Código: 25 SETEMBRO 2012 PAU FÍSICA OPCIÓN A OPCIÓN B
|
|
- Μελπομένη Παχής
- 7 χρόνια πριν
- Προβολές:
Transcript
1 PAU Código: 25 SETEMBRO 2012 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teóica ou páctica). Poblemas 6 puntos (1 cada apatado). Non se valoaá a simple anotación dun ítem como solución ás cuestións. As espostas deben se azoadas. Pódese usa calculadoa sempe que non sexa pogamable nin memoice texto. O alumno elixiá unha das dúas opcións. OPCIÓN A C.1.- Un punto mateial descibe un movemento hamónico simple de amplitude A. Cal das seguintes afimacións é coecta?: A) A enexía cinética é máxima cando a elongación é nula. B) A enexía potencial é constante. C) A enexía total depende da elongación x. C.2.- A enexía elativista total dunha masa en epouso: A) Relaciona a lonxitude de onda coa cantidade de movemento. B) Repesenta a equivalencia ente mateia e enexía. C) Relaciona as incetezas da posición e do momento. C.3.- Unha espia está situada no plano xy e é atavesada po un campo magnético constante B en diección do eixe z. Indúcese unha foza electomotiz: A) Se a espia móvese no plano xy. B) Se a espia via ao edo dun eixe pependicula á espia. C) Se se anula gadualmente o campo B. C.4.- Explica bevemente as difeenzas no pocedemento utilizado paa medi a constante elástica kₑ dun esote polos dous métodos: estático e dinámico. P.1.- A luz do Sol tada 5 10² s en chega á Tea e 2,6 10³ s en chega a Xúpite. Calcula: a) O peíodo de Xúpite obitando aedo do Sol. B) A velocidade obital de Xúpite. C) A masa do Sol. (Supóñense as óbitas ciculaes) Datos: T(Tea aedo do Sol): 3,15 10⁷ s; c = 3 10⁸ m/s; G = 6,67 10 ¹¹ N m² kg ². P.2.- Unha lente convexente poxecta sobe unha pantalla a imaxe dun obxecto. O aumento é de 10 e a distancia do obxecto á pantalla é de 2,7 m. a) Detemina as posicións da imaxe e do obxecto. b) Debuxa a macha dos aios. c) Calcula a potencia da lente. OPCIÓN B C.1.- Segundo a hipótese de De Boglie, cúmpese que: A) Un potón e un electón coa mesma velocidade teñen asociada a mesma onda. B) Dous potóns a difeente velocidade teñen asociada a mesma onda. C) A lonxitude da onda asociada a un potón é invesamente popocional ao seu momento lineal. C.2.- Un campo magnético constante B exece unha foza sobe unha caga eléctica: A) Se a caga está en epouso. B) Se a caga se move pependiculamente a B. C) Se a caga se move paalelamente a B. C.3.- Dous satélites idénticos, A e B, desciben óbitas ciculaes de difeente adio en tono á Tea (R A < R B ). Polo que: A) B ten maio enexía cinética. B) B ten maio enexía potencial. C) Os dous teñen a mesma enexía mecánica. C.4.- Na páctica da medida de g cun péndulo, como conseguiías que o péndulo duplique o númeo de oscilacións po segundo? P.1.- Unha masa de 10 g está unida a un esote e oscila nun plano hoizontal cun movemento hamónico simple. A amplitude do movemento é A = 20 cm, e a elongación no instante inicial é x = -20 cm. Se a enexía total é 0,5 J, calcula: a) A constante elástica do esote. b) A ecuación do movemento. c) A enexía cinética na posición x = 15 cm. P.2.- Dúas cagas elécticas de +8 μc están situadas en A(0, 0,5) e B(0, -0,5) (en metos). Calcula: a) O campo eléctico en C(1, 0) e en D(0, 0). b) O potencial eléctico en C e en D. c) Se unha patícula de masa m = 0,5 g e caga q = -1 μc sitúase en C cunha velocidade inicial de 10³ m/s, calcula a velocidade en D. Nota: só inteveñen fozas elécticas. (Datos K = 9 10⁹ N m² C ²; 1 μc = 10 ⁶ C)
2 Solucións OPCIÓN A 1. C.1.-Un punto mateial descibe un movemento hamónico simple de amplitude A. Cal das seguintes afimacións é coecta?: A) A enexía cinética é máxima cando a elongación é nula. B) A enexía potencial é constante. C) A enexía total depende da elongación x. A A ecuación dun movemento hamónico simple é: x = A sen(ω t + φ₀) Onde x é a elongación (sepaación da posición de equilibio), A é a amplitude (máxima elongación), ω é a constante hamónica, t é o tempo e φ₀ é a fase inicial. Deivando obtense a expesión da velocidade: A velocidade é máxima cando o cos(ω t + φ₀) = 1. A enexía cinética tamén seá máxima nese caso. v= dx dt =d {A sen(ω t +φ )} 0 =A ω cos(ω t +φ dt 0 ) E = ½ m v² Cando o coseno dun ángulo é 1, o seno dese ángulo vale 0. Se o seno do ángulo vale 0, a elongación tamén vale 0. Po tanto a enexía cinética é máxima cando a elongación x é nula As outas opcións: B: Falsa. A foza que poduce un movemento hamónico simple é unha foza consevativa (o taballo que ealiza ente dous puntos é independente do camiño seguido) e dá luga a unha enexía potencial en cada punto de elongación x que depende do valo da elongación: Eₚ = ½ k x² C: Falsa. Sendo unha foza consevativa, a enexía mecánica vale o mesmo en calquea elongación: é constante. 2. C.2.- A enexía elativista total dunha masa en epouso: A) Relaciona a lonxitude de onda coa cantidade de movemento. B) Repesenta a equivalencia ente mateia e enexía. C) Relaciona as incetezas da posición e do momento. B A ecuación de Einstein establece a elación ente masa e enexía. E₀ = m₀ c² E₀ epesenta a enexía en epouso dunha patícula e m₀ é a masa en epouso da patícula, Esta ecuación pemite expesa a masa das patículas en unidades de enexía. Po exemplo, a masa dun potón é de 938 MeV, ou a do electón 0,511 MeV. As outas opcións: A. Falsa. A ecuación que elaciona a lonxitude de onda λ coa cantidade de movemento p é a ecuación de Luís de Boglie, da dualidade onda-patícula. λ = h p = h m v
3 Pemite calcula a lonxitude de onda asociada a unha patícula de masa m que se move cunha velocidade v. C. Falsa. O pincipio de indeteminación (antes coñecido como pincipio de inceteza) de Heisenbeg podía intepetase como a imposibilidade de coñece con pecisión absoluta dúas magnitudes cuxo poduto tivese as unidades de enexía tempo («acción»). A inceteza na posición dunha patícula Δx multiplicado pola inceteza no seu momento (cantidade de movemento) Δpₓ ea supeio á constante h de Planck dividida ente 4 π. Δ x Δ p x h 4 π 3. C.3.- Unha espia está situada no plano xy e é atavesada po un campo magnético constante B en diección do eixe z. Indúcese unha foza electomotiz: A) Se a espia móvese no plano xy. B) Se a espia via ao edo dun eixe pependicula á espia. C) Se se anula gadualmente o campo B. C A lei de Faaday - Lenz di que se induciá unha coente que se opoña á vaiación de fuxo a tavés da espia. A f.e.m. desa coente seá igual á vaiación de fuxo magnético especto ao tempo. ε= dφ d t O fuxo magnético é o poduto escala do vecto B campo magnético polo vecto S pependicula á supefcie delimitada pola espia. Φ = B S = B S cos φ Se anúlase gadualmente o campo magnético B, podúcese unha vaiación de fuxo magnético Φ e unha foza electomotiz inducida, que, pola lei de Lenz, opoase á diminución do fuxo magnético que atavesa a espia. As outas opcións: A: Falsa. Se a espia móvese no plano XY que a contén, non se poduce vaiación de campo magnético nin da supefcie atavesada po el (a non se que a espia salga da zona do campo). Se o o fuxo magnético a tavés da espia non vaía, non se poduciá ningunha f.e.m. inducida. C: Falsa. Se a espia xia aedo do eixe Z, o fuxo magnético non vaía, posto que a supefcie atavesada é sempe a mesma. 4. C.4.- Explica bevemente as difeenzas no pocedemento utilizado paa medi a constante elástica kₑ dun esote polos dous métodos: estático e dinámico. No método estático cólganse vaias masas m coñecidas, po exemplo pesas dunha balanza, dun esote e mídense os alongamentos y poducidos. A constante detemínase a pati a lei de Hooke: Calcúlase numeicamente o valo medio. F = -k y k = m g / y No método dinámico apátase unha masa que colga dun esote da posición de equilibio e déixase oscila, medindo o tempo de 10 oscilacións, calculando o peíodo de oscilación, T, a constante hamónica ω² = 4 π² / T², e a constante do esote k, da ecuación que elaciona a constante do esote k coa a constante hamónica ω²: k=m ω 2
4 Repítese con vaias masas coñecidas e áchase o valo medio. 5. P.1.- A luz do Sol tada 5 10² s en chega á Tea e 2,6 10³ s en chega a Xúpite. Calcula: a) O peíodo de Xúpite obitando aedo do Sol. b) A velocidade obital de Xúpite. c) A masa do Sol. (Supóñense as óbitas ciculaes) Datos: T(Tea aedo do Sol): 3,15 10⁷ s; c = 3 10⁸ m/s; G = 6,67 10 ¹¹ N m² kg ². Rta.: a) T X = 3,74 10⁸ s; v = 1,31 10⁴ m/s; b) M = 2,01 10³⁰ kg Datos Cifas signifcativas: 3 Tempo que tada a luz do Sol en chega á Tea t₁ = 5,00 10² s = 500 s Tempo que tada a luz do Sol en chega a Xúpite t₂ = 2,60 10³ s Peíodo obital da Tea aedo do Sol T₁ = 3,15 10⁷ s Velocidade da luz no baleio c = 3,00 10⁸ m/s Constante da gavitación univesal G = 6,67 10 ¹¹ N m² kg ² Incógnitas Peíodo obital de Xúpite T₂ Velocidade obital de Xúpite v Masa do Sol M Outos símbolos Masa de Xúpite ou a Tea m Distancia dun planeta ao Sol Ecuacións Velocidade dun satélite a unha distancia do cento dun asto de masa M v= G M Velocidade nun movemento cicula unifome de aio e peíodo T v= 2π T Calcúlanse as distancias da Tea ao Sol e de Xúpite ao Sol, tendo en conta a velocidade da luz. Tea: ₁ = c t₁ = 3,00 10⁸ [m/s] 5,00 10² [s] = 1,50 10¹¹ m Xúpite: ₂ = c t₂ = 3,00 10⁸ [m/s] 2,60 10³ [s] = 7,80 10¹¹ m Resólvese pimeio o apatado c) A velocidade da Tea aedo do Sol calcúlase a pati do seu peíodo obital v= 2π T = 2 3,14 1, [m] =2, m /s 3, [s] A masa do Sol pode calculase da expesión da velocidade dun satélite que xia a unha distancia aedo do cento dun asto de masa M: v= G M M = v2 =(2, [ m/s]) 2 1, [m] =2, kg G 6, [ N m 2 kg 2 ] b) Aplicando a ecuación anteio paa calcula a velocidade de Xúpite, v= G M = 6, [ N m 2 kg 2 ] 2, [kg ] =1, m /s=13,1 km /s 7, [ m] a) O peíodo calcúlase a pati da expesión da velocidade no movemento cicula unifome: T 2 = 2 π 2 v = 2 3,14 7, [ m] =3, s 1, [m/s] Análise: A teceia lei de Keple di que os cadados dos peíodos son diectamente popocionais aos cubos dos aiovectoes que unen ao Sol cos planetas. A maio distancia ao Sol, maio peíodo. Este método daía: T 2 =T =3, [s] (7, [ m]) 3 1 (1, [ m]) 3 =3, s
5 6. P.2.- Unha lente convexente poxecta sobe unha pantalla a imaxe dun obxecto. O aumento é de 10 e a distancia do obxecto á pantalla é de 2,7 m. a) Detemina as posicións da imaxe e do obxecto. b) Debuxa a macha dos aios. c) Calcula a potencia da lente. Rta.: a) s = -0,245 m; s = 2,45 m; c) P = 4,48 dioptías Datos (convenio de signos DIN) Cifas signifcativas: 3 Aumento da lente A L = 10,0 Distancia ente o obxecto e a súa imaxe d = 2,70 m Incógnitas Posición do obxecto e da imaxe s, sʹ Potencial da lente P Outos símbolos Distancia focal da lente f Ecuacións Relación ente a posición da imaxe e a do obxecto nas lentes 1 sʹ 1 s = 1 fʹ Aumento lateal nas lentes A L = yʹ y s Potencia dunha lente P = 1 f a) Do aumento lateal podemos establece a elación matemática ente as distancias s do obxecto á lente e sʹ da imaxe á lente. A L = sʹ s sʹ = 10,0 s A distancia do obxecto á pantalla (onde se foma a imaxe) é a suma desas dúas distancias (sen te en conta os signos): s + sʹ = 2,70 m Tendo en conta que, polo citeio de signos, a distancia do obxecto á lente é negativa, s < 0, peo a distancia da imaxe, cando é eal, á lente é positiva sʹ > 0, queda -s + sʹ = 2,70 m Aínda que nos din que o aumento é 10, o signo coecto é -10, polo que, a elación co signo adecuado ente as dúas distancias é: Substituíndo sʹ e despexando s, queda 2,70 [m] s= 11,0 = 0,245 m sʹ = - 10,0 s = 2,45 m sʹ = - 10,0 s - s 10,0 s = 2,70 m b) No debuxo epeséntase o obxecto O antes da lente e desde o seu punto supeio debúxanse dous aios: - Un hoizontal caa á lente que a atavesa e se efacta de maneia que o aio efactado pasa polo foco Fʹ. - Outo caa ao cento da lente. Atavésaa sen desviase. O punto de cote é o coespondente á imaxe I. O s f F' s' I
6 c) A potencia da lente é a invesa da distancia focal (expesada en metos) e pode calculase da ecuación das lentes. 1 2,45 [m] 1 0,245 [m] = 1 f =P P = 4,48 dioptías OPCIÓN B 1. C.1.-Segundo a hipótese de De Boglie, cúmpese que: A) Un potón e un electón coa mesma velocidade teñen asociada a mesma onda. B) Dous potóns a difeente velocidade teñen asociada a mesma onda. C) A lonxitude da onda asociada a un potón é invesamente popocional ao seu momento lineal. C De Boglie popuxo que nalgúns casos o compotamento de cetas patículas podeía intepetase como o de ondas cuxa lonxitude de onda asociada λ viía dada pola expesión: λ = h p = h m v Na ecuación, h é a constante de Planck e m a masa da patícula e v a súa velocidade. Como h é unha constante e m v é a expesión do momento lineal ou cantidade de movemento, a lonxitude da onda asociada a un potón é invesamente popocional ao seu momento lineal. As outas opcións. A. Falsa. Da expesión anteio dedúcese que a lonxitude de onda depende da masa ademais da velocidade. Como a masa dun potón é moito maio que a do electón, a lonxitude de onda asociada a un potón que se move á mesma velocidade que un electón é moito meno. B. Falsa. O potón máis ápido teá meno lonxitude de onda. 2. C.2.- Un campo magnético constante B exece unha foza sobe unha caga eléctica: A) Se a caga está en epouso. B) Se a caga se move pependiculamente a B. C) Se a caga se move paalelamente a B. B A foza F sobe unha caga eléctica q en movemento éxese pola lei de Loentz F = q (v B) Sendo v a velocidade da caga e B a indución magnética (intensidade do campo magnético). O módulo do poduto vectoial dos vectoes velocidade e indución magnética é v B = v B sen φ Onde φ é o ángulo que foman eses vectoes. Se son pependiculaes, sen φ = 1 As outas opcións. A. Falsa. Se está en epouso, a velocidade é nula e o poduto vectoial tamén. C. Falsa. Se son paalelos, sen φ = 0 e o poduto vectoial é nulo. Non hai foza. 3. C.3.- Dous satélites idénticos, A e B, desciben óbitas ciculaes de difeente adio en tono á Tea (R A < R B ). Polo que: A) B ten maio enexía cinética. B) B ten maio enexía potencial. C) Os dous teñen a mesma enexía mecánica.
7 B A enexía potencial gavitacional paa un satélite de masa m que xia aedo da Tea nunha óbita de aio é invesamente popocional ao aio da óbita. E p = G M m Peo como é negativa, canto maio sexa o aio da óbita, maio seá a enexía potencial. Eₚ₂ > Eₚ₁ As outas opcións: A. Falsa. A velocidade dun satélite que xia a unha distancia aedo dun asto de masa M é: v= G M A enexía cinética dun satélite de masa m que xia aedo da Tea con velocidade v é diectamente popocional ao cadado da velocidade. E = ½ m v² Po tanto, a enexía cinética de cada satélite é invesamente popocional ao aio da súa óbita: a maio aio, meno enexía cinética. C. Falsa. A enexía mecánica é a suma das enexías cinética e potencial. E=E c +E p = 1 2 m v 2 + ( G M m ) Substituíndo v² na expesión da enexía mecánica: E=E c +E P = 1 2 m v2 G M m = 1 2 G M m G M m = 1 2 G M m A enexía mecánica dun satélite nunha óbita é invesamente popocional ao aio da óbita. Non poden se iguais poque os satélites teñen a mesma masa. 4. C.4.- Na páctica da medida de g cun péndulo, como conseguiías que o péndulo duplique o númeo de oscilacións po segundo? Paa consegui duplica a fecuencia, ou o que é o mesmo, diminuí á metade o peíodo, habeía que face a lonxitude do péndulo 4 veces meno, xa que o peíodo dun péndulo ideal vén dado pola ecuación: T =2 π L g Se L' = L / 4 T '=2 π L / 4 g =π L g =T 2 5. P.1.- Unha masa de 10 g está unida a un esote e oscila nun plano hoizontal cun movemento hamónico simple. A amplitude do movemento é A = 20 cm, e a elongación no instante inicial é x = -20 cm. Se a enexía total é 0,5 J, calcula: a) A constante elástica do esote. b) A ecuación do movemento. c) A enexía cinética na posición x = 15 cm. Rta.: a) k = 25 N/m; b) ω = 50 ad/s; c) E = 0,219 J
8 Datos Cifas signifcativas: 3 Masa que oscila m = 10,0 g = 0,01 0 kg Amplitude A = 20,0 cm = 0,200 m Posición inicial x₀ = -20,0 cm = -0,200 m Enexía mecánica E = 0,500 J Posición paa calcula a enexía cinética x = 15,0 cm = 0,150 m Incógnitas Constante elástica do esote k Ecuación do movemento (fecuencia angula e fase inicial) ω, φ₀ Enexía cinética na posición x = 15 cm E Ecuacións Ecuación de movemento no M.H.S. x = A sen(ω t + φ₀) Relación ente a fecuencia angula e a constante elástica k = m ω² Enexía potencial elástica Eₚ = ½ k x² Enexía mecánica E = (E + Eₚ) = ½ k A² a) Calcúlase a constante elástica do esote a pati da enexía e da amplitude. E=½ k A 2 k= 2 E 2 0,500 [ J] = =25,0 N/m 2 2 A (0,200 [m]) b) A ecuación de movemento dun M.H.S. pode escibise x = A sen(ω t + φ₀) (En «M.H.S.: obte a ecuación de movemento» exponse o fundamento teóico.) A amplitude é a máxima sepaación da posición de equilibio e é un dato: A = 0,200 m A fecuencia angula calcúlase a pati da constante elástica do esote e da masa oscilante. k=m ω 2 ω = k m = 25,0 [ N/m] =50,0 ad/s 0,01 0 0[ kg] Paa calcula a fase inicial elíxese un sistema de efeencia con oixe O na posición de equilibio e o eixe X+ vetical no sentido do alongamento (caa abaixo) e substitúense na ecuación de movemento os datos e os valoes da posición inicial: A ecuación de movemento queda: -0,200 [m] = 0,200 [m] sen(50,0 0 + φ₀) sen(φ₀) = -1 φ₀ = acsen(-1) = 3 π / 2 [ad] = 4,71 ad x = 0,200 sen(50,0 t + 4,71) [m] Análise: A ecuación de movemento cumpe a condición da posición inicial (paa t = 0, x₀ = -0,200 m). c) Pódese calcula a enexía cinética a pati da enexía potencial. Eₚ = k x² / 2 = 25,0 [N/m] (0,150 [m])² / 2 = 0,281 J Tendo en conta que a única foza (elástica) é consevativa, E = E Eₚ = 0,500 [J] 0,281 [J] = 0,219 J 6. P.2.- Dúas cagas elécticas de +8 μc están situadas en A(0, 0,5) e B(0, -0,5) (en metos). Calcula: a) O campo eléctico en C(1, 0) e en D(0, 0). b) O potencial eléctico en C e en D. c) Se unha patícula de masa m = 0,5 g e caga q = -1 μc sitúase en C cunha velocidade inicial de 10³ m/s, calcula a velocidade en D. Nota: só inteveñen fozas elécticas. Datos K = 9 10⁹ N m² C ²; 1 μc = 10 ⁶ C Rta.: a) E C = 1,03 10⁵ i N/C; E D = 0 N/C; b) V C = 1,29 10⁵ V; V D = 2,88 10⁵ V c) v D = -1,00 10³ i m/s
9 Datos Cifas signifcativas: 3 Valo da caga situada no punto A Q A = 8,00 µc = 8,00 10 ⁶ C Valo da caga situada no punto B Q B = 8,00 µc = 8,00 10 ⁶ C Posición do punto A A = (0, 0,500) m Posición do punto B B = (0, -0,500) m Posición do punto C C = (1,00, 0,00) m Posición do punto D D = (0,00, 0,00) m Masa da patícula que se despaza m = 0,500 g = 5,00 10 ⁴ kg Caga da patícula que se despaza q = -1,00 µc = -1,00 10 ⁶ C Velocidade inicial no punto C v C = 1,00 10³ m/s Constante eléctica K = 9,00 10⁹ N m² C ² Incógnitas Intensidades do campo electostático nos puntos C e D E C, E D Potenciais electostáticos nos puntos C e D V C, V D Velocidade que teá ao pasa polo punto D v D Outos símbolos Distancia ente dous puntos A e B AB Ecuacións Intensidade do campo electostático nun punto ceado po unha caga puntual Q situada a unha distancia E=K Q u 2 Pincipio de supeposición E A = E Ai Potencial electostático nun punto ceado po unha caga puntual Q situada V =K Q a unha distancia Potencial electostático nun punto debido a vaias cagas V = V Enexía potencial electostática dunha caga nun punto A E A = q V A Enexía cinética E = ½ m v² Pincipio da consevación da enexía ente dous puntos A e B (E + E ) A = (E + E ) B a) Faise un debuxo das cagas e de cada un dos vectoes intensidade de campo electostático e da suma vectoial que é o vecto E D intensidade de campo esultante. Cálculo de distancias: AC = BC = (0,500 [ m]) 2 +(1,00 [m]) 2 =1,12 m O vecto unitaio do punto C (1, 0), u AC especto ao punto A é: u AC = AC AC =(1,00 i 0,500 j) [ m] =0,894 i 0,447 j 1,12 [ m] A intensidade de campo electostático no punto C debido á caga de +8 µc situada en A é: E A C =9, [N m 2 C 2 ] 8, [C] (1,12 [m ]) 2 (0,894 i 0,447 j )=(5, i 2, j) N/C Po simetía, a intensidade de campo electostático no punto C debido á caga de +8 µc situada en B é: E B C = (5,15 10⁴ i + 2,58 10⁴ j) N/C Aplicando o pincipio de supeposición, o campo electostático no punto C é E C = E A C + E B C = 1,03 10⁵ i N/C Análise: O vecto intensidade de campo esultante do cálculo é hoizontal caa á deeita, coheente co debuxo. E A C A intensidade de campo electostático no punto D (0, 0) debido á caga de +8 µc situada en A é: A D B C E B C E C
10 E A D =9, [ N m 2 C 2 ] 8, [C] (0,500 [ m]) 2 ( j)= 2, j N/C Po simetía, o campo no punto D debido á caga situada en B é Aplicando o pincipio de supeposición, E B D = 2,88 10⁵ j N/C E D = E A D + E B D = 0 N/C Análise: Como as distancias e as cagas son iguais, e están situadas simeticamente, a esultante ten que se nula. b) Os potenciais no punto C debidos a cada caga valen: V A C =V B C =9, [N m 2 C 2 ] 8, [C] =6, V (1,12 [m ]) O potencial electostático no punto C é a suma de ambos: V C = V A C + V B C = 2 6,44 10⁴ [V] = 1,29 10⁵ V Os potenciais no punto D debidos a cada caga valen: V A D =V B D =9, [ N m 2 C 2 ] 8, [C] (0,500 [m]) =1, V O potencial electostático no punto D é: V D = V A D + V B D = 2 1,44 10⁵ [V] = 2,88 10⁵ V E B D A D C B E A D c) Como a foza electostática é unha foza consevativa a enexía mecánica consévase. (E + E ) C = (E + E ) D ½ m v C ² + q V C = ½ m v D ² + q V D (5,00 10 ⁴ [kg] / 2) (1,00 10³ [m/s])² + (-1,00 10 ⁶ [C]) 1,29 10⁵ [V] = = (5,00 10 ⁴ [kg] / 2) v D ² + (-1,00 10 ⁶ [C]) 2,88 10⁵ [V] A velocidade que teá ao pasa polo punto D seá: v D = 1,00 10³ m/s Análise: A velocidade é pacticamente a mesma peo un pouco maio xa que a caga negativa é aceleada en sentido contaio ao campo eléctico. Como a velocidade é un vecto, temos que deduci a diección e sentido. Pola diección e sentido do vecto intensidade de campo ente os puntos C e D, pódese deduci que a aceleación está na diección do eixe X e en sentido positivo (as cagas negativas sofen unha foza de sentido oposto ao campo). A única posibilidade de que a caga que sae do punto C pase polo punto D é que inicialmente se estivese movendo no sentido negativo do eixe X. Po tanto a diección da velocidade é a do eixe X e o sentido negativo v D = -1,00 10³ i m/s Cuestións e poblemas das Pobas de Acceso á Univesidade (P.A.U.) en Galicia. Respostas e composición de Alfonso J. Babadillo Maán. Algúns cálculos fxéonse cunha folla de cálculo OpenOfce (ou LibeOfce) do mesmo auto. Algunhas ecuacións e as fómulas ogánicas constuíonse coa extensión CLC09 de Chales Lalanne-Cassou. A tadución ao/desde o galego ealizouse coa axuda de taducindote, de Ósca Hemida López. Pocuouse segui as ecomendacións do Cento Español de Metología (CEM) O meu agadecemento a Hevilia Seco pola evisión deste documento.
PAU. Código: 25 SETEMBRO 2012 FÍSICA OPCIÓN A OPCIÓN B
PAU Código: 5 SETEMBRO 01 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teóica ou páctica). Poblemas 6 puntos (1 cada apatado). Non se valoaá a simple anotación dun ítem como solución
PAU. Código: 25 XUÑO 2013 FÍSICA OPCIÓN A OPCIÓN B
PAU Código: 25 XUÑO 2013 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teóica ou páctica). Poblemas 6 puntos (1 cada apatado). Non se valoaá a simple anotación dun ítem como solución ás
PAU. Código: 25 XUÑO 2015 FÍSICA OPCIÓN A OPCIÓN B
PAU Código: 25 XUÑO 2015 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teóica ou páctica). Poblemas 6 puntos (1 cada apatado). Non se valoaá a simple anotación dun ítem como solución ás
Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN
Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS LEIS DE KEPLER 1. O peíodo de otación da Tea aedo do Sol é un ano e o aio da óbita é 1,5 10¹¹ m. Se Xúpite ten un peíodo de apoximadamente 12 anos, e se
PAU XUÑO 2016 FÍSICA OPCIÓN A
PAU Código: 25 XUÑO 2016 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teóica ou páctica). Poblemas 6 puntos (1 cada apatado). Non se valoaá a simple anotación dun ítem como solución ás
PAU XUÑO 2012 FÍSICA
PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución
Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS
Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS INTRODUCIÓN MÉTODO 1. En xeral: a) Debúxanse as forzas que actúan sobre o sistema. b) Calcúlase cada forza. c) Calcúlase a resultante polo principio
CiU G COMISIÓN INTERUNIVERSITARIA DE GALICIA
CiU G COMISIÓN INTEUNIVESITI DE GLICI USC UNIVESIDDE DE SNTIGO DE COMPOSTEL PU (MIOES DE 5 NOS) MZO 011 Código: 35 FÍSIC. Pueba Objetiva (Valoación: 3 puntos) 1.- Desde lo alto de un edificio se deja cae
Tema 3. Campo eléctrico. 3-1 Propiedades fundamentais da carga eléctrica: conservación e cuantización
Tema 3 Campo eléctico 3-1 Popiedades fundamentais da caga eléctica: consevación e cuantización 3- Lei de inteacción ente cagas elécticas: Lei de Coulomb 3-3 Intensidade de campo eléctico. Teoema de Gauss
Código: 25 MODELO DE EXAME ABAU FÍSICA OPCIÓN A OPCIÓN B
ABAU Código: 25 MODELO DE EXAME FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como
EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS. 3. Cal é o vector de posición da orixe de coordenadas O? Cales son as coordenadas do punto O?
EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS Representa en R os puntos S(2, 2, 2) e T(,, ) 2 Debuxa os puntos M (, 0, 0), M 2 (0,, 0) e M (0, 0, ) e logo traza o vector OM sendo M(,, ) Cal é o vector de
Código: 25 XUÑO 2012 PAU FÍSICA OPCIÓN A OPCIÓN B
PAU Código: 25 XUÑO 2012 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a
Física P.A.U. ELECTOMAGNETISMO 1 ELECTOMAGNETISMO INTODUCIÓN MÉTODO 1. En xeral: Debúxanse as forzas que actúan sobre o sistema. Calcúlase a resultante polo principio de superposición. Aplícase a 2ª lei
Tema: Enerxía 01/02/06 DEPARTAMENTO DE FÍSICA E QUÍMICA
Tema: Enerxía 01/0/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Nome: 1. Unha caixa de 150 kg descende dende o repouso por un plano inclinado por acción do seu peso. Se a compoñente tanxencial do peso é de 735
Código: 25 XUÑO 2014 PAU FÍSICA OPCIÓN A OPCIÓN B
PAU Código: 25 XUÑO 204 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución
PAU SETEMBRO 2013 FÍSICA
PAU SETEMBRO 013 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
Código: 25 PAU XUÑO 2012 FÍSICA OPCIÓN A OPCIÓN B
PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
EXERCICIOS DE REFORZO: RECTAS E PLANOS
EXERCICIOS DE REFORZO RECTAS E PLANOS Dada a recta r z a) Determna a ecuacón mplícta do plano π que pasa polo punto P(,, ) e é perpendcular a r Calcula o punto de nterseccón de r a π b) Calcula o punto
Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS
Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS PROBLEMAS M.H.S.. 1. Dun resorte elástico de constante k = 500 N m -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase
PAU XUÑO Código: 25 FÍSICA OPCIÓN A OPCIÓN B
PAU XUÑO 013 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
PAAU (LOXSE) Setembro 2006
PAAU (LOXSE) Setembro 2006 Código: 22 FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (,5 cada apartado). Cuestións 4 puntos ( cada cuestión, teórica
EJERCICIOS DE VIBRACIONES Y ONDAS
EJERCICIOS DE VIBRACIONES Y ONDAS 1.- Cando un movemento ondulatorio se atopa na súa propagación cunha fenda de dimensións pequenas comparables as da súa lonxitude de onda prodúcese: a) polarización; b)
Código: 25 SETEMBRO 2013 PAU FÍSICA OPCIÓN A OPCIÓN B
PAU Código: 25 SETEMBRO 2013 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como
Código: 25 PAU XUÑO 2014 FÍSICA OPCIÓN A OPCIÓN B
PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
PAU Xuño Código: 25 FÍSICA OPCIÓN A OPCIÓN B
PAU Xuño 00 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución
PAU. Código: 25 SETEMBRO 2015 FÍSICA OPCIÓN A OPCIÓN B
PAU Código: 25 SETEMBRO 2015 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como
Ano 2018 FÍSICA. SOL:a...máx. 1,00 Un son grave ten baixa frecuencia, polo que a súa lonxitude de onda é maior.
ABAU CONVOCAT ORIA DE SET EMBRO Ano 2018 CRIT ERIOS DE AVALI ACIÓN FÍSICA (Cód. 23) Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades ou con unidades incorrectas...
x 2 6º- Achar a ecuación da recta que pasa polo punto medio do segmento de extremos
º- Dados os puntos A(,, ), B(, 4), C( 5,, ) EXERCICIOS XEOMETRÍA Acha as coodenadas dun cuato punto D coa condición que o cuadiláteo ABCD sexa un paalelogamo º- Escibi as ecuacións paaméticas, na foma
PAU XUÑO 2011 MATEMÁTICAS II
PAU XUÑO 2011 MATEMÁTICAS II Código: 26 (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio 2= 3 puntos, exercicio
PAU Xuño 2011 FÍSICA OPCIÓN A
PAU Xuño 20 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución
PAAU (LOXSE) Setembro 2009
PAAU (LOXSE) Setembro 2009 Código: 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada
PAAU (LOXSE) Xuño 2002
PAAU (LOXSE) Xuño 00 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica).
PAU Setembro 2010 FÍSICA
PAU Setembro 010 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
FÍSICA OPCIÓN 1. ; calcula: a) o período de rotación do satélite, b) o peso do satélite na órbita. (Datos R T. = 9,80 m/s 2 ).
22 Elixir e desenrolar unha das dúas opcións propostas. FÍSICA Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple
PAU XUÑO 2011 FÍSICA
PAU XUÑO 2011 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN
Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS SATÉLITES 1. O período de rotación da Terra arredor del Sol é un año e o radio da órbita é 1,5 10 11 m. Se Xúpiter ten un período de aproximadamente 12
PAU XUÑO 2010 MATEMÁTICAS II
PAU XUÑO 010 MATEMÁTICAS II Código: 6 (O alumno/a deber responder só aos eercicios dunha das opcións. Punuación máima dos eercicios de cada opción: eercicio 1= 3 punos, eercicio = 3 punos, eercicio 3 =
24/10/06 MOVEMENTO HARMÓNICO SIMPLE
NOME: CALIFICACIÓN PROBLEMAS (6 puntos) 24/10/06 MOVEMENTO HARMÓNICO SIMPLE 1. Dun resorte elástico de constante k= 500 Nm -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase
Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN
Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS 1. A luz do Sol tarda 5 10² s en chegar á Terra e 2,6 10³ s en chegar a Xúpiter. a) O período de Xúpiter orbitando arredor do Sol. b) A velocidade orbital
Exercicios de Física 02a. Campo Eléctrico
Exercicios de Física 02a. Campo Eléctrico Problemas 1. Dúas cargas eléctricas de 3 mc están situadas en A(4,0) e B( 4,0) (en metros). Caalcula: a) o campo eléctrico en C(0,5) e en D(0,0) b) o potencial
Física P.A.U. ÓPTICA 1 ÓPTICA
Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un raio de luz de frecuencia 5 10¹⁴ Hz incide cun ángulo de incidencia de 30 sobre unha lámina de vidro de caras plano-paralelas de espesor 10
Exame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema)
Exame tipo A. Proba obxectiva (Valoración: 3 puntos) 1. - Un disco de 10 cm de raio xira cunha velocidade angular de 45 revolucións por minuto. A velocidade lineal dos puntos da periferia do disco será:
FISICA 2º BAC 27/01/2007
POBLEMAS 1.- Un corpo de 10 g de masa desprázase cun movemento harmónico simple de 80 Hz de frecuencia e de 1 m de amplitude. Acha: a) A enerxía potencial cando a elongación é igual a 70 cm. b) O módulo
Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO
Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO PROBLEMAS CAMPO ELECTROSTÁTICO 1. Dúas cargas eléctricas de 3 mc están situadas en A(4, 0) e B(-4, 0) (en metros). Calcula: a) O campo eléctrico en C(0,
FÍSICA. = 4π 10-7 (S.I.)).
22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas, 6 puntos (1 cada apartado). Cuestións, 4 puntos
PAAU (LOXSE) Setembro 2004
PAAU (LOXSE) Setembro 004 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou
Física P.A.U. ÓPTICA 1 ÓPTICA
Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un raio de luz de frecuencia 5 10 14 Hz incide, cun ángulo de incidencia de 30, sobre unha lámina de vidro de caras plano-paralelas de espesor
Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018
Proba de Avaliación do Bacharelato para o Acceso á Universidade Código: 23 XUÑO 2018 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado).
EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO
Física Exercicios de Selectividade Páxina 1 / 10 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 17-18 http://ciug.gal/exames.php TEMA 1. GRAVITACIÓN. 1) PROBLEMA. Xuño 2017. Un astronauta está no interior
PAAU (LOXSE) Xuño 2006
PAAU (LOXSE) Xuño 006 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica).
a) Ao ceibar o resorte describe un MHS, polo tanto correspóndelle unha ecuación para a elongación:
VIBRACIÓNS E ONDAS PROBLEMAS 1. Un sistema cun resorte estirado 0,03 m sóltase en t=0 deixándoo oscilar libremente, co resultado dunha oscilación cada 0, s. Calcula: a) A velocidade do extremo libre ó
INTERACCIÓNS GRAVITATORIA E ELECTROSTÁTICA
INTEACCIÓNS GAVITATOIA E ELECTOSTÁTICA AS LEIS DE KEPLE O astrónomo e matemático Johannes Kepler (1571 1630) enunciou tres leis que describen o movemento planetario a partir do estudo dunha gran cantidade
FÍSICA. 2.- Cando se bombardea nitróxeno 14 7 N con partículas alfa xérase o isótopo 17 8O e outras partículas. A
22 FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple
Resorte: estudio estático e dinámico.
ESTUDIO DO RESORTE (MÉTODOS ESTÁTICO E DINÁMICO ) 1 Resorte: estudio estático e dinámico. 1. INTRODUCCIÓN TEÓRICA. (No libro).. OBXECTIVOS. (No libro). 3. MATERIAL. (No libro). 4. PROCEDEMENTO. A. MÉTODO
EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO
Física Exercicios de Selectividade Páxina 1 / 9 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 16-17 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) PROBLEMA. Xuño 2016. A nave espacial Discovery,
FÍSICA. = 9, kg) = -1, C; m e
22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestións 4 puntos (1
PAU SETEMBRO 2014 FÍSICA
PAU SETEMBRO 014 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO
Física Exercicios de Selectividade Páxina 1 / 8 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 15-16 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) CUESTIÓN.- Un satélite artificial de masa m que
Exercicios de Física 03a. Vibracións
Exercicios de Física 03a. Vibracións Problemas 1. No sistema da figura, un corpo de 2 kg móvese a 3 m/s sobre un plano horizontal. a) Determina a velocidade do corpo ó comprimirse 10 cm o resorte. b) Cal
PROBA DE AVALIACIÓN DO BACHARELATO PARA O ACCESO Á UNIVERSIDADE (ABAU) CONVOCATORIA DE XUÑO Curso
PROBA DE AVALIACIÓN DO BACHARELATO PARA O ACCESO Á UNIVERSIDADE (ABAU) CONVOCATORIA DE XUÑO Curso 2017-2018 Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades
EXERCICIOS DE ÁLXEBRA. PAU GALICIA
Maemáicas II EXERCICIOS DE ÁLXEBRA PAU GALICIA a) (Xuño ) Propiedades do produo de marices (só enuncialas) b) (Xuño ) Sexan M e N M + I, onde I denoa a mariz idenidade de orde n, calcule N e M 3 Son M
FÍSICA. ) xiran arredor da Terra con órbitas estables de diferente raio sendo r A. > m B
ÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada apartado). Cuestións 4 puntos ( cada
Tema 3. Espazos métricos. Topoloxía Xeral,
Tema 3. Espazos métricos Topoloxía Xeral, 2017-18 Índice Métricas en R n Métricas no espazo de funcións Bólas e relacións métricas Definición Unha métrica nun conxunto M é unha aplicación d con valores
XEOMETRÍA NO ESPAZO. - Se dun vector se coñecen a orixe, o módulo, a dirección e o sentido, este está perfectamente determinado no espazo.
XEOMETRÍA NO ESPAZO Vectores fixos Dos puntos do espazo, A e B, determinan o vector fixo AB, sendo o punto A a orixe e o punto B o extremo, é dicir, un vector no espazo é calquera segmento orientado que
PAU XUÑO 2012 MATEMÁTICAS II
PAU Código: 6 XUÑO 01 MATEMÁTICAS II (Responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio = 3 puntos, exercicio 3= puntos, exercicio
ÓPTICA- A LUZ Problemas PAAU
ÓPTICA- A LUZ Problemas PAAU XUÑO-96 CUESTION 2. opa Disponse de luz monocromática capaz de extraer electróns dun metal. A medida que medra a lonxitude de onda da luz incidente, a) os electróns emitidos
PAU XUÑO 2014 FÍSICA
PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica), problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución
MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos)
21 MATEMÁTICAS (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 Dada a matriz a) Calcula os valores do parámetro m para os que A ten inversa.
Física e Química 4º ESO
Física e Química 4º ESO DEPARTAMENTO DE FÍSICA E QUÍMICA Física: Temas 1 ao 6. 01/03/07 Nome: Cuestións 1. Un móbil ten unha aceleración de -2 m/s 2. Explica o que significa isto. 2. No medio dunha tormenta
PAU XUÑO 2015 FÍSICA
PAU XUÑO 2015 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución
Eletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::...
Eletromagnetismo Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística Lista -.1 - Mostrar que a seguinte medida é invariante d 3 p p 0 onde: p 0 p + m (1)
Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 FÍSICA
Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 Código: 23 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado)
Exercicios de Física 03b. Ondas
Exercicios de Física 03b. Ondas Problemas 1. Unha onda unidimensional propágase segundo a ecuación: y = 2 cos 2π (t/4 x/1,6) onde as distancias se miden en metros e o tempo en segundos. Determina: a) A
Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018 FÍSICA
Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018 Código: 23 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado)
Procedementos operatorios de unións non soldadas
Procedementos operatorios de unións non soldadas Técnicas de montaxe de instalacións Ciclo medio de montaxe e mantemento de instalacións frigoríficas 1 de 28 Técnicas de roscado Unha rosca é unha hélice
ln x, d) y = (3x 5 5x 2 + 7) 8 x
EXERCICIOS AUTOAVALIABLES: CÁLCULO DIFERENCIAL. Deriva: a) y 7 6 + 5, b) y e, c) y e) y 7 ( 5 ), f) y ln, d) y ( 5 5 + 7) 8 n e ln, g) y, h) y n. Usando a derivada da función inversa, demostra que: a)
PAU XUÑO 2016 FÍSICA
PAU XUÑO 2016 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución
1. Un saltador de trampolín, mentras realiza o seu salto manten constante: A/ O momento de inercia. B/ A velocidad angular. C/ O momento angular.
EXAMEN 1ª AVALIACION FISICA 2º BACHARELATO PROBLEMAS 1. Unha pelota de 2 kg de masa esbara polo tellado que forma un ángulo de 30º coa horizontal e, cando chega ó extremo, queda en libertade cunha velocidade
Exercicios de Física 01. Gravitación
Exercicios de Física 01. Gravitación Problemas 1. A lúa ten unha masa aproximada de 6,7 10 22 kg e o seu raio é de 1,6 10 6 m. Achar: a) A distancia que recorrerá en 5 s un corpo que cae libremente na
Física e química 4º ESO. As forzas 01/12/09 Nome:
DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Física e química 4º ESO As forzas 01/12/09 Nome: [6 Ptos.] 1. Sobre un corpo actúan tres forzas: unha de intensidade 20 N cara o norte, outra de 40 N cara o nordeste
PROBLEMAS E CUESTIÓNS DE GRAVITACIÓN
PROBLEMAS E CUESTIÓNS DE GRAVITACIÓN "O que sabemos é unha pinga de auga, o que ignoramos é o océano." Isaac Newton 1. Un globo aerostático está cheo de gas Helio cun volume de gas de 5000 m 3. O peso
PAU XUÑO 2011 MATEMÁTICAS II
PAU XUÑO 2011 MATEMÁTICAS II Código: 26 (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio 2= 3 puntos, exercicio
MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos)
1 MATEMÁTICAS (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos) Opción 1. Dada a matriz a) Calcula os valores do parámetro m para os
Física P.A.U. ÓPTICA 1 ÓPTICA
íica P.A.U. ÓPTICA ÓPTICA INTRODUCIÓN MÉTODO. En xeral: Debúxae un equema co raio. Compárae o reultado do cálculo co equema. 2. No problema de lente: Trázae un raio paralelo ao eixe óptico que ao chegar
ELECTROMAGNETISMO Problemas PAAU
ELECTROMAGNETISMO Problemas PAAU XUÑO-96 PROBLEMA 2. op B Dadas as cargas puntuais q 1 = 80 µc, q 2 = -80 µc y q 3 = 40 µc situadas nos puntos A (-2,0), B(2,0) y C(0,2) respectivamente (coordenadas en
Exercicios de Física 04. Óptica
Exercicios de Física 04. Óptica Problemas 1. Unha lente converxente ten unha distancia focal de 50 cm. Calcula a posición do obxecto para que a imaxe sexa: a) real e tres veces maior que o obxecto, b)
FISICA 2º BACH. CURSO 99-00
26/11/99 1. Unha polea de 5 cm de radio leva enrolada unha corda da cal pende un corpo de 20 g, sendo o momento da inercia da polea 2.10-5 kg.m -2. Calcular: a) a aceleración do corpo; b) a enería cinética
IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes
IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes 1.- Distancia entre dous puntos Se A e B son dous puntos do espazo, defínese a distancia entre A e B como o módulo
Problemas y cuestiones de electromagnetismo
Problemas y cuestiones de electromagnetismo 1.- Dúas cargas eléctricas puntuais de 2 e -2 µc cada unha están situadas respectivamente en (2,0) e en (-2,0) (en metros). Calcule: a) campo eléctrico en (0,0)
CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4
CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4 2013 C.2. Se se desexa obter unha imaxe virtual, dereita e menor que o obxecto, úsase: a) un espello convexo; b)unha lente converxente; c) un espello cóncavo.
A proba constará de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta.
Páxina 1 de 9 1. Formato da proba Formato proba constará de vinte cuestións tipo test. s cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Puntuación Puntuación: 0.5
CALCULO DA CONSTANTE ELASTICA DUN RESORTE
11 IES A CAÑIZA Traballo de Física CALCULO DA CONSTANTE ELASTICA DUN RESORTE Alumno: Carlos Fidalgo Giráldez Profesor: Enric Ripoll Mira Febrero 2015 1. Obxectivos O obxectivo da seguinte practica é comprobar,
Exercicios de Física 02b. Magnetismo
Exercicios de Física 02b. Magnetismo Problemas 1. Determinar el radio de la órbita descrita por un protón que penetra perpendicularmente a un campo magnético uniforme de 10-2 T, después de haber sido acelerado
PAU XUÑO 2010 FÍSICA
PAU XUÑO 1 Cóigo: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 caa cuestión, teórica ou practica) Problemas 6 puntos (1 caa apartao) Non se valorará a simple anotación un ítem como solución ás cuestións;
Tema 1. Espazos topolóxicos. Topoloxía Xeral, 2016
Tema 1. Espazos topolóxicos Topoloxía Xeral, 2016 Topoloxía e Espazo topolóxico Índice Topoloxía e Espazo topolóxico Exemplos de topoloxías Conxuntos pechados Topoloxías definidas por conxuntos pechados:
PAU XUÑO 2016 MATEMÁTICAS II
PAU XUÑO 06 Código: 6 MATEMÁTICAS II (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio = 3 puntos, exercicio = 3 puntos, exercicio
Probas de acceso a ciclos formativos de grao superior CSPEB03. Código. Proba de. Física
Probas de acceso a ciclos formativos de grao superior Proba de Física Código CSPEB03 1. Formato da proba A proba consta de cinco problemas e nove cuestións, distribuídas así: Problema 1: dúas cuestións.
PAU XUÑO 2010 MATEMÁTICAS II
PAU XUÑO 010 MATEMÁTICAS II Código: 6 (O alumno/a deber responder só aos eercicios dunha das opcións. Puntuación máima dos eercicios de cada opción: eercicio 1= 3 puntos, eercicio = 3 puntos, eercicio
ENERXÍA, TRABALLO E POTENCIA
NRXÍA, TRABALLO POTNCIA NRXÍA Pódese definir enerxía coo a capacidade que ten un corpo para realizar transforacións nel eso ou noutros corpos. A unidade de enerxía no SI é o Joule (J) pero é frecuente
MATEMÁTICAS. PRIMEIRA PARTE (Parte Común) ), cadradas de orde tres, tales que a 21
PRIMEIRA PARTE (Parte Común) (Nesta primeira parte tódolos alumnos deben responder a tres preguntas. Unha soa pregunta de cada un dos tres bloques temáticos: Álxebra Lineal, Xeometría e Análise. A puntuación