PAU XUÑO 2012 FÍSICA
|
|
- Ἡρωδιάς Λαμέρας
- 7 χρόνια πριν
- Προβολές:
Transcript
1 PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución ás cuestións; han de ser razoadas. Pódese usar calculadora sempre que non sexa programable nin memorice texto. O alumno elixirá unha das dúas opcións C.1. - No movemento dos planetas en órbitas elípticas e planas arredor do Sol mantense constante: a) a enerxía cinética; b) o momento angular; c) o momento lineal. C.2. - Nun oscilador harmónico cúmprese que: a) a velocidade v e a elongación x son máximas simultaneamente; b) o período de oscilación T depende da amplitude A; c) a enerxía total E T cuadriplícase cando se duplica a frecuencia. C.3. - Se un núcleo atómico emite unha partícula α e dúas partículas β, os seus números atómico Z e másico A: a) Z aumenta en dúas unidades e A diminúe en dúas: b) Z non varía e A diminúe en catro: c) Z diminúe en dúas e A non varía. C.4. - Disponse dun péndulo simple de 1,5 m de lonxitude. Mídese no laboratorio o tempo de 3 series de 10 oscilacións obtendo 24,56 s, 24,58 s, 24,55 s. cal é o valor de g coa súa incerteza? P.1. - Tres cargas de +3 µc están situadas equidistantes entre si sobre unha circunferencia de raio 2 m. Calcula: a) o potencial eléctrico no centro da circunferencia; b) o vector campo eléctrico no mesmo punto; c) o traballo para traer unha carga q = 1 µc dende o infinito ao centro da circunferencia. (Dato: k = Nm 2 C -2 ) P.2. - Un obxecto de 3 cm sitúase a 20 cm dunha lente a distancia focal da cal é 10 cm: a) debuxa a marcha dos raios se a lente é converxente; b) debuxa a marcha dos raios se a lente é diverxente; c) en ambos os dous casos calcula a posición e o tamaño da imaxe. C.1. - Dúas esferas de raio R con cargas + Q e Q, teñen os seus centros separados unha distancia d. A unha distancia d/2 (sendo d/2 > > R); cúmprese: a) o potencial é cero e o campo electrostático 4kQd -2 ; b) o potencial é cero e o campo electrostático 8kQd -2 ; b) o potencial é 4kQd -1 e o campo cero. C.2. A ecuación dunha onda é y = 0,02 sen (50t - 3x); isto significa que: a) ω = 50 rad.s -1 e λ = 3 m; b) a velocidade de propagación u = 16,67 m.s -1 e a frecuencia ν = 7,96 s -1 ; c) T = 50 s e o número de onda k = 3 m -1. C.3. - Se un espello forma unha imaxe real invertida e de maior tamaño que o obxecto, trátase dun espello: a) cóncavo e o obxecto está situado entre o foco e o centro da curvatura; b) cóncavo e o obxecto está situado entre o foco e o espello; c) convexo co obxecto en calquera posición. C.4. - Na determinación da constante elástica dun resorte podemos utilizar dous tipos de procedementos. En ambos os dous casos, obtense unha recta a partir da cal se calcula a constante elástica. Explica cómo se determina o valor da constante a partir da devandita gráfica para cada un dos dous procedementos, indicando qué tipo de magnitudes hai que representar nos eixes de abscisas e de ordenadas. P.1. - Unha mostra de carbono 14 ten unha actividade de 2, desintegracións.s -1 ; o período de semidesintegración é T=5730 anos, calcula: a) a masa da mostra no instante inicial; b) a actividade ao cabo de 2000 anos; c) a masa de mostra nese instante. (Datos: N A = 6, mol -1 ; masa atómica do 14 C = 14 g.mol -1 ; 1 ano = 3, s) P.2. - Se a masa da Lúa é 0,012 veces a da Terra e o seu raio é 0,27 o terrestre, acha: a) o campo gravitatorio na Lúa; b) a velocidade de escape na Lúa; c) o período de oscilación, na superficie lunar, dun péndulo cuxo período na Terra é 2 s. (Datos: g 0T = 9,8 ms -2 ; R L = 1, m )
2 PAU SETEMBRO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución ás cuestións; deben ser razoadas. Pódese usar calculadora sempre que non sexa programable nin memorice texto. O alumno elixirá unha das dúas opcións C.1. - Un punto material describe un movemento harmónico simple de amplitude A. Cal das seguintes afirmacións é correcta?: a) a enerxía cinética é máxima cando a elongación é nula; b) a enerxía potencial é constante; c) a enerxía total depende da elongación x. C.2- A enerxía relativista total dunha masa en repouso: a) relaciona a lonxitude de onda coa cantidade de movemento; b) representa a equivalencia entre materia e enerxía; c) relaciona as incertezas da posición e do momento. C.3. - Unha espira está situada no plano xy e é atravesada por un campo magnético constante B en dirección do eixe z. Indúcese unha forza electromotriz: a) se a espira se move no plano xy; b) se a espira xira ao redor dun eixe perpendicular á espira; c) se se anula gradualmente o campo B. C.4. - Explica brevemente as diferenzas no procedemento utilizado para medir a constante elástica k e dun resorte polos dous métodos: estático e dinámico. P.1. - A luz do Sol tarda s en chegar á Terra, e 2, s en chegar a Xúpiter. Calcula: a) o período de Xúpiter orbitando arredor do Sol; b) velocidade orbital de Xúpiter; c) a masa do Sol. (Supóñense as órbitas circulares) (Datos: T Terra arredor do Sol = 3, s; c = m s -1 ; G = 6, N m 2 kg -2 ) P.2. - Unha lente converxente proxecta sobre unha pantalla a imaxe dun obxecto. O aumento é de 10 e a distancia do obxecto á pantalla é de 2,7 m. a) Determina as posicións da imaxe e do obxecto. b) Debuxa a marcha dos raios. c) Calcula a potencia da lente. C.1. - Segundo a hipótese de De Broglie, cúmprese que: a) un protón e un electrón coa mesma velocidade teñen asociada a mesma onda; b) dous protóns a diferente velocidade teñen asociada a mesma onda; c) a lonxitude da onda asociada a un protón é inversamente proporcional ao seu momento lineal. C.2. -Un campo magnético constante B exerce unha forza sobre unha carga eléctrica: a) se a carga está en repouso; b) se a carga se move perpendicularmente a B; c) se a carga se move paralelamente a B. C.3. - Dous satélites idénticos, A e B, describen órbitas circulares de diferente raio en torno á Terra (R A < R B ). Polo que: a) B ten maior enerxía cinética; b) B ten maior enerxía potencial; c) os dous teñen a mesma enerxía mecánica. C.4. - Na práctica da medida de g cun péndulo como conseguirías que o péndulo duplique o número de oscilacións por segundo? P.1. - Unha masa de 10 g está unida a un resorte e oscila nun plano horizontal cun movemento harmónico simple. A amplitude do movemento é A =20 cm, e a elongación no instante inicial é x =-20 cm. Se a enerxía total é 0,5 J, calcula: a) a constante elástica do resorte; b) a ecuación do movemento; c) a enerxía cinética na posición x =15 cm. P.2. - Dúas cargas eléctricas de +8 µc están situadas en A (0; 0,5) e B (0; -0,5) (en metros). Calcula: a) o campo eléctrico en C (1,0) e en D (0,0); b) o potencial eléctrico en C e en D. c) Se unha partícula de masa m =0,5 g e carga q =-1 µc se sitúa en C cunha velocidade inicial de 10 3 m s -1, calcula a velocidade en D. Nota: só interveñen forzas eléctricas. (Datos k = N m 2 C -2 ; 1 µc = 10-6 C)
3 CONVOCATORIA DE XUÑO Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades ou con unidades incorrectas... 0,25 (por Os erros de cálculo... 0,25 (por Nas cuestións teóricas consideraranse tamén válidas as xustificacións por exclusión das cuestións incorrectas. C.1 No movemento dos planetas en órbitas elípticas e planas arredor do Sol mantense constante: a) a enerxía cinética; b) o momento angular; c) o momento lineal. C.2.- Nun oscilador harmónico cúmprese que: a) a velocidade v e a elongación son máximas simultaneamente; b) o período de oscilación depende da amplitude A; c) a enerxía total E T cuadriplícase cando se duplica a frecuencia. C.3.- Se un núcleo atómico emite unha partícula e dúas, os seus números atómico Z e másico A: a) Z aumenta en dúas unidades e Z diminúe en dúas; b) Z non varía e A diminúe en catro; c) Z diminúe en dúas e A non varía. C.4.- Disponse dun péndulo simple de 1,5 m de lonxitude. Mídese no laboratorio o tempo de 3 series de 10 oscilacións obtendo 24,56 s; 24,58 s; 24,55 s. cal é o valor de g coa súa incerteza? P.1.- Tres cargas de +3 C están situadas equidistantes entre si sobre unha circunferencia de raio 2 m. Calcula: a) o potencial eléctrico no centro da circunferencia; b) o vector campo eléctrico no mesmo punto; c) o traballo para traer unha carga q = 1 C dende o infinito ao centro da circunferencia. (Dato: k= Nm 2 C -2 ). P.2.- Un obxecto de 3 cm sitúase a 20 cm dunha lente a distancia focal da cal é 10 cm: a) debuxa a marcha dos raios se a lente é converxente; b) debuxa a marcha dos raios se a lente é diverxente; c) en ambos os casos, calcula a posición e tamaño da imaxe. C.1 Dúas esferas de raio R con cargas +Q e Q, teñen os seus centros separados unha distancia d. A unha distancia d/2 (sendo d/2>>r); cúmprese: a) o potencial é cero e o campo electrostático 4kQd -2 ;b) o potencial é cero e o campo electrostático 8kQd -2 ; c) o potencial é 8kQd -1 e o campo é cero. C.2.- A ecuación dunha onda é y= 0,02 sen(50t-3x); isto significa que: a) = 50 rad.s -1 e = 3 m; b) a velocidade de propagación u= 16,67 m.s -1 e a frecuencia = 7,96.s -1 ; c) T= 50 s e o número de onda k= 3 m -1. C.3.- Se un espello forma unha imaxe real invertida e de maior tamaño que o obxecto, trátase dun espello: a) cóncavo e o obxecto está situado entre o foco e o centro de curvatura; b) cóncavo e o obxecto está situado entre o foco e o espello; c) convexo co obxecto en calquera posición. C.4.- Na determinación da constante elástica dun resorte podemos utilizar dous tipos de procedementos. En ambos os casos, obtense unha recta a partir da cal se calcula a constante elástica. Explica cómo se determina o valor da constante a partir da devandita gráfica para cada un dos dous procedementos, indicando qué tipo de magnitudes hai que representar nos eixes de abscisas e de ordenadas. P.1.- Unha mostra de carbono 14 ten unha actividade de 2, desintegracións.s -1 ; o período de semidesintegración é T = 5730 anos. Calcula: a) a masa da mostra no instante inicial; b) a actividade ó cabo de 2000 anos; c) a masa da mostra nese instante. (Datos N A = 6, mol -1 ; masa atómica do 14 C = 14 uma; 1 ano= 3, s) SOL. b máx. 1 p SOL. c máx. 1 p SOL. b máx. 1 p Cálculo do valor de g: ,75 Imprecisión....0,25 a) Potencial eléctrico: 4, V...1,0 b) Campo eléctrico: 0 N/C ,0 c) Traballo: - 4, J ,0 a) Marcha dos raios na lente converx...1,0 b) Marcha dos raios na lente diverxente..1,0 c) Lente converxente: s = +20 cm.0,25 y = -3 cm...0,25 Lente diverxente: s = -6,7 cm...0,25 y = +1 cm..0,25 SOL: a máx. 1 p máx. 1 p a) Masa inicial m= 1, g... 1,00 b) Actividade... A =2, desint.s 1..1,00 c) Masa ó cabo de 2000 anos: m = 1, g...1,00
4 P.2.- Se a masa da Lúa é 0,012 veces a da Terra e o seu raio é 0,27 veces o terrestre, acha: a) o campo gravitatorio na Lúa; b) a velocidade de escape; c) o período de oscilación, na superficie lunar, dun péndulo cuxo período na Terra é 2 s. (Datos: g 0T = 9,8 ms -2 ; R L = 1, m) a) g 0T =1,61 Nkg ,00 b) v escape = 2, ms ,00 c) Período na Lúa: T L = 4,9 s... 1,00 CONVOCATORIA DE SETEMBRO Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades ou con unidades incorrectas... 0,25 (por Os erros de cálculo,... 0,25 (por Nas cuestións teóricas consideraranse tamén válidas as xustificacións por exclusión das cuestións incorrectas. C.1 Un punto material describe un movemento harmónico simple de amplitude A. Cal das seguintes afirmacións é correcta?: a) a enerxía cinética é máxima cando a elongación é nula; b) a enerxía potencial é constante; c) a enerxía total depende da elongación x C.2. A enerxía relativista total dunha masa en repouso: a) relaciona a lonxitude de onda coa cantidade de movemento; b) representa a equivalencia entre materia e enerxía; c) relaciona as incertezas da posición e do movemento. C.3.- Unha espira está situada no plano XY e é atravesada por un campo magnético constante B en dirección do eixe Z. Indúcese unha forza electromotriz: a) se a espira se move no plano XY; b) se a espira xira ao redor dun eixe perpendicular á espira; c) se se anula gradualmente o campo B. C.4.- Explica brevemente as diferenzas no procedemento utilizado para medir a constante elástica k, dun resorte polos métodos estático e dinámico. P.1. A luz do Sol tarda s en chegar á Terra, e 2,6.103 s en chegar á Xúpiter. Calcula: a) o período de Xúpiter orbitando arredor do Sol. b) a velocidade orbital de Xúpiter; c) a masa do Sol. (Supóñense as órbitas circulares). (Datos: T Terra arredor do Sol=3, s; c= ms -1 ; G = 6, Nm 2 kg -2 ). P.2. Unha lente converxente proxecta sobre unha pantalla a imaxe dun obxecto. O aumento é de 10 s e a distancia do obxecto á pantalla é de 2,7 m. a) Determina as posicións da imaxe e do obxecto; b) Debuxa a marcha dos raios; c) Calcula a potencia da lente. SOL. a máx. 1 p SOL.b máx. 1 p SOL. c máx. 1 p máx 1 p. a) T Xúpiter-Sol = 3, s...1,00 b) v orbital = 1, ms ,00 c) Masa do Sol= 2, kg.. 1,00 a) Posición obxecto: s= -0,25m... 0,50 Posición imaxe: s = +2,45 m.. 0,50 b) Debuxo da marcha dos raios...1,00 c) Potencia da lente: 4,4 diopt... 1,00 C.1 Segundo a hipótese de De Broglie, cúmprese que A) un protón e un electrón coa mesma velocidade teñen asociada a mesma onda; b) dous protóns a diferente velocidade teñen asociada a mesma onda; c) a lonxitude da onda asociada a un protón é inversamente proporcional ao seu momento lineal. C.2. Un campo magnético constante B exerce unha forza sobre unha carga eléctrica: a) se a carga está en repouso; b) se a carga se move perpendicularmente a B; c) se a carga se move paralelamente a B. SOL:c máx. 1 p
5 C.3. Dous satélites idénticos, A e B, describen órbitas circulares de diferente raio en torno á Terra (R A <R B ). Polo que a) B ten maior enerxía cinética; b) B ten maior enerxía potencial; c) os dous teñen a mesma enerxía mecánica. C.4 Na práctica da medida de g cun péndulo: como conseguirías que o péndulo duplique o número de oscilacións por segundo? P.1. Unha masa de 10 g está unida a un resorte e oscila nun plano horizontal cun movemento harmónico simple. A amplitude do movemento é A= 20 cm, e a elongación no instante inicial é x= -20 cm. Se a enerxía total é 0,5 J, calcula: a) a constante elástica do resorte; b) a ecuación do movemento; c) a enerxía cinética na posición x= 15 cm. P.2. Dúas cargas eléctricas de +8 C están situadas en A (0;0,5) e en B (0;- 0,5) (en metros). Calcula: a) o campo eléctrico en C (1,0) e en D (0,0); b) o potencial eléctrico en C e en D; c) se unha partícula de masa m=0,5 g e carga q=-1 C se sitúa en C cunha velocidade inicial de 10 3 ms -1, calcula a velocidade en D. Nota: só interveñen forzas eléctricas. (Datos:k= Nm 2 C -2 ; 1 C=10-6 C). Máx 1 p a) k= 25 Nm ,00 b) Ec. do movemento: x=0,2 sen(50t+3 /2) (m)... 1,00 c) Enerxía cinética: 0,22J... 1,00 a).. 0,50 E D =0... 0,50 b) VC= 1, V... 0,50 VD= 2, V... 0,50 c) Velocidade en D: 1000,3 ms ,00
Código: 25 PAU XUÑO 2012 FÍSICA OPCIÓN A OPCIÓN B
PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
Código: 25 XUÑO 2012 PAU FÍSICA OPCIÓN A OPCIÓN B
PAU Código: 25 XUÑO 2012 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
PAU XUÑO 2011 FÍSICA
PAU XUÑO 2011 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
Ano 2018 FÍSICA. SOL:a...máx. 1,00 Un son grave ten baixa frecuencia, polo que a súa lonxitude de onda é maior.
ABAU CONVOCAT ORIA DE SET EMBRO Ano 2018 CRIT ERIOS DE AVALI ACIÓN FÍSICA (Cód. 23) Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades ou con unidades incorrectas...
FÍSICA. = 9, kg) = -1, C; m e
22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestións 4 puntos (1
EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO
Física Exercicios de Selectividade Páxina 1 / 8 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 15-16 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) CUESTIÓN.- Un satélite artificial de masa m que
EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO
Física Exercicios de Selectividade Páxina 1 / 9 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 16-17 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) PROBLEMA. Xuño 2016. A nave espacial Discovery,
Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN
Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS 1. A luz do Sol tarda 5 10² s en chegar á Terra e 2,6 10³ s en chegar a Xúpiter. a) O período de Xúpiter orbitando arredor do Sol. b) A velocidade orbital
FÍSICA. = 4π 10-7 (S.I.)).
22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas, 6 puntos (1 cada apartado). Cuestións, 4 puntos
FÍSICA OPCIÓN 1. ; calcula: a) o período de rotación do satélite, b) o peso do satélite na órbita. (Datos R T. = 9,80 m/s 2 ).
22 Elixir e desenrolar unha das dúas opcións propostas. FÍSICA Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple
Física P.A.U. ÓPTICA 1 ÓPTICA
Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un raio de luz de frecuencia 5 10 14 Hz incide, cun ángulo de incidencia de 30, sobre unha lámina de vidro de caras plano-paralelas de espesor
FÍSICA. 2.- Cando se bombardea nitróxeno 14 7 N con partículas alfa xérase o isótopo 17 8O e outras partículas. A
22 FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple
EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO
Física Exercicios de Selectividade Páxina 1 / 10 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 17-18 http://ciug.gal/exames.php TEMA 1. GRAVITACIÓN. 1) PROBLEMA. Xuño 2017. Un astronauta está no interior
Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN
Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS SATÉLITES 1. O período de rotación da Terra arredor del Sol é un año e o radio da órbita é 1,5 10 11 m. Se Xúpiter ten un período de aproximadamente 12
FÍSICA. ) xiran arredor da Terra con órbitas estables de diferente raio sendo r A. > m B
ÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada apartado). Cuestións 4 puntos ( cada
PAU XUÑO 2014 FÍSICA
PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica), problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución
Física P.A.U. ÓPTICA 1 ÓPTICA
Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un raio de luz de frecuencia 5 10¹⁴ Hz incide cun ángulo de incidencia de 30 sobre unha lámina de vidro de caras plano-paralelas de espesor 10
24/10/06 MOVEMENTO HARMÓNICO SIMPLE
NOME: CALIFICACIÓN PROBLEMAS (6 puntos) 24/10/06 MOVEMENTO HARMÓNICO SIMPLE 1. Dun resorte elástico de constante k= 500 Nm -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase
PAU XUÑO 2015 FÍSICA
PAU XUÑO 2015 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución
EJERCICIOS DE VIBRACIONES Y ONDAS
EJERCICIOS DE VIBRACIONES Y ONDAS 1.- Cando un movemento ondulatorio se atopa na súa propagación cunha fenda de dimensións pequenas comparables as da súa lonxitude de onda prodúcese: a) polarización; b)
Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS
Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS PROBLEMAS M.H.S.. 1. Dun resorte elástico de constante k = 500 N m -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase
Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO
Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO PROBLEMAS CAMPO ELECTROSTÁTICO 1. Dúas cargas eléctricas de 3 mc están situadas en A(4, 0) e B(-4, 0) (en metros). Calcula: a) O campo eléctrico en C(0,
Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 FÍSICA
Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 Código: 23 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado)
PAU XUÑO 2016 FÍSICA
PAU XUÑO 2016 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución
PROBA DE AVALIACIÓN DO BACHARELATO PARA O ACCESO Á UNIVERSIDADE (ABAU) CONVOCATORIA DE XUÑO Curso
PROBA DE AVALIACIÓN DO BACHARELATO PARA O ACCESO Á UNIVERSIDADE (ABAU) CONVOCATORIA DE XUÑO Curso 2017-2018 Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades
PAU Xuño Código: 25 FÍSICA OPCIÓN A OPCIÓN B
PAU Xuño 00 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución
PAAU (LOXSE) Xuño 2002
PAAU (LOXSE) Xuño 00 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica).
Tema: Enerxía 01/02/06 DEPARTAMENTO DE FÍSICA E QUÍMICA
Tema: Enerxía 01/0/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Nome: 1. Unha caixa de 150 kg descende dende o repouso por un plano inclinado por acción do seu peso. Se a compoñente tanxencial do peso é de 735
Código: 25 PAU XUÑO 2014 FÍSICA OPCIÓN A OPCIÓN B
PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a
Física P.A.U. ELECTOMAGNETISMO 1 ELECTOMAGNETISMO INTODUCIÓN MÉTODO 1. En xeral: Debúxanse as forzas que actúan sobre o sistema. Calcúlase a resultante polo principio de superposición. Aplícase a 2ª lei
PAU Setembro 2010 FÍSICA
PAU Setembro 010 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
Exercicios de Física 02a. Campo Eléctrico
Exercicios de Física 02a. Campo Eléctrico Problemas 1. Dúas cargas eléctricas de 3 mc están situadas en A(4,0) e B( 4,0) (en metros). Caalcula: a) o campo eléctrico en C(0,5) e en D(0,0) b) o potencial
PAU XUÑO Código: 25 FÍSICA OPCIÓN A OPCIÓN B
PAU XUÑO 013 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
Código: 25 MODELO DE EXAME ABAU FÍSICA OPCIÓN A OPCIÓN B
ABAU Código: 25 MODELO DE EXAME FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como
PAAU (LOXSE) Setembro 2004
PAAU (LOXSE) Setembro 004 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou
PAU SETEMBRO 2013 FÍSICA
PAU SETEMBRO 013 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
PAAU (LOXSE) Setembro 2009
PAAU (LOXSE) Setembro 2009 Código: 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada
Resorte: estudio estático e dinámico.
ESTUDIO DO RESORTE (MÉTODOS ESTÁTICO E DINÁMICO ) 1 Resorte: estudio estático e dinámico. 1. INTRODUCCIÓN TEÓRICA. (No libro).. OBXECTIVOS. (No libro). 3. MATERIAL. (No libro). 4. PROCEDEMENTO. A. MÉTODO
PAU Xuño 2011 FÍSICA OPCIÓN A
PAU Xuño 20 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución
Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018 FÍSICA
Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018 Código: 23 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado)
Código: 25 XUÑO 2014 PAU FÍSICA OPCIÓN A OPCIÓN B
PAU Código: 25 XUÑO 204 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución
Exame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema)
Exame tipo A. Proba obxectiva (Valoración: 3 puntos) 1. - Un disco de 10 cm de raio xira cunha velocidade angular de 45 revolucións por minuto. A velocidade lineal dos puntos da periferia do disco será:
PAAU (LOXSE) Setembro 2006
PAAU (LOXSE) Setembro 2006 Código: 22 FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (,5 cada apartado). Cuestións 4 puntos ( cada cuestión, teórica
FISICA 2º BAC 27/01/2007
POBLEMAS 1.- Un corpo de 10 g de masa desprázase cun movemento harmónico simple de 80 Hz de frecuencia e de 1 m de amplitude. Acha: a) A enerxía potencial cando a elongación é igual a 70 cm. b) O módulo
PAU XUÑO 2010 FÍSICA
PAU XUÑO 1 Cóigo: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 caa cuestión, teórica ou practica) Problemas 6 puntos (1 caa apartao) Non se valorará a simple anotación un ítem como solución ás cuestións;
EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS. 3. Cal é o vector de posición da orixe de coordenadas O? Cales son as coordenadas do punto O?
EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS Representa en R os puntos S(2, 2, 2) e T(,, ) 2 Debuxa os puntos M (, 0, 0), M 2 (0,, 0) e M (0, 0, ) e logo traza o vector OM sendo M(,, ) Cal é o vector de
Código: 25 SETEMBRO 2013 PAU FÍSICA OPCIÓN A OPCIÓN B
PAU Código: 25 SETEMBRO 2013 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como
PAAU (LOXSE) Xuño 2006
PAAU (LOXSE) Xuño 006 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica).
Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS
Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS INTRODUCIÓN MÉTODO 1. En xeral: a) Debúxanse as forzas que actúan sobre o sistema. b) Calcúlase cada forza. c) Calcúlase a resultante polo principio
Problemas y cuestiones de electromagnetismo
Problemas y cuestiones de electromagnetismo 1.- Dúas cargas eléctricas puntuais de 2 e -2 µc cada unha están situadas respectivamente en (2,0) e en (-2,0) (en metros). Calcule: a) campo eléctrico en (0,0)
PAU. Código: 25 SETEMBRO 2015 FÍSICA OPCIÓN A OPCIÓN B
PAU Código: 25 SETEMBRO 2015 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como
PROBLEMAS E CUESTIÓNS DE GRAVITACIÓN
PROBLEMAS E CUESTIÓNS DE GRAVITACIÓN "O que sabemos é unha pinga de auga, o que ignoramos é o océano." Isaac Newton 1. Un globo aerostático está cheo de gas Helio cun volume de gas de 5000 m 3. O peso
PAU. Código: 25 SETEMBRO 2012 FÍSICA OPCIÓN A OPCIÓN B
PAU Código: 5 SETEMBRO 01 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teóica ou páctica). Poblemas 6 puntos (1 cada apatado). Non se valoaá a simple anotación dun ítem como solución
INTERACCIÓNS GRAVITATORIA E ELECTROSTÁTICA
INTEACCIÓNS GAVITATOIA E ELECTOSTÁTICA AS LEIS DE KEPLE O astrónomo e matemático Johannes Kepler (1571 1630) enunciou tres leis que describen o movemento planetario a partir do estudo dunha gran cantidade
ÓPTICA- A LUZ Problemas PAAU
ÓPTICA- A LUZ Problemas PAAU XUÑO-96 CUESTION 2. opa Disponse de luz monocromática capaz de extraer electróns dun metal. A medida que medra a lonxitude de onda da luz incidente, a) os electróns emitidos
Código: 25 SETEMBRO 2012 PAU FÍSICA OPCIÓN A OPCIÓN B
PAU Código: 25 SETEMBRO 2012 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teóica ou páctica). Poblemas 6 puntos (1 cada apatado). Non se valoaá a simple anotación dun ítem como solución
PAU XUÑO 2011 MATEMÁTICAS II
PAU XUÑO 2011 MATEMÁTICAS II Código: 26 (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio 2= 3 puntos, exercicio
CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4
CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4 2013 C.2. Se se desexa obter unha imaxe virtual, dereita e menor que o obxecto, úsase: a) un espello convexo; b)unha lente converxente; c) un espello cóncavo.
Exercicios de Física 03a. Vibracións
Exercicios de Física 03a. Vibracións Problemas 1. No sistema da figura, un corpo de 2 kg móvese a 3 m/s sobre un plano horizontal. a) Determina a velocidade do corpo ó comprimirse 10 cm o resorte. b) Cal
Exercicios de Física 04. Óptica
Exercicios de Física 04. Óptica Problemas 1. Unha lente converxente ten unha distancia focal de 50 cm. Calcula a posición do obxecto para que a imaxe sexa: a) real e tres veces maior que o obxecto, b)
Exercicios de Física 01. Gravitación
Exercicios de Física 01. Gravitación Problemas 1. A lúa ten unha masa aproximada de 6,7 10 22 kg e o seu raio é de 1,6 10 6 m. Achar: a) A distancia que recorrerá en 5 s un corpo que cae libremente na
EXERCICIOS DE REFORZO: RECTAS E PLANOS
EXERCICIOS DE REFORZO RECTAS E PLANOS Dada a recta r z a) Determna a ecuacón mplícta do plano π que pasa polo punto P(,, ) e é perpendcular a r Calcula o punto de nterseccón de r a π b) Calcula o punto
PAU SETEMBRO 2014 FÍSICA
PAU SETEMBRO 014 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
Exercicios de Física 02b. Magnetismo
Exercicios de Física 02b. Magnetismo Problemas 1. Determinar el radio de la órbita descrita por un protón que penetra perpendicularmente a un campo magnético uniforme de 10-2 T, después de haber sido acelerado
Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018
Proba de Avaliación do Bacharelato para o Acceso á Universidade Código: 23 XUÑO 2018 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado).
1. Un saltador de trampolín, mentras realiza o seu salto manten constante: A/ O momento de inercia. B/ A velocidad angular. C/ O momento angular.
EXAMEN 1ª AVALIACION FISICA 2º BACHARELATO PROBLEMAS 1. Unha pelota de 2 kg de masa esbara polo tellado que forma un ángulo de 30º coa horizontal e, cando chega ó extremo, queda en libertade cunha velocidade
Tema 3. Espazos métricos. Topoloxía Xeral,
Tema 3. Espazos métricos Topoloxía Xeral, 2017-18 Índice Métricas en R n Métricas no espazo de funcións Bólas e relacións métricas Definición Unha métrica nun conxunto M é unha aplicación d con valores
ELECTROMAGNETISMO Problemas PAAU
ELECTROMAGNETISMO Problemas PAAU XUÑO-96 PROBLEMA 2. op B Dadas as cargas puntuais q 1 = 80 µc, q 2 = -80 µc y q 3 = 40 µc situadas nos puntos A (-2,0), B(2,0) y C(0,2) respectivamente (coordenadas en
FISICA 2º BACH. CURSO 99-00
26/11/99 1. Unha polea de 5 cm de radio leva enrolada unha corda da cal pende un corpo de 20 g, sendo o momento da inercia da polea 2.10-5 kg.m -2. Calcular: a) a aceleración do corpo; b) a enería cinética
PAU XUÑO 2010 MATEMÁTICAS II
PAU XUÑO 010 MATEMÁTICAS II Código: 6 (O alumno/a deber responder só aos eercicios dunha das opcións. Punuación máima dos eercicios de cada opción: eercicio 1= 3 punos, eercicio = 3 punos, eercicio 3 =
Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN
Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS LEIS DE KEPLER 1. O peíodo de otación da Tea aedo do Sol é un ano e o aio da óbita é 1,5 10¹¹ m. Se Xúpite ten un peíodo de apoximadamente 12 anos, e se
Procedementos operatorios de unións non soldadas
Procedementos operatorios de unións non soldadas Técnicas de montaxe de instalacións Ciclo medio de montaxe e mantemento de instalacións frigoríficas 1 de 28 Técnicas de roscado Unha rosca é unha hélice
a) Ao ceibar o resorte describe un MHS, polo tanto correspóndelle unha ecuación para a elongación:
VIBRACIÓNS E ONDAS PROBLEMAS 1. Un sistema cun resorte estirado 0,03 m sóltase en t=0 deixándoo oscilar libremente, co resultado dunha oscilación cada 0, s. Calcula: a) A velocidade do extremo libre ó
Probas de acceso a ciclos formativos de grao superior CSPEB03. Código. Proba de. Física
Probas de acceso a ciclos formativos de grao superior Proba de Física Código CSPEB03 1. Formato da proba A proba consta de cinco problemas e nove cuestións, distribuídas así: Problema 1: dúas cuestións.
Exercicios de Física 03b. Ondas
Exercicios de Física 03b. Ondas Problemas 1. Unha onda unidimensional propágase segundo a ecuación: y = 2 cos 2π (t/4 x/1,6) onde as distancias se miden en metros e o tempo en segundos. Determina: a) A
Física e Química 4º ESO
Física e Química 4º ESO DEPARTAMENTO DE FÍSICA E QUÍMICA Física: Temas 1 ao 6. 01/03/07 Nome: Cuestións 1. Un móbil ten unha aceleración de -2 m/s 2. Explica o que significa isto. 2. No medio dunha tormenta
RADIACTIVIDADE. PROBLEMAS
RADIACTIVIDADE. PROBLEMAS 1. Un detector de radiactividade mide unha velocidade de desintegración de 15 núcleos/minuto. Sabemos que o tempo de semidesintegración é de 0 min. Calcula: a) A constante de
b) Segundo os datos do problema, en tres anos queda a metade de átomos, logo ese é o tempo de semidesintegración.
FÍSICA MODERNA FÍSICA NUCLEAR. PROBLEMAS 1. Un detector de radioactividade mide unha velocidade de desintegración de 15 núcleos min -1. Sabemos que o tempo de semidesintegración é de 0 min. Calcula: a)
Física P.A.U. ÓPTICA 1 ÓPTICA
íica P.A.U. ÓPTICA ÓPTICA INTRODUCIÓN MÉTODO. En xeral: Debúxae un equema co raio. Compárae o reultado do cálculo co equema. 2. No problema de lente: Trázae un raio paralelo ao eixe óptico que ao chegar
Materiais e instrumentos que se poden empregar durante a proba
1. Formato da proba A proba consta de cinco problemas e nove cuestións, distribuídas así: Problema 1: dúas cuestións. Problema 2: tres cuestións. Problema 3: dúas cuestións Problema 4: dúas cuestión. Problema
ESTRUTURA ATÓMICA E CLASIFICACIÓN PERIÓDICA DOS ELEMENTOS
Química P.A.U. ESTRUTURA ATÓMICA E CLASIFICACIÓN PERIÓDICA DOS ELEMENTOS ESTRUTURA ATÓMICA E CLASIFICACIÓN PERIÓDICA DOS ELEMENTOS CUESTIÓNS NÚMEROS CUÁNTICOS. a) Indique o significado dos números cuánticos
A proba constará de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta.
Páxina 1 de 9 1. Formato da proba Formato proba constará de vinte cuestións tipo test. s cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Puntuación Puntuación: 0.5
ENERXÍA, TRABALLO E POTENCIA
NRXÍA, TRABALLO POTNCIA NRXÍA Pódese definir enerxía coo a capacidade que ten un corpo para realizar transforacións nel eso ou noutros corpos. A unidade de enerxía no SI é o Joule (J) pero é frecuente
Código: 25 XUÑO 2016 PAU FÍSICA OPCIÓN A OPCIÓN B
PAU Código: 5 XUÑO 016 FÍSICA Puntuación máxima: Cuestiones 4 puntos (1 cada cuestión, teórica o práctica). Problemas 6 puntos (1 cada apartado). No se valorará la simple anotación de un ítem cómo solución
XEOMETRÍA NO ESPAZO. - Se dun vector se coñecen a orixe, o módulo, a dirección e o sentido, este está perfectamente determinado no espazo.
XEOMETRÍA NO ESPAZO Vectores fixos Dos puntos do espazo, A e B, determinan o vector fixo AB, sendo o punto A a orixe e o punto B o extremo, é dicir, un vector no espazo é calquera segmento orientado que
CALCULO DA CONSTANTE ELASTICA DUN RESORTE
11 IES A CAÑIZA Traballo de Física CALCULO DA CONSTANTE ELASTICA DUN RESORTE Alumno: Carlos Fidalgo Giráldez Profesor: Enric Ripoll Mira Febrero 2015 1. Obxectivos O obxectivo da seguinte practica é comprobar,
PAU XUÑO 2012 MATEMÁTICAS II
PAU Código: 6 XUÑO 01 MATEMÁTICAS II (Responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio = 3 puntos, exercicio 3= puntos, exercicio
MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos)
21 MATEMÁTICAS (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 Dada a matriz a) Calcula os valores do parámetro m para os que A ten inversa.
PROBLEMAS CUESTIONS 1.
PROBLMAS 1. Dende un cantil dispárase horizontalmente un proectil de 2 kg cunha velocidade inicial de 100 m/s. Se cando o proectil choca contra o mar a súa velocidade é de 108 m/s, calcular: a/ A enería
IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes
IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes 1.- Distancia entre dous puntos Se A e B son dous puntos do espazo, defínese a distancia entre A e B como o módulo
ln x, d) y = (3x 5 5x 2 + 7) 8 x
EXERCICIOS AUTOAVALIABLES: CÁLCULO DIFERENCIAL. Deriva: a) y 7 6 + 5, b) y e, c) y e) y 7 ( 5 ), f) y ln, d) y ( 5 5 + 7) 8 n e ln, g) y, h) y n. Usando a derivada da función inversa, demostra que: a)
DINAMICA DE TRASLACION
DINAMICA DE TRASLACION 1.-CINEMATICA ELEMENTOS DO MOVEMENTO: Móvil, Sistema de Referencia e Traxectoria MAGNITUDES CINEMATICAS: - Vector de Posición: r= xi + yj + zk - Vector desplazamento: r= xi + yj
LUGARES XEOMÉTRICOS. CÓNICAS
LUGARES XEOMÉTRICOS. CÓNICAS Páxina REFLEXIONA E RESOLVE Cónicas abertas: parábolas e hipérboles Completa a seguinte táboa, na que a é o ángulo que forman as xeratrices co eixe, e, da cónica e b o ángulo
PAU. Código: 25 XUÑO 2013 FÍSICA OPCIÓN A OPCIÓN B
PAU Código: 25 XUÑO 2013 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teóica ou páctica). Poblemas 6 puntos (1 cada apatado). Non se valoaá a simple anotación dun ítem como solución ás
A circunferencia e o círculo
10 A circunferencia e o círculo Obxectivos Nesta quincena aprenderás a: Identificar os diferentes elementos presentes na circunferencia e o círculo. Coñecer as posicións relativas de puntos, rectas e circunferencias.
Tema 4 Magnetismo. 4-5 Lei de Ampere. Campo magnético creado por un solenoide. 4-1 Magnetismo. Experiencia de Oersted
Tema 4 Magnetismo 4-1 Magnetismo. Experiencia de Oersted 4-2 Lei de Lorentz. Definición de B. Movemento dunha carga nun campo magnético. 4-3 Forza exercida sobre unha corrente rectilínea 4-4 Lei de Biot
Física cuántica. Relatividade especial
Tema 8 Física cuántica. Relatividade especial Evolución das ideas acerca da natureza da luz Experimento de Young (da dobre fenda Dualidade onda-corpúsculo Principio de indeterminación de Heisemberg Efecto
As Mareas INDICE. 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación
As Mareas INDICE 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación Introducción A marea é a variación do nivel da superficie libre
Tema 6 Ondas Estudio cualitativo de interferencias, difracción, absorción e polarización. 6-1 Movemento ondulatorio.
Tema 6 Ondas 6-1 Movemento ondulatorio. Clases de ondas 6- Ondas harmónicas. Ecuación de ondas unidimensional 6-3 Enerxía e intensidade das ondas harmónicas 6-4 Principio de Huygens: reflexión e refracción
Química P.A.U. ÁCIDOS E BASES 1 ÁCIDOS E BASES
Química P.A.U. ÁCIDOS E BASES 1 ÁCIDOS E BASES PROBLEMAS ÁCIDO/BASE DÉBIL 1. Unha disolución de amonuíaco de concentración 0,01 mol/dm³ está ionizada nun 4,2 %. a) Escribe a reacción de disociación e calcula