PAAU (LOXSE) Setembro 2009
|
|
- Θαδδαῖος Παπαστεφάνου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 PAAU (LOXSE) Setembro 2009 Código: 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada apartado). Cuestións 4 puntos ( cada cuestión, teórica ou práctica) Non se valorará a simple anotación dun ítem como solución ás cuestións teóricas; han de ser razoadas. Pode usarse calculadora sempre que non sexa programable nin memorice texto. BLOQUE : GRAVITACIÓN (Elixe un problema) (puntuación 3 p).- Tres masas de 00 kg están situadas nos puntos A(0, 0), B(2, 0), C(, 3) (en metros). Calcula: a) O campo gravitatorio creado por estas masas no punto D(, 0). b) A enerxía potencial que tería unha masa de 5 kg situada en D. c) Quen tería que realizar traballo para trasladar esa masa desde D ó infinito, o campo ou forzas externas? Dato: G = 6, N m2 kg 2.- Deséxase poñer en órbita un satélite de 800 kg que xire a razón de 2,5 voltas por día. Calcula: a) O período do satélite. b) A distancia do satélite á superficie terrestre. c) A enerxía cinética do satélite nesa órbita. Datos: G = 6, N m 2 kg-2 ; R T = km; M T = 5, kg BLOQUE 2: ELECTROMAGNETISMO (Elixe unha cuestión) (razoa a resposta) (puntuación p).- Dadas dúas esferas condutoras cargadas e de diferente raio, con cargas Q A e Q B, se se poñen en contacto: A) Iguálanse as cargas nas dúas esferas. B) Iguálanse os potenciais das esferas. C) Non ocorre nada. 2.- Unha partícula cargada e con velocidade u, introdúcese nunha rexión do espazo onde hai un campo eléctrico e un campo magnético constantes. Se a partícula se move con movemento rectilíneo uniforme débese a que os dous campos: A) Son da mesma dirección e sentido. B) Son da mesma dirección e sentido contrario. C) Son perpendiculares entre si. BLOQUE 3: VIBRACIÓNS E ONDAS (Elixe unha cuestión) (razoa a resposta) (puntuación p).- Se unha onda atravesa unha abertura de tamaño comparable á súa lonxitude de onda: A) Refráctase. B) Polarízase. C) Difráctase. (Debuxa a marcha dos raios). 2.- Cando unha onda harmónica plana se propaga no espazo, a súa enerxía é proporcional: A) A /f (f é a frecuencia). B) Ao cadrado da amplitude A 2. C) A /r (r é a distancia ao foco emisor) BLOQUE 4: LUZ (Elixe un problema) (puntuación 3 p).- Un obxecto de,5 cm de altura está situado a 5 cm dun espello esférico convexo de raio 20 cm, determina a posición, tamaño e natureza da imaxe: A) Graficamente. B) Analiticamente. C) Pódense obter imaxes reais cun espello convexo? 2.- Un obxecto de,5 cm de altura sitúase a 5 cm dunha lente diverxente que ten unha focal de 0 cm; determina a posición, tamaño e natureza da imaxe: A) Graficamente. B) Analiticamente. C) Pódense obter imaxes reais cunha lente diverxente? BLOQUE 5: FÍSICA MODERNA (Elixe unha cuestión) (razoa a resposta) (puntuación p).- Para producir efecto fotoeléctrico non se usa luz visible, senón ultravioleta, e isto é porque a luz UV: A) Quenta máis a superficie metálica. B) Ten maior frecuencia. C) Ten maior lonxitude de onda. 2.- Unha masa de átomos radioactivos tarda tres anos en reducir a súa masa ó 90% da masa orixinal. Cantos anos tardará en reducirse ó 8 % da masa orixinal?: A) Seis. B) Máis de nove. C) Tres. BLOQUE 6. PRÁCTICA (puntuación p) Explica brevemente como mides no laboratorio a constante elástica dun resorte polo método dinámico.
2 Solucións BLOQUE : GRAVITACIÓN.- Tres masas de 00 kg están situadas nos puntos A(0, 0), B(2, 0), C(, 3) (en metros). Calcula: a) O campo gravitatorio creado por estas masas no punto D(, 0). b) A enerxía potencial que tería unha masa de 5 kg situada en D. c) Quen tería que realizar traballo para trasladar esa masa desde D ao infinito, o campo ou forzas externas? Dato: G = 6, N m2 kg Rta.: a) g D = 2, j m/s 2 ; b) E P = -8, J; c) externas Datos Cifras significativas: 3 Masa de cada un dos corpos M A = M B = M C = M = 00 kg Vector de posición da masa en A r A = (0,00, 0,00) m Vector de posición da masa en B r B = (2,00, 0,00) m Vector de posición da masa en C r C = (,00,,73) m Vector de posición do punto D r D = (,00, 0,00) m Masa no punto D m D = 5,00 kg Constante da gravitación universal G = 6, N m2 kg Incógnitas Vector campo gravitatorio no punto D g D Enerxía potencial gravitatoria no punto D E p D Ecuacións Lei de Newton da gravitación universal F = G M m u (aplicada á forza que exerce cada masa puntual sobre cada unha das outras) r 2 r Intensidade do campo gravitatorio creado por unha masa M nun punto que dista dela unha distancia r F g= m = G M r u 2 r Principio de superposición g = g i Potencial gravitatorio nun punto debido a unha masa M que dista r do punto V = G M r Enerxía potencial gravitatoria (referida ao infinito) E p =m V = G M m r C a) As distancias desde os puntos A, B e C a D son: r AD = r BD =,00 m r CD =,73 m A intensidade de campo gravitatorio g A no punto D creado pola masa situada en A é: g A = 6,67 0 [N m 2 kg 2 ] 00 [ kg] (,00 [ m]) 2 i = 6, i m/s 2 Por simetría, a intensidade de campo gravitatorio g B no punto D creado pola masa situada en B é: g B = 6, i m/s 2 A intensidade de campo gravitatorio g C no punto D creado pola masa situada en C é: g C = 6,67 0 [ N m 2 kg 2 ] 00 [ kg] (,73 [ m]) 2 ( j)=2, j m/ s 2 O valor da intensidade do campo gravitatorio g no punto D(, 0) será a suma vectorial das intensidades de campo gravitatorio creadas por cada unha das masas situadas nos outros vértices (Principio de superposición). g D = g A + g B + g C = 2, j m/s 2 A g A g C D g B B
3 b) A enerxía potencial gravitatoria dunha masa m situada nun punto, debida á influencia de varias masas M i, cada unha delas a unha distancia r i do punto, é a suma das enerxías potenciais de cada unha das interaccións da masa m con cada unha das masas M i. Pero tamén se pode calcular o potencial gravitatorio do punto onde se atopa a masa m e calcular a enerxía potencial dela da relación: E p = m V O potencial gravitatorio nun punto, debido á influencia de varias masas M i, cada unha delas a unha distancia r i do punto, é a suma dos potenciais individuais. V = G M i r i Se todas as masas Mi son iguais, (M = Mi) entón resulta = G M i r i e a expresión da enerxía potencial sería V = G M r i E p = G M m r i E p = 6,67 0 [ N m 2 kg 2 2 ] 00 [kg] 5,00 [kg]( [ m] +,73 [ m]) = 8, J c) O traballo da resultante das forzas gravitatorias cando se leva a masa en D ata o infinito, sen variación de enerxía cinética (suponse), é igual á diferencia (cambiada de signo) de enerxía potencial que posúe a masa de 5,00 kg neses dous puntos. Por definición o potencial (e a enerxía potencial) no infinito é nula, polo que W D = -ΔE P = -(E p - E p D ) = E p D E p = E p D = -8, J Xa que logo o traballo das forzas gravitatorias é negativo, (a forza do campo oponse ao desprazamento cara ao infinito) e o traballo deberá facelo algunha forza externa. 2.- Deséxase poñer en órbita un satélite de 800 kg que xire a razón de 2,5 voltas por día. Calcula: a) O período do satélite b) A distancia do satélite á superficie terrestre. c) A enerxía cinética do satélite nesa órbita. Datos: G = 6, N m 2 kg -2 ; R T = km; M T = 5, kg Rta.: a) T =,92 h; b) h = 470 km; c) E C = 4, J Datos Cifras significativas: 3 Radio da Terra R T = km = 6, m Frecuencia de xiro do satélite na órbita arredor da Terra. f = 2,5 voltas/día =, Hz Constante da gravitación universal G = 6, N m2 kg Masa da Terra M T = 5, kg Masa do satélite m = 800 kg Incógnitas Período do satélite T Distancia do satélite á superficie terrestre (altura de órbita) h Enerxía cinética do satélite na órbita E C Outros símbolos Radio da órbita Ecuacións Lei de Newton da gravitación universal F (aplicada á forza que exerce a Terra esférica sobre o satélite puntual) G =G M Tm 2 Aceleración normal (nun movemento circular de radio r) a N = v 2 r 2ª lei de Newton da Dinámica F = m a
4 Datos Cifras significativas: 3 Radio da Terra R T = km = 6, m Velocidade nun movemento circular uniforme de radio r (M.C.U.) v= 2π r T Enerxía cinética E C = ½ m v 2 a) O período é a inversa da frecuencia: T = f =, [ Hz] =6,9 03 s=,92 h b) Como a única forza sobre do satélite a ter en conta é a forza gravitatoria que exerce a Terra, F = F G m a = F G O satélite describe unha traxectoria aproximadamente circular con velocidade de valor constante, polo que a aceleración só ten compoñente normal a N, m v2 =G M m T 2 v 2 =G M T =G M T T 2 2 = 3 G M T T = 3 6,67 0 [ N m 2 kg 2 ] 5, [kg] (6,9 0 3 [s]) 2 =7, m 4 π 2 4 π 2 A altura será: h = R T = 7, [m] 6, [m] =, m = 470 km c) A velocidade do satélite na súa órbita é: A enerxía cinética é: 2π r v= T = 2π 7,86 06 [ m] =7,3 0 3 m/s 6,9 0 3 [s] E c = ½ m v 2 = [, [kg] (7,3 0 3 [m/s]) 2 ] / 2= 4, J BLOQUE 2: ELECTROMAGNETISMO.- Se se poñen en contacto dúas esferas condutoras de diferente raio, con cargas Q A e Q B: a) Iguálanse as cargas nas dúas esferas. b) Iguálanse os potenciais das esferas. c) Non ocorre nada. B Cando dúas esferas condutoras cargadas póñense en contacto eléctrico as cargas desprázanse desde a esfera que ten maior potencial cara á do menor potencial ata que os seus potenciais fanse iguais. As cargas eléctricas positivas desprázanse sempre no sentido dos potenciais decrecentes. Supondo que o sistema de dúas esferas está illado do exterior, a carga eléctrica deberá conservarse. Polo tanto poderíase calcular a carga final q' de cada esfera resolvendo o sistema de ecuacións:
5 q' + q' 2 = q + q 2 V ' =K q' R =K q' 2 R 2 =V ' Unha partícula cargada e con velocidade u, introdúcese nunha rexión do espazo onde hai un campo eléctrico e un campo magnético constantes. Se a partícula se move con movemento rectilíneo uniforme débese a que os dous campos: a) Son da mesma dirección e sentido. b) Son da mesma dirección e sentido contrario. c) Son perpendiculares entre si. C A forza F sobre unha carga eléctrica q en movemento segue a lei de Lorentz F = q (u B) + q E na que u é a velocidade da carga, B a indución magnética (intensidade do campo magnético) e E a intensidade do campo electrostático. Mentres que a dirección da forza do campo electrostático é paralela a el, a do campo magnético é perpendicular, sempre que a dirección do campo non sexa paralela á da velocidade. Se a partícula cargada non se desvía pode ser porque: - hai un campo magnético e un campo electrostático paralelos á dirección de movemento das partículas. - hai un campo magnético e un campo electrostático perpendiculares á dirección de movemento das partículas e perpendiculares entre si, de xeito que q (u B) + q E = 0, ou sexa u B = E Se a dirección da velocidade é a do sentido positivo do eixo X, u = u i, a do campo magnético é a do sentido positivo do eixo Y, B = B j e a do campo electrostático é a do sentido negativo do eixo Z, E = E k, e se cumpre que u B = E, entón F = q (u B) + q E = q (u i B j) + q ( E k) = q (u B k E k) = q (E k E k) = 0 Este principio aplícase no selector de velocidades do espectrógrafo de masas. BLOQUE 3: VIBRACIÓNS E ONDAS.- Se unha onda atravesa unha abertura de tamaño comparable á súa lonxitude de onda: a) Refráctase. b) Polarízase c) Difráctase. (Debuxa a marcha dos raios). Prodúcese difracción cando unha onda «ábrese» ao atravesar unha abertura de tamaño comparable á súa lonxitude de onda. É un fenómeno característico das ondas. Pode representarse como na figura para unha onda plana. λ 2.- Cando unha onda harmónica plana se propaga no espazo, a súa enerxía é proporcional: a) A /f (f é a frecuencia) b) Ao cadrado da amplitude A 2. c) A /r (r é a distancia ao foco emisor) C
6 A enerxía que transporta unha onda material harmónica unidimensional é a suma da cinética e de potencial: E = E c + E p = ½ m v 2 + ½ k x 2 = ½ k A 2 = ½ m v 2 máx A ecuación da onda harmónica unidimensional é y = A cos(ω t k x) Derivando con respecto ao tempo: v = d y / d t = A ω sen (ω t k x) que é máxima cando sen(ω t k x) =, v máx = A ω Substituíndo na ecuación da enerxía: E = ½ m v 2 máx = ½ m A 2 ω 2 Tendo en conta que a pulsación ω ou frecuencia angular e proporcional á frecuencia f: ω = 2 π f E = ½ m A 2 ω 2 = ½ m A 2 (2 π f) 2 = 2 π 2 m A 2 f 2 A enerxía que transporta unha onda é proporcional aos cadrados da frecuencia e da amplitude. BLOQUE 4: LUZ.- Un obxecto de,5 cm de altura está situado a 5 cm dun espello esférico convexo de raio 20 cm, determina a posición, tamaño e natureza da imaxe: a) Graficamente. b) Analiticamente. c) Pódense obter imaxes reais cun espello convexo? Rta.: b) s' = +6,0 cm; y' = 6,0 mm Datos (convenio de signos DIN) Cifras significativas: 2 Radio de curvatura do espello convexo R = +0,20 m Tamaño do obxecto y =,5 cm = 0,05 m Posición do obxecto s = -0,5 m Incógnitas Posición da imaxe s' Tamaño da imaxe y' Outros símbolos Distancia focal do espello f Ecuacións Relación entre a posición da imaxe e a do obxecto nos espellos s' s = f Aumento lateral nos espellos A L = y' y = s' s Relación entre a distancia focal e o radio de curvatura f = R / 2 a) b) s ' + 0,5 [m] = 0,0 [m] A imaxe atópase a 6,0 cm á dereita do espello. A imaxe é virtual, dereita e menor. s' = 0,060 m A L = -s' / s = -0,060 [m] / -0,5 [m] = 0,40 y' = A L y = 0,40,5 cm = 0,60 cm = 6,0 mm Análise: O resultado do cálculo coincide co do debuxo. c) As imaxes producidas por espellos convexos son sempre virtuais. Da ecuación dos espellos: s' s = f O V I F' C s s' f R
7 s ' = f s s' = f s Polos criterio de signos s < 0, e nos espellos convexos f > 0, polo que f s 0 Polo tanto, s' > 0 sempre. A imaxe vaise formar á dereita do espello e vai ser virtual (os raios de luz non atravesan os espellos) 2.- Un obxecto de,5 cm de altura sitúase a 5 cm dunha lente diverxente que ten unha focal de 0 cm; determina a posición, tamaño e natureza da imaxe: a) Graficamente. b) Analiticamente. c) Pódense obter imaxes reais cunha lente diverxente? Rta.: b) s' = +6,0 cm; y' = 6,0 mm Datos (convenio de signos DIN) Cifras significativas: 2 Tamaño do obxecto y =,5 cm = 0,05 m Posición do obxecto s = -5 cm = -0,5 m Distancia focal da lente f = -0 cm = -0,0 m Incógnitas Posición da imaxe s' Tamaño da imaxe y' Outros símbolos Aumento lateral A L Ecuacións Relación entre a posición da imaxe e a do obxecto nas lentes s' s = f ' Aumento lateral nas lentes A L = y' y = s' s a) b) Para unha lente diverxente, f = 0,0 m: s ' 0,5 [ m] = 0,0 [ m] s = 0,060 m y ' [ m] = 0,060 0,005 [ m] 0,5 [m] y = 0,0060 m = 6,0 mm Análise: A imaxe é virtual xa que s' é negativa, é dicir á esquerda de lente que é a zona onde se forman as imaxes virtuais nas lentes. O signo positivo do tamaño indica que a imaxe é dereita. Os resultados numéricos están en consonancia co debuxo. c) As imaxes producidas polas lentes diverxentes son sempre virtuais. Da ecuación das lentes: s ' s = f F s s' F'
8 s ' = f s s' = f s Polos criterio de signos s < 0, e nas lentes diverxentes f < 0, polo que f s 0 Polo tanto, s' < 0 sempre. A imaxe vaise formar á esquerda da lente e vai ser virtual (os raios de luz atravesan as lentes e forman as imaxes reais á dereita delas) BLOQUE 5: FÍSICA MODERNA.- Para producir efecto fotoeléctrico non se usa luz visible, senón ultravioleta, e isto é porque a luz UV. A) Quenta máis a superficie metálica. B) Ten maior frecuencia. C) Ten maior lonxitude de onda. B Unha das leis experimentais do efecto fotoeléctrico di que, empregando luz monocromática, só se produce efecto fotoeléctrico se a frecuencia da luz supera un valor mínimo, chamado frecuencia limiar. Como a luz ultravioleta ten maior frecuencia que a luz visible, é máis seguro que se produza efecto fotoeléctrico con luz ultravioleta que con luz visible, aínda que existen metais empregados como cátodos en células fotoeléctricas nos que luz visible, de alta frecuencia como azul ou violeta, pode facelas funcionar. 2.- Unha masa de átomos radioactivos tarda tres anos en reducir a súa masa ó 90% da masa orixinal. Cantos anos tardará en reducirse ó 8 % da masa orixinal?: A) Seis. B) Máis de nove. C) Tres. A O período de semidesintegración dunha sustancia radioactiva é o tempo que transcorre ata que só queda a metade da mostra orixinal. É un valor constante. A ecuación que da a cantidade N de substancia que queda ao cabo dun tempo t é: N =N 0 e λt na que λ é a constante de desintegración radioactiva. Escribindo esta ecuación con logaritmos e substituíndo os datos pódese calcular a constante λ: Co dato do 8 % despexamos t e resulta: t= ln N = ln N 0 - λ t ln 0,90 N 0 = ln N 0 - λ 3 ln 0,90 = - λ 3 ln 0,90 λ = =0,05 ano 3 ln 0,8 λ ln 0,8 = 0,05 ano =6 anos Tamén poderíase resolver decatándose de que o 8 % da mostra orixinal é o 90 % do que quedaba aos 3 anos. Polo tanto, terían que transcorrer 3 anos máis.
9 BLOQUE 6. PRÁCTICA Explica brevemente como mides no laboratorio a constante elástica dun resorte polo método dinámico. Na medida da constante elástica dun resorte polo método dinámico tírase cara abaixo dunha masa de valor coñecido que colga dun resorte e déixase oscilar, medindo o tempo de varias oscilacións (0, por exemplo). Calcúlase o período dividindo o tempo entre o número de oscilacións. Repítese o procedemento para outras masas coñecidas. Da ecuación do período do resorte, que pode escribirse como: T =2 m k T 2 = 4 π 2 m / k determínase o valor de constante. No método gráfico represéntanse os cadrados dos períodos no eixe de ordenadas fronte ás masas no de abscisas. A gráfica debería dar unha liña recta de pendente: pendente estudio dinámico = p d =ΔT 2 / Δm = 4 π 2 / k Determinando a pendente, pódese calcular o valor de constante: k = 4 π 2 / p d No método analítico calcúlase a constante do resorte k para cada masa e áchase o valor medio. Este método ten o problema de que se a masa do resorte non é desprezable fronte á masa pendurada, os resultados levan un erro sistemático. Cuestións e problemas das Probas de Acceso á Universidade (P.A.U.) en Galicia. Respostas e composición de Alfonso J. Barbadillo Marán, alfbar@bigfoot.com Algunhas ecuacións construíronse coas macros da extensión CLC09 de Charles Lalanne-Cassou. A tradución ao/desde o galego realizouse coa axuda de traducindote, de Óscar Hermida López. Algúns cálculos fixéronse cunha folla de cálculo OpenOffice (ou LibreOffice) feita por Alfonso J. Barbadillo Marán.
Código: 25 MODELO DE EXAME ABAU FÍSICA OPCIÓN A OPCIÓN B
ABAU Código: 25 MODELO DE EXAME FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como
Διαβάστε περισσότεραFÍSICA. = 4π 10-7 (S.I.)).
22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas, 6 puntos (1 cada apartado). Cuestións, 4 puntos
Διαβάστε περισσότεραFísica P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a
Física P.A.U. ELECTOMAGNETISMO 1 ELECTOMAGNETISMO INTODUCIÓN MÉTODO 1. En xeral: Debúxanse as forzas que actúan sobre o sistema. Calcúlase a resultante polo principio de superposición. Aplícase a 2ª lei
Διαβάστε περισσότεραCódigo: 25 PAU XUÑO 2012 FÍSICA OPCIÓN A OPCIÓN B
PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
Διαβάστε περισσότεραCódigo: 25 PAU XUÑO 2014 FÍSICA OPCIÓN A OPCIÓN B
PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
Διαβάστε περισσότεραPAU SETEMBRO 2013 FÍSICA
PAU SETEMBRO 013 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
Διαβάστε περισσότεραFísica P.A.U. ÓPTICA 1 ÓPTICA
Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un raio de luz de frecuencia 5 10 14 Hz incide, cun ángulo de incidencia de 30, sobre unha lámina de vidro de caras plano-paralelas de espesor
Διαβάστε περισσότεραFÍSICA. = 9, kg) = -1, C; m e
22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestións 4 puntos (1
Διαβάστε περισσότεραPAAU (LOXSE) Setembro 2006
PAAU (LOXSE) Setembro 2006 Código: 22 FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (,5 cada apartado). Cuestións 4 puntos ( cada cuestión, teórica
Διαβάστε περισσότεραPAU Xuño Código: 25 FÍSICA OPCIÓN A OPCIÓN B
PAU Xuño 00 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución
Διαβάστε περισσότεραPAAU (LOXSE) Xuño 2002
PAAU (LOXSE) Xuño 00 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica).
Διαβάστε περισσότεραCódigo: 25 XUÑO 2012 PAU FÍSICA OPCIÓN A OPCIÓN B
PAU Código: 25 XUÑO 2012 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
Διαβάστε περισσότεραCódigo: 25 XUÑO 2014 PAU FÍSICA OPCIÓN A OPCIÓN B
PAU Código: 25 XUÑO 204 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución
Διαβάστε περισσότεραTema: Enerxía 01/02/06 DEPARTAMENTO DE FÍSICA E QUÍMICA
Tema: Enerxía 01/0/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Nome: 1. Unha caixa de 150 kg descende dende o repouso por un plano inclinado por acción do seu peso. Se a compoñente tanxencial do peso é de 735
Διαβάστε περισσότεραFísica P.A.U. ÓPTICA 1 ÓPTICA
Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un raio de luz de frecuencia 5 10¹⁴ Hz incide cun ángulo de incidencia de 30 sobre unha lámina de vidro de caras plano-paralelas de espesor 10
Διαβάστε περισσότεραPAAU (LOXSE) Xuño 2006
PAAU (LOXSE) Xuño 006 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica).
Διαβάστε περισσότεραAno 2018 FÍSICA. SOL:a...máx. 1,00 Un son grave ten baixa frecuencia, polo que a súa lonxitude de onda é maior.
ABAU CONVOCAT ORIA DE SET EMBRO Ano 2018 CRIT ERIOS DE AVALI ACIÓN FÍSICA (Cód. 23) Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades ou con unidades incorrectas...
Διαβάστε περισσότεραFísica P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS
Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS INTRODUCIÓN MÉTODO 1. En xeral: a) Debúxanse as forzas que actúan sobre o sistema. b) Calcúlase cada forza. c) Calcúlase a resultante polo principio
Διαβάστε περισσότεραPAU XUÑO 2012 FÍSICA
PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución
Διαβάστε περισσότεραCódigo: 25 SETEMBRO 2013 PAU FÍSICA OPCIÓN A OPCIÓN B
PAU Código: 25 SETEMBRO 2013 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como
Διαβάστε περισσότεραPAU Xuño 2011 FÍSICA OPCIÓN A
PAU Xuño 20 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución
Διαβάστε περισσότεραPAU XUÑO Código: 25 FÍSICA OPCIÓN A OPCIÓN B
PAU XUÑO 013 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
Διαβάστε περισσότεραPAU XUÑO 2011 FÍSICA
PAU XUÑO 2011 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
Διαβάστε περισσότεραFÍSICA. ) xiran arredor da Terra con órbitas estables de diferente raio sendo r A. > m B
ÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada apartado). Cuestións 4 puntos ( cada
Διαβάστε περισσότερα24/10/06 MOVEMENTO HARMÓNICO SIMPLE
NOME: CALIFICACIÓN PROBLEMAS (6 puntos) 24/10/06 MOVEMENTO HARMÓNICO SIMPLE 1. Dun resorte elástico de constante k= 500 Nm -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase
Διαβάστε περισσότεραEXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO
Física Exercicios de Selectividade Páxina 1 / 9 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 16-17 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) PROBLEMA. Xuño 2016. A nave espacial Discovery,
Διαβάστε περισσότεραPAAU (LOXSE) Setembro 2004
PAAU (LOXSE) Setembro 004 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou
Διαβάστε περισσότεραPAU Setembro 2010 FÍSICA
PAU Setembro 010 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
Διαβάστε περισσότεραEXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO
Física Exercicios de Selectividade Páxina 1 / 8 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 15-16 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) CUESTIÓN.- Un satélite artificial de masa m que
Διαβάστε περισσότεραFísica P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO
Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO PROBLEMAS CAMPO ELECTROSTÁTICO 1. Dúas cargas eléctricas de 3 mc están situadas en A(4, 0) e B(-4, 0) (en metros). Calcula: a) O campo eléctrico en C(0,
Διαβάστε περισσότεραFÍSICA OPCIÓN 1. ; calcula: a) o período de rotación do satélite, b) o peso do satélite na órbita. (Datos R T. = 9,80 m/s 2 ).
22 Elixir e desenrolar unha das dúas opcións propostas. FÍSICA Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple
Διαβάστε περισσότεραPAU SETEMBRO 2014 FÍSICA
PAU SETEMBRO 014 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
Διαβάστε περισσότεραExame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema)
Exame tipo A. Proba obxectiva (Valoración: 3 puntos) 1. - Un disco de 10 cm de raio xira cunha velocidade angular de 45 revolucións por minuto. A velocidade lineal dos puntos da periferia do disco será:
Διαβάστε περισσότεραFísica P.A.U. GRAVITACIÓN 1 GRAVITACIÓN
Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS SATÉLITES 1. O período de rotación da Terra arredor del Sol é un año e o radio da órbita é 1,5 10 11 m. Se Xúpiter ten un período de aproximadamente 12
Διαβάστε περισσότεραFísica P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS
Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS PROBLEMAS M.H.S.. 1. Dun resorte elástico de constante k = 500 N m -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase
Διαβάστε περισσότεραFÍSICA. 2.- Cando se bombardea nitróxeno 14 7 N con partículas alfa xérase o isótopo 17 8O e outras partículas. A
22 FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple
Διαβάστε περισσότεραEXERCICIOS DE REFORZO: RECTAS E PLANOS
EXERCICIOS DE REFORZO RECTAS E PLANOS Dada a recta r z a) Determna a ecuacón mplícta do plano π que pasa polo punto P(,, ) e é perpendcular a r Calcula o punto de nterseccón de r a π b) Calcula o punto
Διαβάστε περισσότεραEXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS. 3. Cal é o vector de posición da orixe de coordenadas O? Cales son as coordenadas do punto O?
EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS Representa en R os puntos S(2, 2, 2) e T(,, ) 2 Debuxa os puntos M (, 0, 0), M 2 (0,, 0) e M (0, 0, ) e logo traza o vector OM sendo M(,, ) Cal é o vector de
Διαβάστε περισσότεραPAU XUÑO 2014 FÍSICA
PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica), problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución
Διαβάστε περισσότεραEXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO
Física Exercicios de Selectividade Páxina 1 / 10 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 17-18 http://ciug.gal/exames.php TEMA 1. GRAVITACIÓN. 1) PROBLEMA. Xuño 2017. Un astronauta está no interior
Διαβάστε περισσότεραExercicios de Física 02a. Campo Eléctrico
Exercicios de Física 02a. Campo Eléctrico Problemas 1. Dúas cargas eléctricas de 3 mc están situadas en A(4,0) e B( 4,0) (en metros). Caalcula: a) o campo eléctrico en C(0,5) e en D(0,0) b) o potencial
Διαβάστε περισσότεραFISICA 2º BAC 27/01/2007
POBLEMAS 1.- Un corpo de 10 g de masa desprázase cun movemento harmónico simple de 80 Hz de frecuencia e de 1 m de amplitude. Acha: a) A enerxía potencial cando a elongación é igual a 70 cm. b) O módulo
Διαβάστε περισσότεραINTERACCIÓNS GRAVITATORIA E ELECTROSTÁTICA
INTEACCIÓNS GAVITATOIA E ELECTOSTÁTICA AS LEIS DE KEPLE O astrónomo e matemático Johannes Kepler (1571 1630) enunciou tres leis que describen o movemento planetario a partir do estudo dunha gran cantidade
Διαβάστε περισσότεραProba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018
Proba de Avaliación do Bacharelato para o Acceso á Universidade Código: 23 XUÑO 2018 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado).
Διαβάστε περισσότεραÓPTICA- A LUZ Problemas PAAU
ÓPTICA- A LUZ Problemas PAAU XUÑO-96 CUESTION 2. opa Disponse de luz monocromática capaz de extraer electróns dun metal. A medida que medra a lonxitude de onda da luz incidente, a) os electróns emitidos
Διαβάστε περισσότεραProblemas y cuestiones de electromagnetismo
Problemas y cuestiones de electromagnetismo 1.- Dúas cargas eléctricas puntuais de 2 e -2 µc cada unha están situadas respectivamente en (2,0) e en (-2,0) (en metros). Calcule: a) campo eléctrico en (0,0)
Διαβάστε περισσότεραEJERCICIOS DE VIBRACIONES Y ONDAS
EJERCICIOS DE VIBRACIONES Y ONDAS 1.- Cando un movemento ondulatorio se atopa na súa propagación cunha fenda de dimensións pequenas comparables as da súa lonxitude de onda prodúcese: a) polarización; b)
Διαβάστε περισσότεραPROBA DE AVALIACIÓN DO BACHARELATO PARA O ACCESO Á UNIVERSIDADE (ABAU) CONVOCATORIA DE XUÑO Curso
PROBA DE AVALIACIÓN DO BACHARELATO PARA O ACCESO Á UNIVERSIDADE (ABAU) CONVOCATORIA DE XUÑO Curso 2017-2018 Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades
Διαβάστε περισσότεραFísica A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN
Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS 1. A luz do Sol tarda 5 10² s en chegar á Terra e 2,6 10³ s en chegar a Xúpiter. a) O período de Xúpiter orbitando arredor do Sol. b) A velocidade orbital
Διαβάστε περισσότεραProba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 FÍSICA
Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 Código: 23 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado)
Διαβάστε περισσότεραExercicios de Física 04. Óptica
Exercicios de Física 04. Óptica Problemas 1. Unha lente converxente ten unha distancia focal de 50 cm. Calcula a posición do obxecto para que a imaxe sexa: a) real e tres veces maior que o obxecto, b)
Διαβάστε περισσότεραPAU. Código: 25 SETEMBRO 2015 FÍSICA OPCIÓN A OPCIÓN B
PAU Código: 25 SETEMBRO 2015 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como
Διαβάστε περισσότεραPAU XUÑO 2010 FÍSICA
PAU XUÑO 1 Cóigo: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 caa cuestión, teórica ou practica) Problemas 6 puntos (1 caa apartao) Non se valorará a simple anotación un ítem como solución ás cuestións;
Διαβάστε περισσότεραPAU XUÑO 2015 FÍSICA
PAU XUÑO 2015 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución
Διαβάστε περισσότεραCUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4
CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4 2013 C.2. Se se desexa obter unha imaxe virtual, dereita e menor que o obxecto, úsase: a) un espello convexo; b)unha lente converxente; c) un espello cóncavo.
Διαβάστε περισσότεραPAU XUÑO 2016 FÍSICA
PAU XUÑO 2016 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución
Διαβάστε περισσότεραExercicios de Física 02b. Magnetismo
Exercicios de Física 02b. Magnetismo Problemas 1. Determinar el radio de la órbita descrita por un protón que penetra perpendicularmente a un campo magnético uniforme de 10-2 T, después de haber sido acelerado
Διαβάστε περισσότεραPROBLEMAS E CUESTIÓNS DE GRAVITACIÓN
PROBLEMAS E CUESTIÓNS DE GRAVITACIÓN "O que sabemos é unha pinga de auga, o que ignoramos é o océano." Isaac Newton 1. Un globo aerostático está cheo de gas Helio cun volume de gas de 5000 m 3. O peso
Διαβάστε περισσότεραProba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018 FÍSICA
Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018 Código: 23 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado)
Διαβάστε περισσότεραELECTROMAGNETISMO Problemas PAAU
ELECTROMAGNETISMO Problemas PAAU XUÑO-96 PROBLEMA 2. op B Dadas as cargas puntuais q 1 = 80 µc, q 2 = -80 µc y q 3 = 40 µc situadas nos puntos A (-2,0), B(2,0) y C(0,2) respectivamente (coordenadas en
Διαβάστε περισσότεραPAU XUÑO 2011 MATEMÁTICAS II
PAU XUÑO 2011 MATEMÁTICAS II Código: 26 (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio 2= 3 puntos, exercicio
Διαβάστε περισσότεραResorte: estudio estático e dinámico.
ESTUDIO DO RESORTE (MÉTODOS ESTÁTICO E DINÁMICO ) 1 Resorte: estudio estático e dinámico. 1. INTRODUCCIÓN TEÓRICA. (No libro).. OBXECTIVOS. (No libro). 3. MATERIAL. (No libro). 4. PROCEDEMENTO. A. MÉTODO
Διαβάστε περισσότεραFísica e Química 4º ESO
Física e Química 4º ESO DEPARTAMENTO DE FÍSICA E QUÍMICA Física: Temas 1 ao 6. 01/03/07 Nome: Cuestións 1. Un móbil ten unha aceleración de -2 m/s 2. Explica o que significa isto. 2. No medio dunha tormenta
Διαβάστε περισσότερα1.- Evolución das ideas acerca da natureza da luz! Óptica xeométrica! Principio de Fermat. Camiño óptico! 3
1.- Evolución das ideas acerca da natureza da luz! 2 2.- Óptica xeométrica! 2 2.1.- Principio de Fermat. Camiño óptico! 3 2.2.- Reflexión e refracción. Leis de Snell! 3 2.3.- Laminas plano-paralelas! 4
Διαβάστε περισσότεραTema 3. Espazos métricos. Topoloxía Xeral,
Tema 3. Espazos métricos Topoloxía Xeral, 2017-18 Índice Métricas en R n Métricas no espazo de funcións Bólas e relacións métricas Definición Unha métrica nun conxunto M é unha aplicación d con valores
Διαβάστε περισσότεραExercicios de Física 01. Gravitación
Exercicios de Física 01. Gravitación Problemas 1. A lúa ten unha masa aproximada de 6,7 10 22 kg e o seu raio é de 1,6 10 6 m. Achar: a) A distancia que recorrerá en 5 s un corpo que cae libremente na
Διαβάστε περισσότεραa) Ao ceibar o resorte describe un MHS, polo tanto correspóndelle unha ecuación para a elongación:
VIBRACIÓNS E ONDAS PROBLEMAS 1. Un sistema cun resorte estirado 0,03 m sóltase en t=0 deixándoo oscilar libremente, co resultado dunha oscilación cada 0, s. Calcula: a) A velocidade do extremo libre ó
Διαβάστε περισσότεραPAU XUÑO 2010 MATEMÁTICAS II
PAU XUÑO 010 MATEMÁTICAS II Código: 6 (O alumno/a deber responder só aos eercicios dunha das opcións. Punuación máima dos eercicios de cada opción: eercicio 1= 3 punos, eercicio = 3 punos, eercicio 3 =
Διαβάστε περισσότεραExercicios de Física 03a. Vibracións
Exercicios de Física 03a. Vibracións Problemas 1. No sistema da figura, un corpo de 2 kg móvese a 3 m/s sobre un plano horizontal. a) Determina a velocidade do corpo ó comprimirse 10 cm o resorte. b) Cal
Διαβάστε περισσότεραProcedementos operatorios de unións non soldadas
Procedementos operatorios de unións non soldadas Técnicas de montaxe de instalacións Ciclo medio de montaxe e mantemento de instalacións frigoríficas 1 de 28 Técnicas de roscado Unha rosca é unha hélice
Διαβάστε περισσότεραFísica P.A.U. ÓPTICA 1 ÓPTICA
íica P.A.U. ÓPTICA ÓPTICA INTRODUCIÓN MÉTODO. En xeral: Debúxae un equema co raio. Compárae o reultado do cálculo co equema. 2. No problema de lente: Trázae un raio paralelo ao eixe óptico que ao chegar
Διαβάστε περισσότεραExercicios de Física 03b. Ondas
Exercicios de Física 03b. Ondas Problemas 1. Unha onda unidimensional propágase segundo a ecuación: y = 2 cos 2π (t/4 x/1,6) onde as distancias se miden en metros e o tempo en segundos. Determina: a) A
Διαβάστε περισσότεραPAU. Código: 25 SETEMBRO 2012 FÍSICA OPCIÓN A OPCIÓN B
PAU Código: 5 SETEMBRO 01 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teóica ou páctica). Poblemas 6 puntos (1 cada apatado). Non se valoaá a simple anotación dun ítem como solución
Διαβάστε περισσότερα1. Un saltador de trampolín, mentras realiza o seu salto manten constante: A/ O momento de inercia. B/ A velocidad angular. C/ O momento angular.
EXAMEN 1ª AVALIACION FISICA 2º BACHARELATO PROBLEMAS 1. Unha pelota de 2 kg de masa esbara polo tellado que forma un ángulo de 30º coa horizontal e, cando chega ó extremo, queda en libertade cunha velocidade
Διαβάστε περισσότεραXEOMETRÍA NO ESPAZO. - Se dun vector se coñecen a orixe, o módulo, a dirección e o sentido, este está perfectamente determinado no espazo.
XEOMETRÍA NO ESPAZO Vectores fixos Dos puntos do espazo, A e B, determinan o vector fixo AB, sendo o punto A a orixe e o punto B o extremo, é dicir, un vector no espazo é calquera segmento orientado que
Διαβάστε περισσότεραCódigo: 25 SETEMBRO 2012 PAU FÍSICA OPCIÓN A OPCIÓN B
PAU Código: 25 SETEMBRO 2012 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teóica ou páctica). Poblemas 6 puntos (1 cada apatado). Non se valoaá a simple anotación dun ítem como solución
Διαβάστε περισσότεραln x, d) y = (3x 5 5x 2 + 7) 8 x
EXERCICIOS AUTOAVALIABLES: CÁLCULO DIFERENCIAL. Deriva: a) y 7 6 + 5, b) y e, c) y e) y 7 ( 5 ), f) y ln, d) y ( 5 5 + 7) 8 n e ln, g) y, h) y n. Usando a derivada da función inversa, demostra que: a)
Διαβάστε περισσότεραENERXÍA, TRABALLO E POTENCIA
NRXÍA, TRABALLO POTNCIA NRXÍA Pódese definir enerxía coo a capacidade que ten un corpo para realizar transforacións nel eso ou noutros corpos. A unidade de enerxía no SI é o Joule (J) pero é frecuente
Διαβάστε περισσότεραFísica e química 4º ESO. As forzas 01/12/09 Nome:
DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Física e química 4º ESO As forzas 01/12/09 Nome: [6 Ptos.] 1. Sobre un corpo actúan tres forzas: unha de intensidade 20 N cara o norte, outra de 40 N cara o nordeste
Διαβάστε περισσότεραPAU XUÑO 2012 MATEMÁTICAS II
PAU Código: 6 XUÑO 01 MATEMÁTICAS II (Responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio = 3 puntos, exercicio 3= puntos, exercicio
Διαβάστε περισσότεραMATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos)
21 MATEMÁTICAS (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 Dada a matriz a) Calcula os valores do parámetro m para os que A ten inversa.
Διαβάστε περισσότεραProbas de acceso a ciclos formativos de grao superior CSPEB03. Código. Proba de. Física
Probas de acceso a ciclos formativos de grao superior Proba de Física Código CSPEB03 1. Formato da proba A proba consta de cinco problemas e nove cuestións, distribuídas así: Problema 1: dúas cuestións.
Διαβάστε περισσότεραCódigo: 25 XUÑO 2016 PAU FÍSICA OPCIÓN A OPCIÓN B
PAU Código: 5 XUÑO 016 FÍSICA Puntuación máxima: Cuestiones 4 puntos (1 cada cuestión, teórica o práctica). Problemas 6 puntos (1 cada apartado). No se valorará la simple anotación de un ítem cómo solución
Διαβάστε περισσότεραTema 4 Magnetismo. 4-5 Lei de Ampere. Campo magnético creado por un solenoide. 4-1 Magnetismo. Experiencia de Oersted
Tema 4 Magnetismo 4-1 Magnetismo. Experiencia de Oersted 4-2 Lei de Lorentz. Definición de B. Movemento dunha carga nun campo magnético. 4-3 Forza exercida sobre unha corrente rectilínea 4-4 Lei de Biot
Διαβάστε περισσότεραTema 6 Ondas Estudio cualitativo de interferencias, difracción, absorción e polarización. 6-1 Movemento ondulatorio.
Tema 6 Ondas 6-1 Movemento ondulatorio. Clases de ondas 6- Ondas harmónicas. Ecuación de ondas unidimensional 6-3 Enerxía e intensidade das ondas harmónicas 6-4 Principio de Huygens: reflexión e refracción
Διαβάστε περισσότεραA proba constará de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta.
Páxina 1 de 9 1. Formato da proba Formato proba constará de vinte cuestións tipo test. s cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Puntuación Puntuación: 0.5
Διαβάστε περισσότεραMateriais e instrumentos que se poden empregar durante a proba
1. Formato da proba A proba consta de cinco problemas e nove cuestións, distribuídas así: Problema 1: dúas cuestións. Problema 2: tres cuestións. Problema 3: dúas cuestións Problema 4: dúas cuestión. Problema
Διαβάστε περισσότεραFISICA 2º BACH. CURSO 99-00
26/11/99 1. Unha polea de 5 cm de radio leva enrolada unha corda da cal pende un corpo de 20 g, sendo o momento da inercia da polea 2.10-5 kg.m -2. Calcular: a) a aceleración do corpo; b) a enería cinética
Διαβάστε περισσότεραAs Mareas INDICE. 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación
As Mareas INDICE 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación Introducción A marea é a variación do nivel da superficie libre
Διαβάστε περισσότεραIX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes
IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes 1.- Distancia entre dous puntos Se A e B son dous puntos do espazo, defínese a distancia entre A e B como o módulo
Διαβάστε περισσότεραDINAMICA DE TRASLACION
DINAMICA DE TRASLACION 1.-CINEMATICA ELEMENTOS DO MOVEMENTO: Móvil, Sistema de Referencia e Traxectoria MAGNITUDES CINEMATICAS: - Vector de Posición: r= xi + yj + zk - Vector desplazamento: r= xi + yj
Διαβάστε περισσότεραEXERCICIOS DE ÁLXEBRA. PAU GALICIA
Maemáicas II EXERCICIOS DE ÁLXEBRA PAU GALICIA a) (Xuño ) Propiedades do produo de marices (só enuncialas) b) (Xuño ) Sexan M e N M + I, onde I denoa a mariz idenidade de orde n, calcule N e M 3 Son M
Διαβάστε περισσότεραMATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos)
1 MATEMÁTICAS (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos) Opción 1. Dada a matriz a) Calcula os valores do parámetro m para os
Διαβάστε περισσότεραTRIGONOMETRIA. hipotenusa L 2. hipotenusa
TRIGONOMETRIA. Calcular las razones trigonométricas de 0º, º y 60º. Para calcular las razones trigonométricas de º, nos ayudamos de un triángulo rectángulo isósceles como el de la figura. cateto opuesto
Διαβάστε περισσότεραÁmbito científico tecnolóxico. Movementos e forzas. Unidade didáctica 5. Módulo 3. Educación a distancia semipresencial
Educación secundaria para persoas adultas Ámbito científico tecnolóxico Educación a distancia semipresencial Módulo 3 Unidade didáctica 5 Movementos e forzas Índice 1. Introdución... 3 1.1 Descrición da
Διαβάστε περισσότεραb) Segundo os datos do problema, en tres anos queda a metade de átomos, logo ese é o tempo de semidesintegración.
FÍSICA MODERNA FÍSICA NUCLEAR. PROBLEMAS 1. Un detector de radioactividade mide unha velocidade de desintegración de 15 núcleos min -1. Sabemos que o tempo de semidesintegración é de 0 min. Calcula: a)
Διαβάστε περισσότεραPROBLEMAS CUESTIONS 1.
PROBLMAS 1. Dende un cantil dispárase horizontalmente un proectil de 2 kg cunha velocidade inicial de 100 m/s. Se cando o proectil choca contra o mar a súa velocidade é de 108 m/s, calcular: a/ A enería
Διαβάστε περισσότεραVII. RECTAS E PLANOS NO ESPAZO
VII. RETS E PLNOS NO ESPZO.- Ecuacións da recta Unha recta r no espao queda determinada por un punto, punto base, e un vector v non nulo que se chama vector director ou direccional da recta; r, v é a determinación
Διαβάστε περισσότεραLUGARES XEOMÉTRICOS. CÓNICAS
LUGARES XEOMÉTRICOS. CÓNICAS Páxina REFLEXIONA E RESOLVE Cónicas abertas: parábolas e hipérboles Completa a seguinte táboa, na que a é o ángulo que forman as xeratrices co eixe, e, da cónica e b o ángulo
Διαβάστε περισσότεραEletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::...
Eletromagnetismo Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística Lista -.1 - Mostrar que a seguinte medida é invariante d 3 p p 0 onde: p 0 p + m (1)
Διαβάστε περισσότερα