και χρειάζεται χρόνο Δt = πs για να διανύσει την απόσταση από τη μια ακραία θέση στην άλλη.
Εργαστήριο Μηχανικής Ρευστών
Εργαστήριο Μηχανικής Ρευστών Αργυρόπουλος Αθανάσιος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Β Ημ/νία εκτέλεσης Πειράματος: 26-11-1999 Ημ/νία παράδοσης Εργασίας: 16-12-1999 1 Θεωρητική Εισαγωγή: 1. Εισαγωγικές έννοιες
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΑΕΡΟΔΥΝΑΜΙΚΗ Διδάσκων: Δρ. Ριζιώτης Βασίλης Μόνιμη ΆκυκληΡοή Άδεια Χρήσης Το παρόν εκπαιδευτικό
5 Μετρητές παροχής. 5.1Εισαγωγή
5 Μετρητές παροχής 5.Εισαγωγή Τρεις βασικές συσκευές, με τις οποίες μπορεί να γίνει η μέτρηση της ογκομετρικής παροχής των ρευστών, είναι ο μετρητής Venturi (ή βεντουρίμετρο), ο μετρητής διαφράγματος (ή
website:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 6 Ιουνίου 18 1 Οριακό στρώμα και χαρακτηριστικά μεγέθη Στις αρχές του ου αιώνα ο Prandtl θεμελίωσε τη θεωρία
Σύστημα. Ανοικτά Συστήματα. Περιβάλλον. Γενικό Ροϊκό Πεδίο. Όγκος Ελέγχου, Επιφάνεια Ελέγχου. Θερμότητα. Ροή Μάζας. Ροή Μάζας.
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι ΠΡΩΤΟΣ ΝΟΜΟΣ ΣΕ ΑΝΟΙΚΤΑ ΣΥΣΤΗΜΑΤΑ Περιβάλλον Ροή Μάζας Έργο Ανοικτά Συστήματα Σύστημα Θερμότητα Ροή Μάζας Κεφάλαιο4, Ενότητα 1, Διαφάνεια 1 Κεφάλαιο4, Ενότητα 1, Διαφάνεια Γενικό Ροϊκό
ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Διδάσκων: Κολιόπουλος Παναγιώτης
ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 1: δυναμικά φορτία Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής Δ. Ματαράς image url Ludwig Prandtl (1875 1953) 3. ΦΑΙΝΟΜΕΝΑ ΤΗΣ ΡΟΗΣ ΤΩΝ ΡΕΥΣΤΩΝ Δυναμική Ροή Δυναμική Ροή (potential flow): η ροή ιδανικού ρευστού
Υπολογισμός Παροχής Μάζας σε Αγωγό Τετραγωνικής Διατομής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΝΕΡΓΕΙΑΣ, ΑΕΡΟΝΑΥΤΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ I Υπολογισμός
ΔΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι
Δυναμική Μηχανών Ι Ακαδημαϊκό έτος: 015-016 ΔΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 1.1- Δυναμική Μηχανών Ι Ακαδημαϊκό έτος: 015-016 Copyright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο Δυναμικής και Κατασκευών - 015.
ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΦΥΣΙΚΗ ΙΙ (ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ι) η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ. Ν. Τράκας, Ι. Ράπτης 2/4/2018
ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΦΥΣΙΚΗ ΙΙ (ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ι) 7-8 η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ Ν. Τράκας Ι. Ράπτης /4/8 Παράδοση των 3 4 5 μέχρι /4/8 [Σε χειρόγραφη μορφή στο μάθημα ή σε μορφή ενιαίου αρχείου PDF στις
website:
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 6 Μαρτίου 2017 1 Εισαγωγή Κάθε φυσικό σύστημα
ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ
ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ Σκοπός της άσκησης Σε αυτή την άσκηση θα μετρήσουμε τον συντελεστή εσωτερικής τριβής ή ιξώδες ρευστού προσδιορίζοντας την οριακή ταχύτητα πτώσης μικρών σφαιρών σε αυτό
6 Εξαναγκασμένη ροή αέρα
6 Εξαναγκασμένη ροή αέρα 6.1 Εισαγωγή Όταν θέτουμε σε κίνηση κάποια μόρια ενός ρευστού μέσω μιας αντλίας ή ενός φυσητήρα, η κίνηση μεταδίδεται και στα υπόλοιπα μόρια του ρευστού μέσω των αλληλεπιδράσεων
ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ
ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ Αθήνα, Απρίλιος 13 1. Η Έννοια του Οριακού Στρώματος Το οριακό στρώμα επινοήθηκε για
Εκτίμηση της στροφικής ικανότητας χαλύβδινων δοκών στις υψηλές θερμοκρασίες θεωρώντας την επιρροή των αρχικών γεωμετρικών ατελειών
Βόλος 29-3/9 & 1/1 211 Εκτίμηση της στροφικής ικανότητας χαλύβδινων δοκών στις υψηλές θερμοκρασίες θεωρώντας την επιρροή των αρχικών γεωμετρικών ατελειών Δάφνη Παντούσα και Ευριπίδης Μυστακίδης Εργαστήριο
Μεθοδολογία επίλυσης προβληµάτων καταβύθισης
Μεθοδολογία επίλυσης προβληµάτων καταβύθισης Τα προβλήµατα που υπάρχουν πάντα στις περιπτώσεις βαρυτοµετρικών διαχωρισµών είναι η γνώση της συµπεριφοράς των στερεών, όσον αφορά στην καταβύθισή τους µέσα
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών
Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ
Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ Κεφάλαιο 1 1 Να βρείτε (και να σχεδιάσετε) το πεδίο ορισμού των πιο κάτω συναρτήσεων f (, ) 9 4 (γ) f (, ) f (, ) 16 4 1 Να υπολογίσετε το κάθε όριο αν υπάρχει ή να
ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ
ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΕΙΣΑΓΩΓΗ Σκοπός της κινηματικής είναι η περιγραφή της κίνησης του ρευστού Τα αίτια που δημιούργησαν την κίνηση και η αναζήτηση των δυνάμεων που την διατηρούν είναι αντικείμενο της
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ : Πτυχίο Χημικού Μηχανικού της Πολυτεχνικής Σχολής του Α- ριστοτελείου Πανεπιστημίου Θεσσαλονίκης.
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ Ονοματεπώνυμο : Βλαχομήτρου Μαρία Ημερομηνία γεννήσεως : 9/8/1975 Διεύθυνση κατοικίας : Εθνικής Αντίστασης 130, 41335 Λάρισα Τηλέφωνα επικοινωνίας : 6978481329, 2410628379, 2421074317
Μακροσκοπική ανάλυση ροής
Μακροσκοπική ανάλυση ροής Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Μακροσκοπική ανάλυση Όγκος ελέγχου και νόμοι της ρευστομηχανικής Θεώρημα μεταφοράς Εξίσωση συνέχειας Εξίσωση ορμής
Σύστημα. Ανοικτά Συστήματα. Γενικό Ροϊκό Πεδίο. Περιβάλλον. Θερμότητα. Ροή Μάζας. Ροή Μάζας. Έργο
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι ΠΡΩΤΟΣ ΝΟΜΟΣ ΣΕ ΑΝΟΙΚΤΑ ΣΥΣΤΗΜΑΤΑ Όγκος και επιφάνεια ελέγχου Διατήρηση μάζας και ενέργειας Μόνιμες-Μεταβατικές διεργασίες Ισοζύγιο μάζας Έργο Ροής-Ισοζύγιο ενέργειας Διατάξεις μόνιμης
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΟΛΥΦΑΣΙΚΑ, ΠΟΛΥΣΥΣΤΑΤΙΚΑ & ΑΝΤΙΔΡΩΝΤΑ ΣΥΣΤΗΜΑΤΑ
ΔΠΜΣ ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΗΧΑΝΙΚΗ Ακαδημαϊκό Έτος: 2015-2016 / Εαρινό Εξάμηνο 1/30 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΟΛΥΦΑΣΙΚΑ, ΠΟΛΥΣΥΣΤΑΤΙΚΑ & ΑΝΤΙΔΡΩΝΤΑ ΣΥΣΤΗΜΑΤΑ Καθηγήτρια Φούντη Μαρία Γενικευμένη Εξίσωση Μεταφοράς
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΑΕΡΟΤΟΜΗ
Α.E.I. ΠΕΙΡΑΙΑ Τ.Τ. Σ.Τ.Ε.Φ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΑΕΡΟΤΟΜΗ ΚΑΤΑΝΟΜΗ ΠΙΕΣΗΣ ΣΤΗΝ ΕΠΙΦΑΝΕΙΑΣΥΜΜΕΤΡΙΚΗΣ ΑΕΡΟΤΟΜΗΣ &ΥΠΟΛΟΓΙΣΜΟΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017 Εισαγωγή στο Μάθημα Μηχανική των Υλικών Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr Εισαγωγή/ Μηχανική Υλικών 1 Χρονοδιάγραμμα 2017 Φεβρουάριος
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου
A A N A B P Y A 9 5 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου Στερεό σώμα με κυλινδρική συμμετρία (κύλινδρος, σφαίρα, σφαιρικό κέλυφος, κυκλική στεφάνη κλπ) μπορεί να
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μετάδοση Θερμότητας Ενότητα 2: Θερμική Αγωγιμότητα Κωνσταντίνος - Στέφανος Νίκας Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης
ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 08 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ημερομηνία: Σάββατο 4 Απριλίου 08 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ημιτελείς προτάσεις Α Α4
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 11 ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ
ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΟΚΙΝΗΤΗΡΩΝ ΚΑΙ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΔΙΔΑΚΤΙΚΗ ΠΕΡΙΟΧΗ: ΕΡΓΑΣΤΗΡΙΟ ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ Υπεύθυνος: Επικ. Καθηγητής Δρ. Α. ΦΑΤΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ
Ρευστομηχανική Εισαγωγικές έννοιες
Ρευστομηχανική Εισαγωγικές έννοιες Διδάσκων: Αντώνης Σακελλάριος Email: ansakel13@gmail.com Phone: 2651007837 Ώρες Γραφείου Διδάσκοντα: καθημερινά 14:00 17:00, Εργαστήριο MEDLAB, Ιατρική Σχολή Περιεχόμενα
ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Θέμα Α Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα
Δυναμική Μηχανών I. Δυναμικά Μοντέλα Συνεχούς Μέσου
Δυναμική Μηχανών I 8 1 Δυναμικά Μοντέλα Συνεχούς Μέσου 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Μοντελοποίηση
ΝΟΜΟΣ ΤΟΥ GAUSS ΚΕΦ.. 23
ΝΟΜΟΣ ΤΟΥ GAUSS ΚΕΦ.. 23 Ροή (γενικά): Ηλεκτρική Ροή Η ποσότητα ενός μεγέθους που διέρχεται από μία επιφάνεια. Ε Ε dα dα θ Ε Ε θ Ηλεκτρική ροή dφ Ε μέσω στοιχειώδους επιφάνειας da (αφού da στοιχειώδης
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ Θέµα ο ΚΕΦΑΛΑΙΟ 2 ο : ΚΥΜΑΤΑ Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασµένες; α Η υπέρυθρη ακτινοβολία έχει µήκη κύµατος µεγαλύτερα από
ΤΕΛΟΣ 1ΗΣ ΑΠΟ 7 ΣΕΛΙΔΕΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΠΟΥ ΥΠΗΡΕΤΟΥΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 5 ΣΕΠΤΕΜΒΡΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ
ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2016
9o ΓΕΝ. ΛΥΚΕΙΟ ΠΕΙΡΑΙΑ ΣΧΟΛ. ΕΤΟΣ 06-7 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 06 Τάξη: Γ Λυκείου Ημερομηνία: 5-5-07 Μάθημα: Φυσική Θετικού Προσανατολισμού ΘΕΜΑ Α Στις ερωτήσεις A-A5
( ) ( ) ( )! r a. Στροφορμή στερεού. ω i. ω j. ω l. ε ijk. ω! e i. ω j ek = I il. ! ω. l = m a. = m a. r i a r j. ra 2 δ ij. I ij. ! l. l i.
Στροφορμή στερεού q Η στροφορµή του στερεού γράφεται σαν: q Αλλά ο τανυστής αδράνειας έχει οριστεί σαν: q H γωνιακή ταχύτητα δίνεται από: ω = 2 l = m a ra ω ω ra ω e a ΦΥΣ 211 - Διαλ.31 1 r a I j = m a
L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3)
ΥΠΟΛΟΓΙΣΤΙΚΗ ΑΣΤΡΟΔΥΝΑΜΙΚΗ 3): Κινήσεις αστέρων σε αστρικά συστήματα Βασικές έννοιες Θεωρούμε αστρικό σύστημα π.χ. γαλαξία ή αστρικό σμήνος) αποτελούμενο από μεγάλο αριθμό αστέρων της τάξης των 10 8 10
ΜΗ-ΓΡΑΜΜΙΚΗ ΕΞΕΛΙΞΗ ΙΞΩΔΟΕΛΑΣΤΙΚΟΥ ΥΜΕΝΑ ΥΠΟΚΕΙΜΕΝΟY ΣΕ ΣΥΝΕΧΕΣ ΚΑΙ ΕΝΑΛΑΣΣΟΜΕΝΟ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ
0 ο ΠΑΝΕΛΛΗΝΙΟ ΕΠΙΣΤΗΜΟΝΙΚΟ ΣΥΝΕΔΡΙΟ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ, ΠΑΤΡΑ, 4-6 ΙΟΥΝΙΟΥ, 05. ΜΗ-ΓΡΑΜΜΙΚΗ ΕΞΕΛΙΞΗ ΙΞΩΔΟΕΛΑΣΤΙΚΟΥ ΥΜΕΝΑ ΥΠΟΚΕΙΜΕΝΟY ΣΕ ΣΥΝΕΧΕΣ ΚΑΙ ΕΝΑΛΑΣΣΟΜΕΝΟ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ Γεώργιος Καραπέτσας & Βασίλης