ΠΙΘΑΝΟΤΗΤΕΣ. 3ο Κεφάλαιο. Απαντήσεις στις ερωτήσεις «Σωστό - Λάθος»
|
|
- Ἀρίστων Καραμήτσος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 3ο Κεφάλαιο ΠΙΘΑΝΟΤΗΤΕ Απαντήσεις στις ερωτήσεις «ωστό - Λάθος» Λ 8 viii 3 41 Λ Λ 0 Λ 9 Λ ix Λ 33 Λ 4 51 Λ i Λ x Λ Λ 4 13 Λ Λ ii xi iii xii Λ 54 Λ 6 15 Λ 4 iv Λ xiii Λ 37 Λ Λ v xiv Λ 6 vi xv Λ 9 18 Λ 7 vii Απαντήσεις στις ερωτήσεις πολλαπλής επιλογής 1 Β 5 9 Ε 13 Γ 17 Β 1 Β 5 Α 39 Ε Α 6 Γ 10 Γ Γ Β 6 Ε 3 7 Ε 11 Β 15 Ε 19 Ε 3 Ε 7 4 Α 8 1 Ε 16 Γ 0 4 Ε 8 Ε Απαντήσεις στις ερωτήσεις αντιστοίχισης 1. 1 VI 5 VII V 6 VIII 3 IV 7 IX 4 I 8 X 9 XI 16
2 Απαντήσεις στις ερωτήσεις συµπλήρωσης 1. Γραφή σε γλώσσα συνόλου Γραφή σε φυσική γλώσσα µέρος του σχήµατος Α Β A τοµή Β ΙΙ Β υµπλήρωµα του Β ΙV + I Α Β Α ένωση Β I + II + III Α υµπλήρωµα του Α III + IV Α Β Α µείον Β I Β Α Β µείον Α III Α Β Α τοµή συµπλήρωµα Β I Α Β Α συµπλήρωµα τοµή Β III 17
3 . Α Β Γ Α Α = A Α = Α Α Α = Λ Α Α = Α Α = Α Λ Α = Α Α = Ω Λ Α Α = Α Α = Λ Α Α = Ω Ω = Ω Λ Ω = (Α ) = Ω Λ (Α ) = Α Α Β = Β Α Α Β = Β Α Λ Α Β = Β Α = Ω Αν Α Β τότε Α Β = Β Α Α = Ω Α Α = (Α ) = Α Αν Α Β τότε Α Β = Α 3. Μεταθέσεις των α, β, γ αβγ βγα αγβ γαβ βαγ γβα 18
4 4. Φυσική γλώσσα υµβολισµός Ισότητα Μεταθέσεις των ν πραγµάτων. Μ ν Μ ν = ν! ιατάξεις των ν πραγµάτων ανά κ. υνδυασµοί των ν πραγµάτων ανά κ. ν ν κ κ = ν κ ν = κ ν! (ν - κ)! ν! κ!(ν - κ)! 5. Α Για κάθε χ που ανήκει σ ένα σύνολο η πρόταση π (χ) αληθεύει. Υπάρχει τουλάχιστον ένα χ που ανήκει σ ένα σύνολο για το οποίο η πρόταση π (χ) αληθεύει. «το πολύ ν φορές» «τουλάχιστον ν φορές» Β Υπάρχει τουλάχιστον ένα χ που ανήκει σ ένα σύνολο για το οποίο η πρόταση π (χ) δεν αληθεύει. Για κάθε χ που ανήκει σ ένα σύνολο η πρόταση π(χ) δεν αληθεύει. «τουλάχιστον ν + 1 φορές» «το πολύ ν-1 φορές» 19
5 6. Α Β Γ Μεταθέσεις των 3 υνδυασµοί των 3 ανά ιατάξεις των 3 ανά Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Απαντήσεις στις ερωτήσεις ανάπτυξης 1. Ω = {Κ1, Κ, Κ3, Κ4, Κ5, Κ6, Γ1, Γ, Γ3, Γ4, Γ5, Γ6}.. 1 : ακούλα που περιέχει 1(Μ), 1(Π), 1(Α). : ακούλα που περιέχει 1(Μ), 1(Α). α) Ω = { 1 Μ, 1 Π, 1 Α, Μ, Α}. β) Α = { 1 Μ, Μ}. γ) Β = { 1 Π}. 3. α) Ω = {Κ, Π, Μ, Λ}. β) Ω = {ΚΠ, ΚΜ, ΚΛ, ΚΚ, ΠΚ, ΠΜ, ΠΛ, ΠΠ, ΜΚ, ΜΠ, ΜΛ, ΜΜ, ΛΚ, ΛΠ, ΛΜ, ΛΛ}. γ) Ω = {ΚΠ, ΚΜ, ΚΛ, ΠΚ, ΠΜ, ΠΛ, ΜΚ, ΜΠ, ΜΛ, ΛΚ, ΛΠ, ΛΜ}. 4. Είναι ασυµβίβαστα διότι η πραγµατοποίηση του ενός συνεπάγεται την µη πραγµατοποίηση του άλλου. 0
6 5. Ε: ελαττωµατικό CD, Κ: µη ελαττωµατικό CD. α) Ω = {ΕΕ, ΕΚΕ, ΕΚΚΕ, ΕΚΚΚ, ΚΕΕ, ΚΕΚΕ, ΚΕΚΚ, ΚΚΕΕ, ΚΚΕΚ, ΚΚΚΕ, ΚΚΚΚ}. β) i) Β = {ΕΕ, ΕΚΕ, ΕΚΚΕ, ΚΕΕ, ΚΕΚΕ, ΚΚΕΕ}. ii) Γ = {ΕΕ, ΕΚΕ, ΕΚΚΕ, ΚΕΕ, ΚΕΚΕ, ΚΚΕΕ}. iii) = {ΕΕ, ΕΚΕ, ΕΚΚΕ, ΕΚΚΚ, ΚΕΕ, ΚΕΚΕ, ΚΕΚΚ, ΚΚΕΕ, ΚΚΕΚ, ΚΚΚΕ, ΚΚΚΚ}. 6. α) Ω = {Ο 1 Ο 1, Ο 1 Ο Ο 1, Ο 1 Ο Ο, Ο Ο 1 Ο 1, Ο Ο 1 Ο,Ο Ο }. β) i) Α = {Ο 1 Ο Ο, Ο Ο 1 Ο }. ii) Β = {Ο Ο }. iii) Γ = {Ο 1 Ο 1, Ο 1 Ο Ο 1, Ο 1 Ο Ο, Ο Ο 1 Ο 1, Ο Ο 1 Ο }. γ) 3. δ) Είναι συµπληρωµατικά. Ο 1 Ο Ο Ο 1 Ο Ο 1 Ο 1 Ο Ο 1 Ο 7. α) Ω = {ΚΚ, ΚΓ, ΓΚ, ΓΓ}. β) i) Α = {ΚΚ, ΚΓ}, ii) Β = {ΚΚ, ΓΚ}, iii) Γ = {ΚΓ, ΓΚ}. γ) Όχι, διότι Α Β = {ΚΚ}, Α Γ = {ΚΓ}, Β Γ = {ΓΚ}. 8. Αν Α = {5}, τότε Α = {1,, 3, 4, 6} άρα Ρ (Α) = 6 1 και Ρ (Α ) = 1 - Ρ (Α) = = α) Ρ (Α) = 1 - Ρ (Α ) = 3 1. β) Ρ (Α Β) = Ρ (Α) + Ρ (Β) - Ρ (Α Β) Ρ (Β) = 3. 1
7 10. Ι) α) (Α Β ) (Α Β) = Α (βλ. σχήµα). β) (Α Β ) (Α Β) = (βλ. σχήµα). γ) Αφού Α Β και Α Β ασυµβίβαστα, Ω A B A A B Ρ (Α) = Ρ ((Α Β ) (Α Β)) = Ρ (Α Β ) + Ρ (Α Β). B ΙΙ) Ρ (Α Β ) = Ρ (Α) - Ρ (Α Β) = = 1 1. Ρ (Α Β) = Ρ (Β) - Ρ (Α Β) = = α) Ρ = 1. β) Ρ = 6 5 Λύση µε τον πολλαπλασιαστικό νόµο: α) Α : το ζάρι να δείξει 5. Β : το τραπουλόχαρτο να είναι 5 σπαθί. Α, Β είναι φυσικώς ανεξάρτητα Άρα Ρ (Α Β) = Ρ (Α) Ρ (Β) = = β) Β : το τραπουλόχαρτο να είναι Ρ (Α Β) = Ρ (Α) Ρ (Β) = = = Ω = {, }, {, }, {, } Φ: το ενδεχόµενο να είναι ηµίτονο και συνηµίτονο του ιδίου τόξου. Φ = 1 1,, διότι = 1. Άρα Ρ (Φ) =
8 13. Ω = {1,, 3, 4, 5, 6, 7, 8, 9}. α) Α = {1, 9} άρα Ρ (Α) = 9. β) Β = {, 8} άρα Ρ (Β) = 9. γ) Ρ (Α Β) = Ρ (Α) + Ρ (Β) = = 9 4 (αφού Α Β = ). δ) Γ = άρα Ρ (Γ) = α) Ρ ( Α (Α Β) ) = Ρ ( ) = 0 (αφού Α, Α Β ασυµβίβαστα - βλ. άσκ. 5). β) Ρ ( Α (Α Β) ) = Ρ (Α) + Ρ (Α Β) = = α) Ρ (Α) = N (A) N ( Ω ) = 1 5. β) P (Β) =. γ) P (Γ) = Ρ (Α) : η πιθανότητα να κρυολογήσουµε. Ρ (Α ) : η πιθανότητα να µην κρυολογήσουµε. 3 Έτσι Ρ (Α) = 3 Ρ (Α ). Όµως Ρ (Α) + Ρ (Α ) = 1,, P (Α) = Α : λειτουργούν τα λεωφορεία. Β : δεν λειτουργούν τα τραίνα. Ρ (Α) = 0,3, Ρ (Β ) = 0,4, άρα Ρ (Β) = 0,6. Ρ (Α Β) = P (Α) + Ρ (Β) - Ρ (Α Β) άρα 0,9 = 0,3 + 0,6 - Ρ (Α Β) άρα Ρ (Α Β) = Είναι βέβαιο ότι επιλέγοντας τρεις κάλτσες θα έχουµε 1 ζευγάρι του ιδίου χρώµατος. Άρα η πιθανότητα είναι 1 (η άσκηση µπορεί επίσης να λυθεί ορίζοντας κατάλληλα ενδεχόµενα). 19. Ω = {{80,100, 60 }, {80, 100, 0 }, {100, 60, 0 }, {60, 80, 0 }}. 1 Η ευνοϊκή τριάδα είναι {100, 60, 0 }. Άρα Ρ =. 4 3
9 0. α) Λάθος, διότι αν π.χ. Ω = {1,, 3, 4} και Α = {1, }, Β = {3, 4} τότε Ρ (Α) = Ρ (Β) αλλά Α Β. β) ωστή (άρνηση της πρότασης (α)). γ) ωστή, αφού αν Α = Β τότε Ν (Α) = Ν (Β), συνεπώς Ρ (Α) = N (A) N (Ω) = N (Β) N (Ω) δ) Λάθος (βλέπε πρόταση (α)). = Ρ (Β). ε) Λάθος, διότι αν π.χ. Ω = {1,, 3, 4} και Α = {1, }, Β = {1, 4}, τότε Ρ (Α) = 1, Ρ (Β) = 1. Άρα Ρ (Α) + Ρ (Β) = 1, όµως Β Α = {3, 4}. 1. Αγόρια Κορίτσια ΥΝΟΛΟ Άριστοι Μη άριστοι ΥΝΟΛΟ Α : Να µην είναι άριστο στα Μαθηµατικά. Β : Να είναι κορίτσι. Γ : Να είναι κορίτσι άριστο στα Μαθηµατικά. : Να είναι κορίτσι ή να µην είναι άριστο στα Μαθηµατικά α) Ρ (Α) =. β) Ρ (Β) =. γ) Ρ (Γ) = δ) Ρ ( ) = Ρ (Β) + Ρ (Α) - Ρ (Α Β) = + - = Ω = {1,, 3, 4, 5, 6}, Α = {, 4, 6}, Α = {1, 3, 5}. Όµως Ρ (Α) = Ρ (Α ), αλλά Ρ (Α) + Ρ (Α ) = 1,, Ρ (Α ) = Με 10! τρόπους. 4
10 4. α) Η θέση του πρώτου ψηφίου µπορεί να πληρωθεί µε 9 τρόπους. Όµοια η θέση του δεύτερου και του τρίτου µπορεί επίσης να πληρωθεί µε 9 τρόπους. Άρα µπορούµε να σχηµατίσουµε 9 3 τριψήφιους αριθµούς. β) 9 3 = α) Όλες οι δυνατές στήλες είναι Η ευνοϊκή είναι 1, άρα Ρ = 1 β) Ρ = = (προσθετικός νόµος). γ) ν ευθείες. 7. ν τρίγωνα ν - ν = ν (ν - 3) διαγώνιοι. 9. α) Ν (Ω) = 10! τις δύο πρώτες θέσεις µπορούν να είναι ελληνικές οµάδες κατά! τρόπους. τις υπόλοιπες οκτώ θέσεις µπορούν να είναι ξένες οµάδες κατά 8! τρόπους. Άρα οι ευνοϊκές περιπτώσεις είναι συνολικά! 8!. Άρα Ρ α =! 8! 10! 1 =. 45 5
11 β) τις δύο πρώτες θέσεις µπορούν να είναι ξένες οµάδες κατά τρόπους. τις υπόλοιπες µπορούν να είναι ελληνικές και ξένες κατά 8!. Άρα οι ευνοϊκές περιπτώσεις είναι συνολικά ( 8 ) 8! = 56 8!. Άρα Ρ β = 56 8! 10! 56 8 = = γ) Ρ γ = 1 - Ρ β = 1 - = ν = 1, ν = 1, ν = ν. ν Τα 4 βιβλία Αρχαίων τοποθετούνται κατά 4! τρόπους (µεταθέσεις). Όµοια των Μαθηµατικών κατά!, της Φυσικής κατά 3!. Οι τρεις οµάδες µπορούν να τοποθετηθούν κατά 3!. Άρα συνολικά έχουµε 3! 4!! 3! τρόπους. 3. Μπορούµε να σχηµατίσουµε: 9 µονοψήφιους αριθµούς, 9 διψήφιους, 9 3 τριψήφιους,, 9 9 εννεαψήφιους. Άρα συνολικά (Γεωµετρική πρόοδος µε λόγο 9). 33. Ρ = = 4!!(4 - )! = 4! = = 6 δυνατές περιπτώσεις. Ευνοϊκές, διότι = 1 και = 1. 6
12 Άρα Ρ = α) 10 = 10!!(10 - )! = 8! 9 10! 8! = 45 τρόποι επιλογής δύο ατόµων. Οι ευνοϊκοί είναι 5 (αφού 5 είναι τα παντρεµένα ζευγάρια). 5 1 Άρα Ρ α = = β) Υπάρχουν πέντε τρόποι επιλογής ενός άνδρα και 4 τρόποι επιλογής µιας γυναίκας που δεν είναι η σύζυγός του. Άρα Ρ β = γ) Ρ γ = 1 - Ρ α - Ρ β = = α) Ρ (Μ) = Ρ (Μ 1 ) Ρ ( 1 ) + Ρ (Μ ) Ρ ( ) = = = 10 5 =. 4 1 β) Ρ (Α) = Ρ (Α 1 ) Ρ ( 1 ) + Ρ (Α ) Ρ ( ) = = 1 5. γ) Ρ (Π) = Ρ (Π 1 ) Ρ ( 1 ) = = Α : ο σύζυγος ζει το 010, Β : η σύζυγος ζει το 010. Θεωρούνται ανεξάρτητα ενδεχόµενα Ζητούµε Ρ (Α Β) = Ρ (Α ) Ρ (Β) = = = 4% Αφού Α, Β είναι ασυµβίβαστα, τότε Α Β = άρα Ρ (Α Β) = 0. (1) Αν ήταν ανεξάρτητα, θα έπρεπε Ρ (Α Β) = Ρ (Α) Ρ (Β). 7
13 Τότε όµως Ρ (Α Β) = Ρ (Α) Ρ (Β) = 0 () λόγω της (1), αλλά Ρ (Α) > 0 και Ρ (Β) > 0 (αφού Α, Β δεν είναι αδύνατα ενδεχόµενα), άρα η () είναι αδύνατη, άρα τα Α, Β δεν είναι ανεξάρτητα. P (B A) 39. α) Ρ (Β Α) = = P (A) P (B A) β) Ρ (Β Α) = = P (A) P (A) P (A) P (B). P (A) = α) Α : είναι καπνιστής, Ρ (Α) = = 5% β) Β : έχει προβλήµατα υγείας, Ρ (Β) = = 0% γ) Γ : είναι καπνιστής χωρίς προβλήµατα υγείας, Ρ (Γ) = = 15% δ) Α Β : είναι καπνιστής µε προβλήµατα υγείας, Ρ (Α Β) = = 10%. 00 ε) Ε : έχει προβλήµατα υγείας δεδοµένου ότι είναι καπνιστής. Με χρήση του πίνακα υπάρχουν 0 καπνιστές µε προβλήµατα υγείας σε 0 σύνολο 50 καπνιστών. Άρα Ρ (Ε) = = = 0, Ρ ( Α Β) ή Ρ (Β Α) = = Ρ ( Α) = 0, α) Η πιθανότητα να βρέξει την 1η επόµενη µέρα είναι Ρ = = 7. Είναι όµως δυνατό να βρέξει τη η µέρα ή την 3η µέρα. Άρα η πιθανότητα βροχής την 1η ή την η ή την 3η µέρα είναι Ρ α = 3Ρ = 7 6. β) Η πιθανότητα να µη βρέξει τις επόµενες τρεις µέρες είναι Ρ = =. (1)
14 Το πολύ µια φορά σηµαίνει καµία φορά ή µία φορά. Άρα η ζητούµενη πιθανότητα είναι Ρ β = + = γ) Το ενδεχόµενο να βρέξει τουλάχιστον µια φορά είναι συµπληρωµατικό του 1 6 ενδεχοµένου να µη βρέξει. Άρα Ρ γ = 1 - Ρ = 1 - = λόγω της (1)
ΠΙΘΑΝΟΤΗΤΕΣ. 8. * Αν Ω είναι ο δειγµατικός χώρος ενός πειράµατος τύχης,
3ο Κεφάλαιο ΠΙΘΑΝΟΤΗΤΕ Ερωτήσεις του τύπου «ωστό - άθος» 1. * Αν Ω είναι δειγµατικός χώρος ενός πειράµατος τύχης, τότε Ρ (Ω) = 1. 2. * Αν Α είναι ενδεχόµενο ενός πειράµατος τύχης τότε, 0 Ρ (Α) 1. 3. *
ΠΙΘΑΝΟΤΗΤΕΣ. Ερωτήσεις του τύπου «Σωστό - Λάθος»
ΠΙΘΑΝΟΤΗΤΕ Ερωτήσεις του τύπου «ωστό - άθος» 1. * Αν είναι δειγματικός χώρος ενός πειράματος τύχης, τότε Ρ () = 1. 2. * Αν Α είναι ενδεχόμενο ενός πειράματος τύχης τότε, 0 Ρ (Α) 1. 3. * Για το αδύνατο
Α ΕΝΟΤΗΤΑ. Πιθανότητες. Α.1 (1.1 παρ/φος σχολικού βιβλίου) Α.2 (1.2 παρ/φος σχολικού βιβλίου) Δειγματικός χώρος - Ενδεχόμενα. Η έννοια της πιθανότητας
Α ΕΝΟΤΗΤΑ Πιθανότητες Α.1 (1.1 παρ/φος σχολικού βιβλίου) Δειγματικός χώρος - Ενδεχόμενα Α.2 (1.2 παρ/φος σχολικού βιβλίου) Η έννοια της πιθανότητας Α.1 Δειγματικός Χώρος. Ενδεχόμενα. Απαραίτητες γνώσεις
ΣΥΣΤΗΜΑΤΑ. Για την επίλυση ενός γραμμικού συστήματος με την χρήση των οριζουσών βασική είναι η παρακάτω επισήμανση:
ΣΥΣΤΗΜΑΤΑ Η επίλυση συστήματος εμφανίστηκε για πρώτη φορά σε αρχαία κινέζικη συλλογή προβλημάτων και αργότερα στο έργο «Αριθμητικά» του Έλληνα μαθηματικού της Αλεξανδρινής περιόδου Διόφαντου όπου για πρώτη
1. Οµόλογες πλευρές : Στα όµοια τρίγωνα οι οµόλογες πλευρές βρίσκονται απέναντι από τις ίσες γωνίες και αντίστροφα.
1 1.5. ΟΜΟΙ ΤΡΙΩΝ ΘΩΡΙ 1. Όµοια τρίγωνα : ια τα όµοια τρίγωνα ισχύουν όλα όσα αναφέραµε στα όµοια πολύγωνα. 2. ποκλειστικά για τα τρίγωνα : ύο τρίγωνα είναι όµοια όταν έχουν δύο γωνίες ίσες ΣΧΟΛΙ 1. Οµόλογες
Α. ΣΥΝΟΛΑ-ΥΠΟΣΥΝΟΛΑ-ΙΣΑ ΣΥΝΟΛΑ
ΜΑΘΗΜΑ 22 Κεφάλαιο 5o : Πιθανότητες Υποενότητα 5.1: Σύνολα. Θεµατικές Ενότητες: 1. Σύνολα-Υποσύνολα-Ίσα Σύνολα. 2. ιαγράµµατα Venn. 3. Πράξεις µε Σύνολα. Α. ΣΥΝΟΛΑ-ΥΠΟΣΥΝΟΛΑ-ΙΣΑ ΣΥΝΟΛΑ ΟΡΙΣΜΟΙ Σύνολο είναι
Θ έ µ α τ α Τ ύ π ο υ Σ ω σ τ ό Λ ά θ ο ς
Θ έ µ α τ α Τ ύ π ο υ Σ ω σ τ ό Λ ά θ ο ς Να χαρακτηρίσετε µε Σ (Σωστό) ή Λ (Λάθος) τους παρακάτω ισχυρισµούς:. Για κάθε α R ισχύει ότι : α =α.. Για κάθε α R ισχύει ότι : α = α.. Για κάθε α R ισχύει ότι
ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ
ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 4 o Κεφάλαιο ΑΝΑΛΥΣΗ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 0. Σ 9. Λ. Λ. Σ 40. Σ. Σ. Σ 4. Λ 4. Λ. Σ 4. Σ 5. Σ 4. Σ 4. Λ 6. Σ 5. Λ 44.
Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους.
Μάθηµα 1 Κεφάλαιο 1o: Συστήµατα Θεµατικές Ενότητες: A. Συστήµατα Γραµµικών Εξισώσεων B. Συστήµατα 3x3 Α. ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Ορισµοί Κάθε εξίσωση της µορφής α x+β =γ, µε α, β, γ R παριστάνει
4. ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ Ή ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ
4. ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ Ή ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Με τις ερωτήσεις του τύπου αυτού καλείται ο εξεταζόµενος να επιλέξει την ορθή απάντηση από περιορισµένο αριθµό προτεινόµενων απαντήσεων ή να συσχετίσει µεταξύ
ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ
ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 70 Κεφάλαιο ο: ΟΡΙΑ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Λ 8. Σ 33. i) Σ. Λ 9. Λ 33. ii) Σ 3. Λ 0. Σ 33. iii) Λ 4. Σ. Σ 34. Λ 5.
Εισαγωγή στα ΣΥΝΟΛΑ. Ε.1 Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Α), αν είναι αληθείς ή με (Ψ), αν είναι ψευδής
Εισαγωγή στα ΣΥΝΟΛΑ Ε. Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Α), αν είναι αληθείς ή με (Ψ), αν είναι ψευδής i) Αν Α= {0,5,8,3,89}, τότε το Α. ii) Αν Α = {, {,5}, 8, 0}, τότε το Α. iii) Τα σύνολα
ΑΠΟΛΥΤΗ ΤΙΜΗ ΠΡΑΓΜΑΤΙΚΟΥ ΑΡΙΘΜΟΥ- ΑΣΚΗΣΕΙΣ
ΑΠΟΛΥΤΗ ΤΙΜΗ ΠΡΑΓΜΑΤΙΚΟΥ ΑΡΙΘΜΟΥ- ΑΣΚΗΣΕΙΣ Κατηγορίες ασκήσεων στα απόλυτα ΠΕΡΙΠΤΩΣΗ : Εξισώσεις που περιέχουν απόλυτο μιας παράστασης και όχι παράταση του x έξω από το απόλυτο. α) Λύνουμε ως προς το απόλυτο
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 6 η ΕΚΑ Α
1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 6 η ΕΚΑ Α 51. Να γίνει γινόµενο παραγόντων η παράσταση α β + αβ α β Αν α β + β α = α + β, να δείξετε ότι οι αριθµοί α και β είναι ίσοι ή αντίθετοι. α β + αβ α β = αβ(α + (α + β )
Α. ΑΝΙΣΟΤΗΤΕΣ - ΚΑΝΟΝΕΣ ΑΝΙΣΟΤΗΤΩΝ
Κεφάλαιο o : Εξισώσεις - Ανισώσεις ΜΑΘΗΜΑ Υποενότητα.: Ανισώσεις ου Βαθµού Θεµατικές Ενότητες:. Ανισότητες - Κανόνες Ανισοτήτων.. Η έννοια της ανίσωσης.. Τρόπος επίλυσης ανισώσεων ου βαθµού. Α. ΑΝΙΣΟΤΗΤΕΣ
ΚΕΦΑΛΑΙΟ 3 ο ΘΕΩΡΙΑ. 3.1 Τριγωνομετρικοί Αριθμοί Γωνίας
ΚΕΦΑΛΑΙΟ 3 ο ΘΕΩΡΙΑ Τριγωνομετρικοί αριθμοί οξείας γωνίας Δίνεται ορθογώνιο τρίγωνο ΑΒΓ, με Α = 90 ο, κάθετες πλευρές β, γ και οξεία γωνία ω. απέναντι κάθετη Ορίζουμε, ημω = υποτείνουσα συνω = προσκείμενη
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό -
ΑΣΚΗΣΕΙΣ ΣΤΗ ΛΟΓΙΚΗ Α Ψ Α Ψ viii) 9. Α Ψ ix) Α Ψ xi) Α Ψ xii) 0 0. Α Ψ xiii) Α Ψ xiv) Α Ψ xv)
ΑΣΚΗΣΕΙΣ ΣΤΗ ΛΟΓΙΚΗ 1. Σε κάθε μία από τις παρακάτω προτάσεις να κυκλώσετε το γράμμα Α, αν θεωρείτε ότι ο ισχυρισμός που διατυπώνετε είναι αληθής, ενώ αν θεωρείτε ότι είναι ψευδής να κυκλώσετε το Ψ. Οι
2.4 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ 30 Ο 45 Ο 60 Ο
.4 ΤΡΙΩΝΟΜΕΤΡΙΚΟΙ ΡΙΘΜΟΙ 0 Ο 45 Ο 60 Ο ΘΕΩΡΙ. Τριγωνοµετρικοί αριθµοί 0 ο, 45 ο, 60 ο : ηµίτονο συνηµίτονο εφαπτοµένη 0 ο 45 ο 60 ο ΣΚΗΣΕΙΣ. Στο διπλανό πίνακα, σε κάθε πληροφορία της στήλης, να επιλέξετε
Ερωτήσεις ανάπτυξης. 1. Τα σηµεία Β και Γ είναι σηµεία του επιπέδου p, η ΒΓ είναι ευθεία του p. Η ΒΓ τέµνει την ΑΜ στον
Ερωτήσεις ανάπτυξης 1. Τα σηµεία και είναι σηµεία του επιπέδου, η είναι ευθεία του. Η τέµνει την Μ στον Μ Ν Ν. Το Ν σαν σηµείο της ανήκει στο, άρα και το Μ σαν σηµείο της Ν ανήκει στο. B. Έστω ε µια ευθεία
t = (iv) A B (viii) (B Γ) A
Διακριτά Μαθηματικά Review για τα Διακριτά Μαθηματικά 1. Να κατασκευάσετε το δένδρο ανάλυσης και τον πίνακα αλήθειας για τις παρακάτω προτάσεις: (i) (ϕ = ψ) ( ( ψ) ϕ ) (ii) (p q) = ( (p q) ) (iii) ( a
5.2 ΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝ ΕΧΟΜΕΝΑ
1 5.2 ΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝ ΕΧΟΜΕΝΑ ΘΕΩΡΙΑ 1. Πείραµα τύχης : Το πείραµα του οποίου δε µπορούµε να προβλέψουµε µε ακρίβεια το αποτέλεσµα. 2. ειγµατικός χώρος : Το σύνολο των δυνατών αποτελεσµάτων ενός πειράµατος
ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας
. Δίνεται η εξίσωση, (). i) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει μία τουλάχιστον πραγματική ρίζα. ii) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει δύο ίσες πραγματικές ρίζες. iii) Να βρεθεί ο
- International Scientific Electronic Journal, Issue 1, 2004 Department of Cultural Technology and Communication University of the Aegean
Μια έκθεση για τα αρχαία ελληνικά µαθηµατικά. Ανδροµάχη Γκαζή Περίληψη Το παρόν άρθρο εξετάζει τις πιο σηµαντικές παραµέτρους ανάπτυξης µιας έκθεσης για τα αρχαία ελληνικά µαθηµατικά και παρουσιάζει τα
2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Α' Γενικού Λυκείου. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ
ΘΕΜΑ A ΑΛΓΕΒΡΑ Α' Γενικού Λυκείου Σάββατο 1 Απριλίου 018 ιάρκεια Εξέτασης: ώρες ΘΕΜΑΤΑ Πεδίο ορισμού μιας συνάρτησης f (x) από ένα σύνολο Α σε ένα σύνολο Β ονομάζουμε το σύνολο Α, στο οποίο φαίνονται οι
ΚΑΝΟΝΙΣΜΟΣ (EE) 2019/1238 ΤΟΥ ΕΥΡΩΠΑΪΚΟΥ ΚΟΙΝΟΒΟΥΛΙΟΥ ΚΑΙ ΤΟΥ ΣΥΜΒΟΥΛΙΟΥ
198/1 L I ( (EE) 2019/1238 20 2019 (PEPP) ( ), 114,,, ( 1 ), ( 2 ), : (1),.. (2),., 25, :. (3),,.,,,. ( 1 ) C 81 2.3.2018,. 139. ( 2 ) 4 2019 ( ) 14 2019. EL L 198/2 25.7.2019 (4).,,. H,, ( ). (5) 2015,
+ ) 1 2! 3 % !
# % & (!! + + ) 1 2! 3 % + 5 1 2! !! #! % ( ) +,! %. # # # ) /0! 1 2 3 # 4 0 ) 5 # # & 4 & 6 #% 0 ## 7 8 & #+! #9 # : & 1 5 + ; < + 4 ) 3 4 Α Β 3# # < 4 Α Β 3 < 4 Α Β 39 + =>! ) 5# + 9# + & Α 9+9Β 9 Χ
Εισαγωγή 1. Εξωτερικά του παραλληλογράμμου ΑΒΓΔ κατασκευάζουμε τα τετράγωνα ΑΒΕΖ και ΔΓΘΗ. Να αποδείξετε ότι : α. ZH E, H
Εισαγωγή 1. Εξωτερικά του παραλληλογράμμου ΑΒΓΔ κατασκευάζουμε τα τετράγωνα ΑΒΕΖ και ΔΓΘΗ. Να αποδείξετε ότι : α. ZH E, H, Z,. Τα τμήματα ΑΓ και ΗΕ έχουν κοινό μέσο γ. Το κέντρο του παραλληλογράμμου είναι
Κ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς. 3.1 Εξισώσεις 1 ου Βαθμού. 3.2 Η εξίσωση x. 3.3 Εξισώσεις 2 ου Βαθμού. ρωτήσεις αντικειμενικού τύπουθέμα Α1-
3. Εξισώσεις ου Βαθμού 3. Η εξίσωση 3.3 Εξισώσεις ου Βαθμού Διδακτικό υλικό Άλγεβρας Α Λυκείου (Κεφάλαιο 3 ο ) Κ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς ρωτήσεις αντικειμενικού τύπουθέμα Α- Εξεταστέα ύλη
Απάντηση Το σχήµα που σχηµατίζει µία τεντωµένη κλωστή που κρατάµε µε τα δύο χέρια
Ä ÑÁÓÔÇÑÉÏÔÇÔÁ 1ç Πως µπορείς να ονοµάσεις το σχήµα µιας τεντωµένης κλωστής; Το σχήµα που φαίνεται πιο κάτω αποτελείται από µερικά σηµεία το ένα δίπλα στο άλλο. Μπορείς να το χαρακτηρίσεις µε τον ίδιο
Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος
Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία Υπεύθυνος: Δρ. Κολιός Σταύρος Θεωρία Συνόλων Σύνολο: Το σύνολο εκφράζει μία συλλογή διακριτών μονάδων οποιασδήποτε φύσης.
Μαθηματικά. Α'Γυμνασίου. Μαρίνος Παπαδόπουλος
Μαθηματικά Α'Γυμνασίου Μαρίνος Παπαδόπουλος Κεφάλαιο 1o : Οι Φυσικοί Αριθµοί ΜΑΘΗΜΑ 1 Υποενότητα 1.1: Φυσικοί Αριθµοί ιάταξη Φυσικών - Στρογγυλοποίηση Θεµατικές Ενότητες: 1. Φυσικοί Αριθµοί - ιάταξη Φυσικών
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 2: Θεωρία Πιθανοτήτων Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
3ο κεφάλαιο: Εξισώσεις ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 2014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 2014 Περιεχόµενα 1
ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ
ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ. Δύο ομάδες Ο, Ο παίζουν μεταξύ τους σε μια σχολική ποδοσφαιρική συνάντηση (οι αγώνες δεν τελειώνουν ποτέ με ισοπαλία). Νικήτρια θεωρείται η ομάδα που θα νικήσει
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Θετικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Θετικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό - Λάθος».
3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }.
3 ΠΙΘΑΝΟΤΗΤΕΣ 3.1 ΔΕΙΓΜΑΤΙΚΟΣ ΧΡΟΣ - ΕΝΔΕΧΟΜΕΝΑ Πείραμα Τύχης Ένα πείραμα του οποίου δεν μπορούμε εκ των προτέρων να προβλέψουμε το αποτέλεσμα, μολονότι επαναλαμβάνεται φαινομενικά τουλάχιστον κάτω από
1. * Ο αριθμός, ν Ν, είναι ανάγωγο κλάσμα για κάθε ν Ν. Σ Λ 2. * Οι αριθμοί 2ν και 2ν + 2 είναι διαδοχικοί άρτιοι για κάθε ν Ν.
Κεφάλαιο 4ο: ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ερωτήσεις του τύπου «Σωστό-Λάθος» ν 1. * Ο αριθμός, ν Ν, είναι ανάγωγο κλάσμα για κάθε ν Ν. 3 Σ Λ. * Οι αριθμοί ν και ν + είναι διαδοχικοί άρτιοι για κάθε ν Ν. 3. * Αν ένας
Η Ευκλείδεια διαίρεση
1 Η Ευκλείδεια διαίρεση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρηµα Αποδεικνύεται ότι για οποιουσδήποτε ακέραιους α και β, β 0, ισχύει το παρακάτω θεώρηµα και διατυπώνεται ως εξής : Αν α και β ακέραιοι µε β
Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ
Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΛΑΙΟ 1 ο ΠΙΘΑΝΟΤΗΤΕΣ 1. Για οποιαδήποτε ενδεχόμενα Α, Β ενός δειγματικού χώρου Ω ισχύει η σχέση ( ) ( ) ( ).. Ισχύει ότι P( A B) P( A
ΕΠΙΜΕΛΕΙΑ : ΒΑΣΙΛΗΣ ΚΡΑΝΙΑΣ - ΒΑΣΙΛΟΠΟΥΛΟΣ ΔΗΜΗΤΡΗΣ. Έστω σημεία Α,Β,Γ του επιπέδου και Ο σημείο αναφοράς.αν ισχύει 2, 2
Άσκηση 1 η Έστω σημεία Α,Β,Γ του επιπέδου και Ο σημείο αναφοράς.αν ισχύει,, 1 και 4 5 0. i. Να δείξετε ότι τα σημεία Α,Β,Γ είναι συνευθειακά. ii. iii. Να υπολογίσετε την τιμή της παράστασης Να βρεθεί το
3.1 ΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ - ΕΝ ΕΧΟΜΕΝΑ. 1. Πείραµα τύχης : Το πείραµα του οποίου δε µπορούµε να προβλέψουµε µε ακρίβεια το αποτέλεσµα.
1 3.1 ΕΙΓΜΤΙΚΟΣ ΧΡΟΣ - ΕΝ ΕΧΟΜΕΝ ΘΕΡΙ 1. Πείραµα τύχης : Το πείραµα του οποίου δε µπορούµε να προβλέψουµε µε ακρίβεια το αποτέλεσµα. 2. ειγµατικός χώρος : Το σύνολο των δυνατών αποτελεσµάτων του πειράµατος
3. Μία τεθλασµένη γραµµή αποτελείται από πέντε διαφορετικά ευθύγραµµα
1. Να συγκρίνεις το µήκος της γραµµής ΑΒΓ Ε µε το µήκος του ευθύγραµµου τµήµατος ΖΗ, όπως φαίνονται στο διπλανό σχήµα. Μετρώντας µε το υποδεκάµετρο βρίσκουµε ΑΒ = 1,3cm, ΒΓ = 1,3cm, Γ = 1,4cm και Ε = 2,4cm
ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ 1 50
ΜΑΘΗΜΑΤΙΚΗ ΣΚΕΨΗ ρ Κορρές Κωνσταντίνος ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ 1 50 1. Μία έρευνα από 50 µαθητές έδειξε ότι 30 είχαν γάτες, 25 είχαν σκύλους, 5 είχαν χάµστερ, 16 είχαν σκύλους και γάτες, 4 είχαν σκύλους και χάµστερ,
και ω η γωνία που σχηµατίζει το διάνυσµα OA (1) x = ρσυν(ω+ θ) = ρσυνωσυνθ ρηµωηµθ και και
ΣΤΡΟΦΗ ΙΝΥΣΜΤΟΣ Νίκος Ιωσηφίδης, Μαθηµατικός Φροντιστής, έροια e-mail: iossifid@yahoo.gr Στο άρθρο που ακολουθεί, όλα τα αναφερόµενα σηµεία θα θεωρούµε ότι βρίσκονται στο ίδιο επίπεδο. Ορισµοί: 1) Ονοµάζουµε
ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }.
ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος Το σύνολο των δυνατών αποτελεσμάτων λέγεται δειγματικός χώρος (sample space) και συμβολίζεται συνήθως με το γράμμα Αν δηλαδή ω,,, ω2 ωκ είναι τα δυνατά αποτελέσματα ενός πειράματος
Qwertyuiopasdfghjklzxcvbnmq. wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty. uiopasdfghjklzxcvbnmqwertyui
Qwertyuiopasdfghjklzxcvbnmq ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty ΑΛΓΕΒΡΑ A ΛΥΚΕΙΟΥ uiopasdfghjklzxcvbnmqwertyui ΕΠΑ.Λ. opasdfghjklzxcvbnmqwertyuiop
2 η δεκάδα θεµάτων επανάληψης
1 η δεκάδα θεµάτων επανάληψης 11. Σε κάθε τρίγωνο να αποδείξετε ότι το τετράγωνο µιας πλευράς που βρίσκεται απέναντι από οξεία γωνία, ισούται µε το άθροισµα των τετραγώνων των δύο άλλων πλευρών ελαττωµένο
ΘΕΜΑΤΑ ΘΕΜΑ 1. α) Να λύσετε την εξίσωση : 2 2 2x. β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : 1 x < α.
ΘΕΜΑΤΑ ΘΕΜΑ 6 3 α) Να λύσετε την εξίσωση : 3 β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : < α. ΘΕΜΑ α) Να λύσετε την ανίσωση : + < 7. β) Αν ο είναι λύση της ανίσωσης του
P( n, k) P(5,5) 5! 5! 10 q! q!... q! = 3! 2! = 0! 3! 2! = 3! 2!
HY118- ιακριτά Μαθηµατικά Φροντιστήριο στη Συνδυαστική (#8) Άσκηση 1 Με πόσους τρόπους µπορούµε να δηµιουργήσουµε συµβολοσειρές που αποτελούνται από τρεις παύλες και δύο τελείες; Άσκηση 1, 1 η προσέγγιση
Α. ΡΗΤΕΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ
ΜΑΘΗΜΑ 9 Κεφάλαιο o : Αλγεβρικές Παραστάσεις Υποενότητα.9: Ρητές Αλγεβρικές Παραστάσεις. Θεµατικές Ενότητες:. Ρητές Αλγεβρικές Παραστάσεις. Α. ΡΗΤΕΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Ρητή αλγεβρική παράσταση
(1) (2) A ΑE Α = AΒ (ΑΒΕ) (Α Ε)
9. Τα τρίγωνα και έχουν κοινή γωνία, άρα: () () A E AB A E A (1) Όµοια τα τρίγωνα και, άρα: () () A E AB A A () E Όµως από το θεώρηµα του Θαλή: A A () ( // ) () () πό (1), (), () έχουµε. () () Άρα () ()
ΚΕΦΑΛΑΙΟ 2 ΑΛΓΟΡΙΘΜΟΙ ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ ΘΕΩΡΙΑ
ΚΕΦΑΛΑΙΟ 2 ΑΛΓΟΡΙΘΜΟΙ ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ ΘΕΩΡΙΑ Ερωτήσεις Σωστό / Λάθος 1. Η έννοια του αλγορίθμου συνδέεται αποκλειστικά και μόνο με προβλήματα της Πληροφορικής (ΕΞΕΤΑΣΕΙΣ 2003, 2007) 2. Ο αλγόριθμος μπορεί
A. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ
Μάθηµα 1 Κεφάλαιο: Εισαγωγικό Θεµατικές Ενότητες: A. Το Λεξιλόγιο της Λογικής B. Σύνολα A. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Ορισµός Πρόταση λέµε κάθε φράση που µε βάση το νοηµατικό της περιεχόµενο µπορούµε να
ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ
ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 06 Κεφάλαιο ο: ΣΥΝΑΡΤΗΣΕΙΣ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Λ 0. i) Σ 9. Σ. Σ 0. ii) Σ 0. Σ 3. Σ. Σ. Σ 4. Σ. Λ. Λ 5. Λ 3. Σ 3. Σ 6. Σ 4. Σ 4. Λ 7.
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΠΤΙΚΟ ΦΥΛΛΑΔΙΟ ΧΡΙΣΤΟΥΓΕΝΝΩΝ 2015 ΔΕΚΕΜΒΡΙΟΣ 2015 Δ.Ε. ΚΟΝΤΟΚΩΣΤΑΣ Οι ασκήσεις να λυθούν σε χαρτί Α4 1 η ΑΣΚΗΣΗ Να υπολογιστούν οι παραστάσεις: i. 2 3 +2 5 2 1 1 4 +3 2 ii. 5 2 3 2 3 ( 1 4 3 2 )
ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ
ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 234 Κεφάλαιο 4ο: ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Απαντήσεις στις ερωτήσεις «Σωστό - Λάθος» 1. Λ 17. Σ 32. Σ 47. Σ 62. Σ 2. Σ 18. Σ 33. Λ 48. Λ 63. Σ 3. Λ 19. Λ 34. Σ 49. Σ 64. Λ 4.
ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια
ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια 184 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Να αντιστοιχίσετε κάθε στοιχείο της στήλης (Α) µε ένα µόνο στοιχείο της στήλης (Β): στήλη (Α) τετράπλευρα
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Α ΦΑΣΗ. Ηµεροµηνία: Σάββατο 7 Ιανουαρίου 2017 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ
ΟΜΟΣΠΟΝ Ι ΕΚΠΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ 17 ΦΣΗ Ε_.ΜλΘ(α) ΤΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΝΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΘΗΜ: ΜΘΗΜΤΙΚ Ηµεροµηνία: Σάββατο 7 Ιανουαρίου 17
1.1 ΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ - ΕΝ ΕΧΟΜΕΝΑ
1 1.1 ΕΙΓΜΤΙΟΣ ΧΩΡΟΣ - ΕΝ ΕΧΟΜΕΝ ΘΕΩΡΙ 1. Πείραµα τύχης : Το πείραµα του οποίου δε µπορούµε να προβλέψουµε µε ακρίβεια το αποτέλεσµα. 2. ειγµατικός χώρος : Το σύνολο των δυνατών αποτελεσµάτων ενός πειράµατος
Ερωτήσεις αντιστοίχισης
Ερωτήσεις αντιστοίχισης 1. ** Να αντιστοιχίσετε κάθε ευθεία που η εξίσωσή της βρίσκεται στη του πίνακα (Ι) µε τον συντελεστή της που βρίσκεται στη, συµπληρώνοντας τον πίνακα (ΙΙ) (α, β 0). 1. ε 1 : y =
ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΣΩΣΤΑ ΛΑΘΟΣ
ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΣΩΣΤΑ ΛΑΘΟΣ 1. Στο διπλανό σχήμα δίνεται η γραφική παράσταση της συνάρτησης f( ). 1 5 Να χαρακτηρίσετε ως σωστό (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις.. i) Η f έχει πεδίο
3 η δεκάδα θεµάτων επανάληψης
3 η δεκάδα θεµάτων επανάληψης. ίνεται το ισοσκελές τραπέζιο µε ɵ = = 45 ο. Έστω Ε, Ζ τα µέσα των και αντίστοιχα και Η. πό το Z φέρνουµε παράλληλη στην που τέµνει την στο Θ. Να δείξετε ότι Το τετράπλευρο
Στοιχεία και έγγραφα που απαιτούνται για την εγγραφή στο ΓΕΜΗ
Στοιχεία και έγγραφα που απαιτούνται για την εγγραφή στο ΓΕΜΗ Σύμφωνα με την αριθμ. Κ1-941 οικ./27.4.12 και την Κ1-1484/12.6.2012 του Υπουργείου Ανάπτυξης & Ανταγωνιστικότητας πρέπει να γίνει εγγραφή των
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό -
Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ
Παρουσίαση ΙΑΝΥΣΜΑΤΑ Παρουσίαση η Κάθετες συνιστώσες διανύσµατος Παράδειγµα Θα αναλύσουµε το διάνυσµα v (, ) σε δύο κάθετες µεταξύ τους συνιστώσες από τις οποίες η µία να είναι παράλληλη στο α (3,) Πραγµατικά
Τις ασκήσεις επιμελήθηκαν οι καθηγητές της Γ Γυμνασίου των σχολείων μας και ο συντονιστής Μαθηματικών.
Τις ασκήσεις επιμελήθηκαν οι καθηγητές της Γ Γυμνασίου των σχολείων μας και ο συντονιστής Μαθηματικών. Ερωτήσεις «Σωστού - Λάθους» 1) Για όλους τους πραγματικούς α, β ισχύει: ( ) ( ) 3 3 ) Για όλους τους
ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΤΡΟΦΙΜΩΝ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ ΚΟΙΝΟΤΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΥΠΟΔΟΜΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΕΦΑΡΜΟΓΗΣ ΠΑΑ ΑΝΤΑΓΩΝΙΣΤΙΚΟΤΗΤΑ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ ΕΥΡΩΠΑΪΚΟ ΓΕΩΡΓΙΚΟ ΤΑΜΕΙΟ
1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ
ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με
Άλγεβρα και στοιχεία πιθανοτήτων
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ Άλγεβρα και στοιχεία πιθανοτήτων ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σ. Ανδρεαδάκης Β. Κατσαργύρης Σ. Παπασταυρίδης Γ.
ΜΕΓΙΣΤΗ ΚΑΙ ΕΛΑΧΙΣΤΗ ΤΙΜΗ
ΜΕΓΙΣΤΗ ΚΑΙ ΕΛΑΧΙΣΤΗ ΤΙΜΗ Στην παράγραφο αυτή θα εφαρµόσουµε ιδιότητες των διανυσµάτων, για να βρούµε την µέγιστη και ελάχιστη τιµή παραστάσεων µε µία, δύο και περισσότερες µεταβλητές. Κεντρική ιδέα της
Μαθηματικά Γενικής Παιδείας Κεφάλαιο 1ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ
Μαθηματικά Γενικής Παιδείας Κεφάλαιο ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο Α) Συµπληρώστε τα κενά στις παρακάτω προτάσεις: 1) Ο κύκλος µε κέντρο Κ(α, β) και ακτίνα ρ > έχει εξίσωση... ) Η εξίσωση του κύκλου µε κέντρο στην αρχή
Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου
Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου Θέµα 1 Α. Να υπολογίσετε την πλευρά λ και το απόστηµα α τετραγώνου εγγεγραµµένου σε κύκλο (Ο, R) συναρτήσει της ακτίνας R (10 Μονάδες) Β. Να χαρακτηρίσετε τις
ΑΛΓΕΒΡΑ= = = = = = Α =ΛΥΚΕΙΟΥ
ΑΓΕΒΡΑ Α ΥΚΕΙΟΥ ΤΟΙΧΕΙΑ ΘΕΩΡΙΑ - ΑΚΗΕΙ ΘΕΩΡΙΑ. Οι πράξεις και οι ιδιότητες τους Αν α, β, γ, δ πραγματικοί αριθμοί τότε ισχύουν οι ιδιότητες : α = β Û α + γ = β + γ Αν γ ¹ 0, α = β Û αγ = βγ αβ = 0 Û α
ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ
ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε
Μαθηματικά. Β'Γυμνασίου. Μαρίνος Παπαδόπουλος
Μαθηματικά Β'Γυμνασίου Μαρίνος Παπαδόπουλος ΠΡΟΛΟΓΙΚΟ ΣΗΜΕΙΩΜΑ Σας καλωσορίζω στον όµορφο κόσµο των Μαθηµατικών της B Γυµνασίου. Τα µαθηµατικά της συγκεκριµένης τάξης αποτελούν βάση των µαθηµατικών του
Μεταϖτυχιακή Εργασία. Εκτίµηση εϖικινδυνότητας της ϖοιότητας του νερού του δικτύου ύδρευσης του ήµου Ηρακλείου του Νοµού Ηρακλείου Κρήτης
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ «ΕΛΕΓΧΟΣ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΙΑΧΕΙΡΙΣΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ» Μεταϖτυχιακή Εργασία Εκτίµηση εϖικινδυνότητας της ϖοιότητας
3.2 Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ. Σχετική συχνότητα ενδεχοµένου Α : 2. Ιδιότητες της f, λ το πλήθος απλών ενδεχοµένων :
3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ ΘΕΩΡΙΑ. Σχετική συχνότητα ενδεχοµένου Α : Είναι το πηλίκο f κ A = ν ενδεχόµενου Α σε ν το πλήθος εκτελέσεις του πειράµατος όπου κ το πλήθος των πραγµατοποιήσεων του. Ιδιότητες
ΑΣΚΗΣΗ 3 η : H βαθµολογία των µαθητών σε ένα διαγώνισµα στα Μαθηµατικά φαίνεται στο παραπάνω ραβδόγραµµα.
6 ο ΓΥΜΝΑΣΙΟ ΚΑΡ ΙΤΣΑΣ ΓΡΑΠΤΕΣ ΑΝΑΚΕΦΑΙΛΑΙΩΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟ ΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ ΤΑΞΗ: Β ΓΥΜΝΑΣΙΟΥ ΤΜΗΜΑ:Β 4 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΕΜΠΤΗ 20 ΜΑΪΟΥ 2010 ΘΕΜΑΤΑ ΘΕΩΡΙΑ (Να γράψετε το ένα από τα
ΚΥΚΛΟΣ. Ερωτήσεις του τύπου «Σωστό-Λάθος»
ΚΥΚΛΟΣ Ερωτήσεις του τύπου «Σωστό-Λάθος» Σωστό Λάθος 1. Αν α είναι η απόσταση ευθείας ε από το κέντρο του κύκλου (Ο, ρ) τότε: αν α > ρ η ε λέγεται εξωτερική του κύκλου αν α = ρ η ε λέγεται τέμνουσα του
4 η εκάδα θεµάτων επανάληψης
4 η εκάδα θεµάτων επανάληψης 3. ίνεται τετράγωνο µε κέντρο Ο και Μ το µέσο του. Η Μ τέµνει την στο. είξτε ότι = Το τρίγωνο είναι ορθογώνιο και ισοσκελές i ΟΜ = 4 Τα ορθογώνια τρίγωνα Μ και Μ έχουν Μ =
Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ
Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος 013-014, Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 3 ο ΠΙΘΑΝΟΤΗΤΕΣ Συνοπτική Θεωρία Όλες οι αποδείξεις Ερωτήσεις αντικειμενικού τύπου Ασκήσεις από την Τράπεζα Θεμάτων του Υπουργείου και προτεινόμενες Διαγωνίσματα
ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ. Η συνεπαγωγή. Η Ισοδυναμία ή διπλή συνεπαγωγή. Ο σύνδεσμος «ή» Ο σύνδεσμος «και»
Η συνεπαγωγή ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ Αν P και Q είναι δύο ισχυρισμοί, τέτοιοι ώστε, όταν αληθεύει ο P να αληθεύει και ο Q, τότε λέμε ότι: «ο P συνεπάγεται τον Q» και γράφουμε P Q. Παράδειγμα: x=3 x 2 =9. Ο
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά
ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ
ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΙΟΥΝΙΟΥ 07 ΕΚΦΩΝΗΣΕΙΣ Α. Αν οι συναρτήσεις f και g είναι παραγωγίσιµες στο, να αποδείξετε ότι f ( x) + g( x) = f ( x) + g ( x), για κάθε
1. Βασικές Έννοιες - Προτάσεις Θεωρίας Πιθανοτήτων
. Βασικές Έννοιες - Προτάσεις Θεωρίας Πιθανοτήτων Tα διάφορα επιστημονικά μοντέλα ή πειράματα ή γενικότερα τα φυσικά φαινόμενα μπορεί να θεωρηθεί ότι εντάσσονται σε δύο μεγάλες κατηγορίες: τα προσδιοριστικά
1. Πείραμα τύχης. 2. Δειγματικός Χώρος ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ
1 ΣΤΟΙΧΕΙ ΠΟ ΤΗ ΘΕΩΡΙ ΠΙΘΝΟΤΗΤΩΝ 1. Πείραμα τύχης Πείραμα τύχης (π.τ.) ονομάζουμε κάθε πείραμα που μπορεί να επαναληφθεί όσες φορές επιθυμούμε υπό τις ίδιες συνθήκες και του οποίου το αποτέλεσμα είναι
Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999
Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 999 Ζήτηµα ο Α. Έστω a, ) και β, ) δύο διανύσµατα του καρτεσιανού επιπέδου Ο. α) Να εκφράσετε χωρίς απόδειξη) το εσωτερικό γινόµενο των διανυσµάτων a και
ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ
ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ Πιθανότητες Πραγματικοί αριθμοί Εξισώσεις Ανισώσεις Πρόοδοι Βασικές έννοιες των συναρτήσεων Μελέτη βασικών συναρτήσεων ΑΛΓΕΒΡΑ Α
ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος )
ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε
5. 3 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ
ΜΕΡΟΣ Α. ΕΟΙΑ ΤΗΣ ΠΙΘΑΟΤΗΤΑΣ 77. ΕΟΙΑ ΤΗΣ ΠΙΘΑΟΤΗΤΑΣ Κλασικός ορισμός πιθανότητας Αν ένα στοιχείο του συνόλου του δειγματικού χώρου επιλέγεται στην τύχη και δεν έχει κανένα πλεονέκτημα έναντι των άλλων,
ΘΕΜΑ 1 Ο Α. i) Να χαρακτηρίσετε τις παρακάτω προτάσεις σαν σωστές (Σ) ή λάθος (Λ)
1 Ο Α. i) Να χαρακτηρίσετε τις παρακάτω προτάσεις σαν σωστές (Σ) ή λάθος (Λ) α) Για την εξίσωση 6x 3x 1 0 ισχύει α = 3, β = -6, γ = 1 β) Η εξίσωση 3 0 δέχεται σαν λύση τον αριθμό. x 3x 3 ιι) Να συμπληρώσετε
3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ
ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με
ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ
ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ Κάθε εξίσωση της µορφής α + β = γ όπου α + β 0 ( α, β όχι συγχρόνως 0) παριστάνει ευθεία. (Η εξίσωση λέγεται : ΓΡΑΜΜΙΚΗ) ΕΙ ΙΚΑ γ Αν α = 0 και β 0έχουµε =. ηλαδή µορφή = c.
ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ
ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 3 Κεφάλαιο ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ο ΜΕΡΟΣ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 6. Λ 8. Λ. Σ 7. Σ 9. Λ 3. Λ 8. Λ 3. Σ 4. Σ 9. Σ 3. α) Σ 5. Σ. Σ β) Σ 6.
ΚΕΦΑΛΑΙΟ 3. ασκησεισ
ΚΕΦΑΛΑΙΟ 3 ασκησεισ ΟΜΑΔΑ Α 1. Ο πίνακας συμπληρώνεται με τη βοήθεια του ορισμού της συνάρτησης κατανομής Ρ [Χ < χ]. Ρ[Χ