PAU XUÑO 2011 FÍSICA
|
|
- ÊΦάνης Αποστολίδης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 PAU XUÑO 2011 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución ás cuestiones; deben ser razoadas. Pódese usar calculadora sempre que non sexa programable nin memorice texto. O alumno elixirá unha das dúas opcións. C.1.- Nun sistema illado, dúas masas idénticas M están separadas unha distancia a. Nun punto C da recta CE perpendicular a a por a/2 colócase outra nova masa m en repouso. Que lle ocorre a m?: a) desprázase ata O e para; b) afástase das masas M; c) realiza un movemento oscilatorio entre C e E. C.2.- Unha onda de luz é polarizada por un polarizador A e atravesa un segundo polarizador B colocado despois de A. Cal das seguintes afirmacións é correcta con respecto á luz despois de B?: a) non hai luz se A e B son paralelos entre si; b) non hai luz se A e B son perpendiculares entre si; c) hai luz independentemente da orientación relativa de A e B. C.3.- Con un raio de luz de lonxitude de onda non se produce efecto fotoeléctrico nun metal. Para conseguilo débese aumentar: a) a lonxitude de onda b) a frecuencia ν; c) o potencial de freado. C.4.- Emprégase un resorte para medir a súa constante elástica polo método estático e polo dinámico, aplicando a lei de Hooke e o período en función da masa, respectivamente. Obsérvase certa diferenza entre os resultados obtidos por un e outro método; a que pode ser debido? P.1.- Unha carga q de 2mC está fixa nun punto A(0,0), que é o centro dun triángulo equilátero de lado 3 3 m. Tres cargas iguales Q están nos vértices e a distancia de cada Q a A é 3 m. O conxunto está en equilibrio electrostático; a) calcula o valor de Q; b) a enerxía potencial de cada Q; c) calcula a enerxía posta en xogo para que o triángulo rote 45 º arredor dun eixe que pasa por A e é perpendicular ó plano do papel. (Dato K = NC -2 m 2 ). P.2.- Un péndulo simple de lonxitude l = 2,5 m, desvíase do equilibrio ata un punto a 0,03 m de altura e sóltase. Calcula: a) a velocidade máxima; b) o período; c) a amplitude do movemento harmónico simple descrito polo péndulo. (Dato g = 9,8 m s -2 ). C.1.- Unha partícula cargada atravesa un campo magnético B con velocidade v. A continuación, fai o mesmo outra partícula coa mesma v, dobre masa e tripla carga, e en ambos os casos a traxectoria é idéntica. Xustifica cal é a resposta correcta: a) non é posible; b) só é posible se a partícula inicial é un electrón; c) é posible nunha orientación determinada. 232 Th C.2.- O elemento radioactivo 90 desintégrase emitindo unha partícula alfa, dúas partículas beta e unha radiación gamma. O elemento resultante é: a) 88 X ; b) 89 Y ; c) 90 Z. C.3.- Unha espira móvese no plano XY onde tamén hai unha zona cun campo magnético B constante en dirección +Z. Aparece na espira unha corrente en sentido antihorario: a) se a espira entra na zona de B; b) cando sae desa zona; c) cando se despraza por esa zona. C.4.- Na práctica para medir a constante elástica k polo método dinámico, obtense a seguinte táboa. Calcula a constante do resorte. M(g) T(s) 0,20 0,28 0,34 0,40 0,44 P.1.- Un raio de luz produce efecto fotoeléctrico nun metal. Calcula: a) a velocidade dos electróns se o potencial de freado é de 0,5 V; b) a lonxitude de onda necesaria se a frecuencia limiar é υ 0 = Hz e o potencial de freado é 1 V; c) aumenta a velocidade dos electróns incrementando a intensidade da luz incidente? (Datos: 1nm = 10-9 m; c = ms -1 ; e = -1, C; m e = 9, kg; h = 6, Js -1 ). P.2.- Quérese formar unha imaxe real e de dobre tamaño dun obxecto de 1,5 cm de altura. Determina: a) a posición do obxecto se se usa un espello cóncavo de R = 15 cm; b) a posición do obxecto se se usa unha lente converxente coa mesma focal que o espello; c) debuxa a marcha dos raios para os dous apartados anteriores.
2 PAU SETEMBRO 2011 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valora a simple anotación dun ítem como solución ás cuestións; han ser razoadas. Pódese usar calculadora sempre que non sexa programable nin memorice texto. O alumno elixirá unha das dúas opcións C.1.-Plutón describe unha órbita elíptica arredor do Sol. Indica cál das seguintes magnitudes é maior no afelio (punto máis afastado do Sol) que no perihelio (punto máis próximo ao Sol): a) momento angular respecto á posición do Sol; b) momento lineal; c) enerxía potencial. C.2. -Para obter unha imaxe na mesma posición en que está colocado o obxecto, que tipo de espello e en que lugar ten que colocarse o obxecto?: a) cóncavo e obxecto situado no centro de curvatura; b) convexo e obxecto situado no centro de curvatura; c) cóncavo e obxecto situado no foco. C.3. -As partículas beta ( ) están formadas por: a) electróns que proceden da codia dos átomos; b) electróns que proceden do núcleo dos átomos; c) neutróns que proceden do núcleo dos átomos. C.4. -Na medida da constante elástica dun resorte polo método dinámico, que influencia ten no período: a) a amplitude; b) o número de oscilacións; c) a masa do resorte? Que tipo de gráfica se constrúe a partir das magnitudes medidas? P.1. -Unha carga puntual Q ocupa a posición (0,0) do plano XY no baleiro. Nun punto A do eixe X o potencial é V = -100 V e o campo eléctrico é E 10iN / C (coordenadas en metros): a) calcula a posición do punto A e o valor de Q; b) determina o traballo necesario para levar un protón dende o punto B (2,2) ata o punto A; c) fai unha representación gráfica aproximada da enerxía potencial do sistema en función da distancia entre ambas as dúas cargas. Xustifica a resposta. (Datos: carga do protón: 1, C; K = N m 2 C -2 ). P.2. -Unha onda harmónica transversal propágase no sentido positivo do eixe x con velocidade v =20 ms -1. A amplitude da onda é A = 0,10m e a súa frecuencia ι ν =50 Hz: a) escribe a ecuación da onda; b) calcula a elongación e a aceleración do punto situado en x = 2 m no instante t = 0,1s; c) cal é a distancia mínima entre dous puntos situados en oposición de fase?. C.1. -Analiza cál das seguintes afirmacións referentes a unha partícula cargada é verdadeira e xustifica por qué: a) se se move nun campo magnético uniforme, aumenta a súa velocidade cando se despraza na dirección das liñas do campo; b) pode moverse nunha rexión na que existe un campo magnético e un campo eléctrico sen experimentar ningunha forza; c) o traballo que realiza o campo eléctrico para desprazar esa partícula depende do camiño seguido. C.2. -Razoa cál das seguintes afirmacións referidas á enerxía dun movemento ondulatorio é correcta: a) é proporcional á distancia ao foco emisor de ondas; b) é inversamente proporcional á frecuencia da onda; c) é proporcional ao cadrado da amplitude da onda. C.3. -Unha rocha contén o mesmo número de núcleos de dous isótopos radiactivos A e B, de períodos de semidesintegración de 1600 anos e 1000 anos respectivamente; para estes isótopos cúmprese que: a) o A ten maior actividade radiactiva que B; b) B ten maior actividade que A; c) ambos os dous teñen a mesma actividade. C.4. -Na práctica da medida de g cun péndulo: como conseguirías (sen variar o valor de g) que o péndulo duplique o número de oscilacións por segundo? Inflúe o valor da masa do péndulo no valor do período?. P.1. -Un satélite artificial de 200 kg describe unha órbita circular a unha altura de 650 km sobre a Terra. Calcula: a) o período e a velocidade do satélite na órbita; b) a enerxía mecánica do satélite; c) o cociente entre os valores da intensidade de campo gravitatorio terrestre no satélite e na superficie da Terra. (Datos: M T = 5, kg; R T =6, m; G = 6, Nm 2 kg -2 ). P.2. -Sobre un prisma equilátero de ángulo 60 (ver figura), incide un raio luminoso monocromático que forma un ángulo de 50 coa normal á cara AB. Sabendo que no interior do prisma o raio é paralelo á base AC: a) calcula o índice de refracción do prisma; b) determina o ángulo de desviación do raio ao saír do prisma, debuxando a traxectoria que segue o raio; c) explica se a frecuencia e a lonxitude de onda correspondentes ao raio luminoso son distintas, ou non dentro e fóra do prisma. (n aire =1).
3 CONVOCATORIA DE XUÑO Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades ou con unidades incorrectas... 0,25 (por problema) Os erros de cálculo,... 0,25 (por problema) Nas cuestións teóricas consideraranse tamén válidas as xustificacións por exclusión das cuestións incorrectas. C.1 Nun sistema illado, dúas masas idénticas M están separadas unha distancia a. Nun punto C da recta CE perpendicular a a por a/2 colócase outra nova masa m en repouso. Que lle ocorre a m?: a) desprázase ata O e para; b) afástase das masas M; c) realiza un movemento oscilatorio entre C e E. SOL. c C.2.- Unha onda de luz é polarizada por un polarizador A e atravesa un segundo polarizador B colocado despois de A. Cal das seguintes afirmacións é correcta con respecto á luz despois de B?: a) non hai luz se A e B son paralelos entre si; b) non hai luz se A e B son perpendiculares entre si; c) hai luz independentemente da orientación relativa de A e B. C.3.- Cun raio de luz de lonxitude de onda non se produce efecto fotoeléctrico nun metal. Para conseguilo débese aumentar: a) a lonxitude de onda b) a frecuencia ν; c) o potencial de freado. C.4.-Emprégase un resorte para medir a súa constante elástica polo método estático e polo dinámico, aplicando a lei de Hooke e o período en función da masa, respectivamente. Obsérvase unha certa diferenza entre os resultados obtidos por un e outro método; a qué pode ser debido? P.1.- Unha carga q de 2mC está fixa no punto A(0,0), que é o centro dun triángulo equilátero de lado 3 3 m. Tres cargas iguais Q están nos vértices e a distancia de cada Q a A é 3 m. O conxunto está en equilibrio electrostático: a) calcula o valor de Q; b) a enerxía potencial de cada Q; c) a enerxía posta en xogo para que o triángulo rote 45º arredor dun eixe que pasa por A e é perpendicular ó plano do papel. (Dato K = NC -2 m 2 ). P.2.- Un péndulo simple de lonxitude l = 2,5m, desvíase do equilibrio ata un punto a 0,03m de altura e sóltase. Calcula: a) a velocidade máxima; b) o período; c) a amplitude do movemento harmónico simple descrito polo péndulo.(dato g = 9,8m s -2 ) C.1- Unha partícula cargada atravesa un campo magnético B con velocidade v. A continuación, fai o mesmo outra partícula coa mesma v, dobre masa e triple carga, e en ambos os casos a traxectoria é idéntica. Xustifica cal é a resposta correcta: a) non é posible; b) só é posible se a partícula inicial é un electrón; c) é posible nunha orientación determinada. 232 C.2.- O elemento radioactivo 90 Th desintégrase emitindo unha partícula alfa, dúas partículas beta e unha radiación gamma. O elemento resultante é: a) X ; b) 89 Y ; c) 90 Z. C.3.- Unha espira móvese no plano XY, onde tamén hai unha zona cun campo magnético B constante en dirección +Z. Aparece na espira unha corrente en sentido antihorario: a) se a espira entra na zona de B; b) cando sae desa zona; c) cando se despraza por esa zona. C.4- Na práctica para medir a constante elástica k polo método dinámico, obtense a seguinte táboa. Calcula a constante do resorte. M(g) T(s) 0,20 0,28 0,34 0,40 0,44 a) Carga= - 3, C.... b) Enerxía potencial... E P =+2, J... c) Enerxía posta en xogo= 0... a) Velocidade máx. = 0,77 m/s... b) Período= 3,2 s... c) Amplitude: 0,39 m..... SOL: c SOL: c SOL: b k= 5,03 Nm 1 p
4 P.1.- Un raio de luz produce efecto fotoeléctrico nun metal. Calcula: a) a velocidade dos electróns se o potencial de freado é de 0,5V; b) a lonxitude de onda necesaria se a frecuencia umbral é υ 0 = Hz e o potencial de freado é 1V; c) aumenta a velocidade dos electróns incrementando a intensidade da luz incidente? (Datos 1nm = 10-9 m; c = ms -1 e = -1, C m e = 9, kg h = 6, Js). P.2.- Quérese formar unha imaxe real e de dobre tamaño dun obxecto de 1,5 cm de altura. Determina: a) a posición do obxecto se se usa un espello cóncavo de R = 15cm; b) a posición do obxecto se se usa unha lente converxente coa mesma focal que o espello; c) debuxa a marcha dos raios para os dous apartados anteriores. a) Velocidade v= 4, m/s... 0 b) Lonx. de onda = 2, m..0 c) Xustificación correcta 0 a) Cálculo da posición no espello s = -11,25 cm... 0 b) Cálculo da posición na lente s = -11,25 cm... 0 c) Marcha dos raios (0,5 para cada apartado) CONVOCATORIA DE SETEMBRO Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades ou con unidades incorrectas... 0,25 (por problema) Os erros de cálculo,... 0,25 (por problema) Nas cuestións teóricas consideraranse tamén válidas as xustificacións por exclusión das cuestións incorrectas. C.1 Plutón describe unha órbita elíptica arredor do Sol. Indica cal das seguintes magnitudes é maior no afelio (punto máis afastado do Sol) que no perihelio (punto máis próximo ao Sol): a) momento angular respecto á posición do Sol; b) momento lineal; c) enerxía potencial. C.2. Para obter unha imaxe na mesma posición en que está colocado o obxecto, que tipo de espello e en que lugar ten que colocarse o obxecto?: a) cóncavo e obxecto situado no centro de curvatura; b) convexo e obxecto situado no centro de curvatura; c) cóncavo e obxecto situado no foco. C.3.- As partículas beta ( ) están formadas por: a) electróns que proceden da codia dos átomos; b) electróns que proceden do núcleo de los átomos; c) neutróns que proceden do núcleo dos átomos. C.4.- Na medida da constante elástica dun resorte polo método dinámico, Que influencia ten no período?: a) a amplitude; b)o número de oscilacións; c) a masa do resorte. Que tipo de gráfica se constrúe a partir das magnitudes medidas? P.1. Unha carga puntual Q ocupa a posición (0,0) do plano XY no baleiro. Nun punto A do eixe X o potencial é V = -100V e o campo eléctrico é E 10iN / C (coordenadas en metros): a) calcula a posición del punto A e o valor de Q; b) determina o traballo necesario para levar un protón dende o punto B (2,2) ata o punto A; c) fai unha representación gráfica aproximada da enerxía potencial dosistema en función da distancia entre ambas as cargas. Xustifica a respuesta. (Datos: carga do protón: 1, C; K = N m 2 C -2 ). P.2. Unha onda harmónica transversal propágase no sentido positivo doeixe X con velocidad v = 20ms -1. A amplitude da onda é A = 0,10m e a súa frecuencia é ν = 50Hz: a) escribe a ecuación da onda; b) calcula a elongación e a aceleración do punto situado en x = 2m no instante t = 0,1s; c) cal é la distancia mínima entre dous puntos situados en oposición de fase?. C.1 Analiza cal de las siguientes afirmacións referentes a unha partícula cargada é verdadeira e xustifica por qué: a) se se mueve nun campo magnético uniforme aumenta a súa velocidad cando se SOL. c SOL. a Cada apartado 0,25 p; máx 1 p a) Posición: (10,0) (m).... 0,50 Carga= - 1, C.... 0,50 b) Traballo realizado: -4, J... 0 c) Representación gráfica a) Ecuación da onda: x= 0,1 sen(100 t-5 x) (m) b) Elongación: 0 m... 0,50 Aceleración: 0 ms ,50 c) Distancia mínima: 0,2 m... 0 SOL:b
5 despraza na dirección das líñas do campo; b) pode moverse nunha rexión na que existe un campo magnético e un campo eléctrico sen experimentar ningunha forza; c) o traballo que realiza o campo eléctrico para desprazar esa partícula depende do camiño seguido. C.2. Razoa cal das seguintes afirmacións referida á enerxía dun movemento ondulatorio é correcta: a) é proporcional á distancia ao foco emisor de ondas; b) é inversamente proporcional á frecuencia de onda; c) é proporcional ao cadrado da amplitude da onda. C.3. Unha rocha contén o mesmo número de núcleos de dous isótopos radiactivos A e B de períodos de semidesintegración de 1600 anos e 1000 anos respectivamente; para estes isótopos cúmprese que: a)o A ten maior actividade radiactiva que B; b) B ten maior actividade que A; c) ambos teñen a mesma actividade. C.4 Na práctica da medida de g cun péndulo: cómo conseguirías (sen variar o valor de g) que o péndulo duplique o número de oscilacións por segundo? Inflúe o valor da masa do péndulo no valor do período? P.1. Un satélite artificial de 200kg describe unha órbita circular a unha altura de 650 km sobre a Terra. Calcula: a) o periodo e a velocidade do satélite na órbita; b) a enerxía mecánica do satélite; c) o cociente entre os valores da intensidade de campo gravitatorio terrestre no satélite e na superficie da Terra. (Datos: M T = 5, kg; R T = 6, m; G = 6, Nm 2 kg -2 ). P.2. Sobre un prisma equilátero de ángulo 60 (ver figura), incide un raio luminoso monocromático que forma un ángulo de 50 coa normal á cara AB. Sabendo que no interior do prisma o raio é paralelo á base AC: a) calcula o índice de refracción do prisma; b) determina o ángulo de desviación do raio ó saír do prisma, debuxando a traxectoria que segue o raio; c) explica se a frecuencia e a lonxitude de onda correspondentes ao raio luminoso son distintas, ou non, dentro e fóra do prisma.( n aire =1) SOL: c SOL: b Máx 1 p a) Velocidade v= 7, m/s 0,50 Período: T= 5, s. 0,50 b) Enerxía mecánica: - 5, J 0 c) Relación entre intensidades: 0, a) Índice de refracción do prisma: n= 1, b) Ángulo de saída: 50º.. 0 c) Xustificación da variación da lonxitude de onda... 0
PAU XUÑO 2012 FÍSICA
PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución
PAU Xuño 2011 FÍSICA OPCIÓN A
PAU Xuño 20 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución
FÍSICA. = 9, kg) = -1, C; m e
22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestións 4 puntos (1
Ano 2018 FÍSICA. SOL:a...máx. 1,00 Un son grave ten baixa frecuencia, polo que a súa lonxitude de onda é maior.
ABAU CONVOCAT ORIA DE SET EMBRO Ano 2018 CRIT ERIOS DE AVALI ACIÓN FÍSICA (Cód. 23) Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades ou con unidades incorrectas...
FÍSICA. = 4π 10-7 (S.I.)).
22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas, 6 puntos (1 cada apartado). Cuestións, 4 puntos
EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO
Física Exercicios de Selectividade Páxina 1 / 8 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 15-16 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) CUESTIÓN.- Un satélite artificial de masa m que
EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO
Física Exercicios de Selectividade Páxina 1 / 9 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 16-17 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) PROBLEMA. Xuño 2016. A nave espacial Discovery,
Física P.A.U. ÓPTICA 1 ÓPTICA
Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un raio de luz de frecuencia 5 10 14 Hz incide, cun ángulo de incidencia de 30, sobre unha lámina de vidro de caras plano-paralelas de espesor
FÍSICA OPCIÓN 1. ; calcula: a) o período de rotación do satélite, b) o peso do satélite na órbita. (Datos R T. = 9,80 m/s 2 ).
22 Elixir e desenrolar unha das dúas opcións propostas. FÍSICA Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple
Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS
Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS PROBLEMAS M.H.S.. 1. Dun resorte elástico de constante k = 500 N m -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase
EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO
Física Exercicios de Selectividade Páxina 1 / 10 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 17-18 http://ciug.gal/exames.php TEMA 1. GRAVITACIÓN. 1) PROBLEMA. Xuño 2017. Un astronauta está no interior
Física P.A.U. ÓPTICA 1 ÓPTICA
Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un raio de luz de frecuencia 5 10¹⁴ Hz incide cun ángulo de incidencia de 30 sobre unha lámina de vidro de caras plano-paralelas de espesor 10
Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO
Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO PROBLEMAS CAMPO ELECTROSTÁTICO 1. Dúas cargas eléctricas de 3 mc están situadas en A(4, 0) e B(-4, 0) (en metros). Calcula: a) O campo eléctrico en C(0,
24/10/06 MOVEMENTO HARMÓNICO SIMPLE
NOME: CALIFICACIÓN PROBLEMAS (6 puntos) 24/10/06 MOVEMENTO HARMÓNICO SIMPLE 1. Dun resorte elástico de constante k= 500 Nm -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase
FÍSICA. 2.- Cando se bombardea nitróxeno 14 7 N con partículas alfa xérase o isótopo 17 8O e outras partículas. A
22 FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple
PROBA DE AVALIACIÓN DO BACHARELATO PARA O ACCESO Á UNIVERSIDADE (ABAU) CONVOCATORIA DE XUÑO Curso
PROBA DE AVALIACIÓN DO BACHARELATO PARA O ACCESO Á UNIVERSIDADE (ABAU) CONVOCATORIA DE XUÑO Curso 2017-2018 Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades
PAU XUÑO 2014 FÍSICA
PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica), problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución
EJERCICIOS DE VIBRACIONES Y ONDAS
EJERCICIOS DE VIBRACIONES Y ONDAS 1.- Cando un movemento ondulatorio se atopa na súa propagación cunha fenda de dimensións pequenas comparables as da súa lonxitude de onda prodúcese: a) polarización; b)
FÍSICA. ) xiran arredor da Terra con órbitas estables de diferente raio sendo r A. > m B
ÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada apartado). Cuestións 4 puntos ( cada
PAU XUÑO 2016 FÍSICA
PAU XUÑO 2016 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución
FISICA 2º BAC 27/01/2007
POBLEMAS 1.- Un corpo de 10 g de masa desprázase cun movemento harmónico simple de 80 Hz de frecuencia e de 1 m de amplitude. Acha: a) A enerxía potencial cando a elongación é igual a 70 cm. b) O módulo
Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018 FÍSICA
Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018 Código: 23 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado)
Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN
Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS SATÉLITES 1. O período de rotación da Terra arredor del Sol é un año e o radio da órbita é 1,5 10 11 m. Se Xúpiter ten un período de aproximadamente 12
PAU XUÑO 2015 FÍSICA
PAU XUÑO 2015 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución
Código: 25 MODELO DE EXAME ABAU FÍSICA OPCIÓN A OPCIÓN B
ABAU Código: 25 MODELO DE EXAME FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como
PAAU (LOXSE) Setembro 2009
PAAU (LOXSE) Setembro 2009 Código: 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada
PAU XUÑO Código: 25 FÍSICA OPCIÓN A OPCIÓN B
PAU XUÑO 013 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN
Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS 1. A luz do Sol tarda 5 10² s en chegar á Terra e 2,6 10³ s en chegar a Xúpiter. a) O período de Xúpiter orbitando arredor do Sol. b) A velocidade orbital
Código: 25 PAU XUÑO 2014 FÍSICA OPCIÓN A OPCIÓN B
PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
PAU Xuño Código: 25 FÍSICA OPCIÓN A OPCIÓN B
PAU Xuño 00 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución
Problemas y cuestiones de electromagnetismo
Problemas y cuestiones de electromagnetismo 1.- Dúas cargas eléctricas puntuais de 2 e -2 µc cada unha están situadas respectivamente en (2,0) e en (-2,0) (en metros). Calcule: a) campo eléctrico en (0,0)
PAAU (LOXSE) Xuño 2002
PAAU (LOXSE) Xuño 00 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica).
Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a
Física P.A.U. ELECTOMAGNETISMO 1 ELECTOMAGNETISMO INTODUCIÓN MÉTODO 1. En xeral: Debúxanse as forzas que actúan sobre o sistema. Calcúlase a resultante polo principio de superposición. Aplícase a 2ª lei
EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS. 3. Cal é o vector de posición da orixe de coordenadas O? Cales son as coordenadas do punto O?
EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS Representa en R os puntos S(2, 2, 2) e T(,, ) 2 Debuxa os puntos M (, 0, 0), M 2 (0,, 0) e M (0, 0, ) e logo traza o vector OM sendo M(,, ) Cal é o vector de
Exercicios de Física 02a. Campo Eléctrico
Exercicios de Física 02a. Campo Eléctrico Problemas 1. Dúas cargas eléctricas de 3 mc están situadas en A(4,0) e B( 4,0) (en metros). Caalcula: a) o campo eléctrico en C(0,5) e en D(0,0) b) o potencial
PAU SETEMBRO 2013 FÍSICA
PAU SETEMBRO 013 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
Código: 25 PAU XUÑO 2012 FÍSICA OPCIÓN A OPCIÓN B
PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 FÍSICA
Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 Código: 23 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado)
Código: 25 XUÑO 2012 PAU FÍSICA OPCIÓN A OPCIÓN B
PAU Código: 25 XUÑO 2012 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
ÓPTICA- A LUZ Problemas PAAU
ÓPTICA- A LUZ Problemas PAAU XUÑO-96 CUESTION 2. opa Disponse de luz monocromática capaz de extraer electróns dun metal. A medida que medra a lonxitude de onda da luz incidente, a) os electróns emitidos
Código: 25 XUÑO 2014 PAU FÍSICA OPCIÓN A OPCIÓN B
PAU Código: 25 XUÑO 204 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución
PAAU (LOXSE) Setembro 2004
PAAU (LOXSE) Setembro 004 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou
Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018
Proba de Avaliación do Bacharelato para o Acceso á Universidade Código: 23 XUÑO 2018 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado).
Código: 25 SETEMBRO 2013 PAU FÍSICA OPCIÓN A OPCIÓN B
PAU Código: 25 SETEMBRO 2013 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como
PAU. Código: 25 SETEMBRO 2015 FÍSICA OPCIÓN A OPCIÓN B
PAU Código: 25 SETEMBRO 2015 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como
Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS
Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS INTRODUCIÓN MÉTODO 1. En xeral: a) Debúxanse as forzas que actúan sobre o sistema. b) Calcúlase cada forza. c) Calcúlase a resultante polo principio
Exame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema)
Exame tipo A. Proba obxectiva (Valoración: 3 puntos) 1. - Un disco de 10 cm de raio xira cunha velocidade angular de 45 revolucións por minuto. A velocidade lineal dos puntos da periferia do disco será:
PAU XUÑO 2010 FÍSICA
PAU XUÑO 1 Cóigo: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 caa cuestión, teórica ou practica) Problemas 6 puntos (1 caa apartao) Non se valorará a simple anotación un ítem como solución ás cuestións;
PAU Setembro 2010 FÍSICA
PAU Setembro 010 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
PAAU (LOXSE) Setembro 2006
PAAU (LOXSE) Setembro 2006 Código: 22 FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (,5 cada apartado). Cuestións 4 puntos ( cada cuestión, teórica
PAU XUÑO 2011 MATEMÁTICAS II
PAU XUÑO 2011 MATEMÁTICAS II Código: 26 (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio 2= 3 puntos, exercicio
PAAU (LOXSE) Xuño 2006
PAAU (LOXSE) Xuño 006 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica).
Tema: Enerxía 01/02/06 DEPARTAMENTO DE FÍSICA E QUÍMICA
Tema: Enerxía 01/0/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Nome: 1. Unha caixa de 150 kg descende dende o repouso por un plano inclinado por acción do seu peso. Se a compoñente tanxencial do peso é de 735
CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4
CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4 2013 C.2. Se se desexa obter unha imaxe virtual, dereita e menor que o obxecto, úsase: a) un espello convexo; b)unha lente converxente; c) un espello cóncavo.
Exercicios de Física 04. Óptica
Exercicios de Física 04. Óptica Problemas 1. Unha lente converxente ten unha distancia focal de 50 cm. Calcula a posición do obxecto para que a imaxe sexa: a) real e tres veces maior que o obxecto, b)
PAU SETEMBRO 2014 FÍSICA
PAU SETEMBRO 014 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución
PROBLEMAS E CUESTIÓNS DE GRAVITACIÓN
PROBLEMAS E CUESTIÓNS DE GRAVITACIÓN "O que sabemos é unha pinga de auga, o que ignoramos é o océano." Isaac Newton 1. Un globo aerostático está cheo de gas Helio cun volume de gas de 5000 m 3. O peso
1. Un saltador de trampolín, mentras realiza o seu salto manten constante: A/ O momento de inercia. B/ A velocidad angular. C/ O momento angular.
EXAMEN 1ª AVALIACION FISICA 2º BACHARELATO PROBLEMAS 1. Unha pelota de 2 kg de masa esbara polo tellado que forma un ángulo de 30º coa horizontal e, cando chega ó extremo, queda en libertade cunha velocidade
EXERCICIOS DE REFORZO: RECTAS E PLANOS
EXERCICIOS DE REFORZO RECTAS E PLANOS Dada a recta r z a) Determna a ecuacón mplícta do plano π que pasa polo punto P(,, ) e é perpendcular a r Calcula o punto de nterseccón de r a π b) Calcula o punto
Resorte: estudio estático e dinámico.
ESTUDIO DO RESORTE (MÉTODOS ESTÁTICO E DINÁMICO ) 1 Resorte: estudio estático e dinámico. 1. INTRODUCCIÓN TEÓRICA. (No libro).. OBXECTIVOS. (No libro). 3. MATERIAL. (No libro). 4. PROCEDEMENTO. A. MÉTODO
Exercicios de Física 03a. Vibracións
Exercicios de Física 03a. Vibracións Problemas 1. No sistema da figura, un corpo de 2 kg móvese a 3 m/s sobre un plano horizontal. a) Determina a velocidade do corpo ó comprimirse 10 cm o resorte. b) Cal
INTERACCIÓNS GRAVITATORIA E ELECTROSTÁTICA
INTEACCIÓNS GAVITATOIA E ELECTOSTÁTICA AS LEIS DE KEPLE O astrónomo e matemático Johannes Kepler (1571 1630) enunciou tres leis que describen o movemento planetario a partir do estudo dunha gran cantidade
Tema 3. Espazos métricos. Topoloxía Xeral,
Tema 3. Espazos métricos Topoloxía Xeral, 2017-18 Índice Métricas en R n Métricas no espazo de funcións Bólas e relacións métricas Definición Unha métrica nun conxunto M é unha aplicación d con valores
Exercicios de Física 02b. Magnetismo
Exercicios de Física 02b. Magnetismo Problemas 1. Determinar el radio de la órbita descrita por un protón que penetra perpendicularmente a un campo magnético uniforme de 10-2 T, después de haber sido acelerado
Exercicios de Física 01. Gravitación
Exercicios de Física 01. Gravitación Problemas 1. A lúa ten unha masa aproximada de 6,7 10 22 kg e o seu raio é de 1,6 10 6 m. Achar: a) A distancia que recorrerá en 5 s un corpo que cae libremente na
ELECTROMAGNETISMO Problemas PAAU
ELECTROMAGNETISMO Problemas PAAU XUÑO-96 PROBLEMA 2. op B Dadas as cargas puntuais q 1 = 80 µc, q 2 = -80 µc y q 3 = 40 µc situadas nos puntos A (-2,0), B(2,0) y C(0,2) respectivamente (coordenadas en
PAU XUÑO 2010 MATEMÁTICAS II
PAU XUÑO 010 MATEMÁTICAS II Código: 6 (O alumno/a deber responder só aos eercicios dunha das opcións. Punuación máima dos eercicios de cada opción: eercicio 1= 3 punos, eercicio = 3 punos, eercicio 3 =
Probas de acceso a ciclos formativos de grao superior CSPEB03. Código. Proba de. Física
Probas de acceso a ciclos formativos de grao superior Proba de Física Código CSPEB03 1. Formato da proba A proba consta de cinco problemas e nove cuestións, distribuídas así: Problema 1: dúas cuestións.
IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes
IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes 1.- Distancia entre dous puntos Se A e B son dous puntos do espazo, defínese a distancia entre A e B como o módulo
Procedementos operatorios de unións non soldadas
Procedementos operatorios de unións non soldadas Técnicas de montaxe de instalacións Ciclo medio de montaxe e mantemento de instalacións frigoríficas 1 de 28 Técnicas de roscado Unha rosca é unha hélice
Exercicios de Física 03b. Ondas
Exercicios de Física 03b. Ondas Problemas 1. Unha onda unidimensional propágase segundo a ecuación: y = 2 cos 2π (t/4 x/1,6) onde as distancias se miden en metros e o tempo en segundos. Determina: a) A
Física P.A.U. ÓPTICA 1 ÓPTICA
íica P.A.U. ÓPTICA ÓPTICA INTRODUCIÓN MÉTODO. En xeral: Debúxae un equema co raio. Compárae o reultado do cálculo co equema. 2. No problema de lente: Trázae un raio paralelo ao eixe óptico que ao chegar
a) Ao ceibar o resorte describe un MHS, polo tanto correspóndelle unha ecuación para a elongación:
VIBRACIÓNS E ONDAS PROBLEMAS 1. Un sistema cun resorte estirado 0,03 m sóltase en t=0 deixándoo oscilar libremente, co resultado dunha oscilación cada 0, s. Calcula: a) A velocidade do extremo libre ó
Física e Química 4º ESO
Física e Química 4º ESO DEPARTAMENTO DE FÍSICA E QUÍMICA Física: Temas 1 ao 6. 01/03/07 Nome: Cuestións 1. Un móbil ten unha aceleración de -2 m/s 2. Explica o que significa isto. 2. No medio dunha tormenta
A proba constará de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta.
Páxina 1 de 9 1. Formato da proba Formato proba constará de vinte cuestións tipo test. s cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Puntuación Puntuación: 0.5
MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos)
1 MATEMÁTICAS (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos) Opción 1. Dada a matriz a) Calcula os valores do parámetro m para os
FISICA 2º BACH. CURSO 99-00
26/11/99 1. Unha polea de 5 cm de radio leva enrolada unha corda da cal pende un corpo de 20 g, sendo o momento da inercia da polea 2.10-5 kg.m -2. Calcular: a) a aceleración do corpo; b) a enería cinética
Código: 25 XUÑO 2016 PAU FÍSICA OPCIÓN A OPCIÓN B
PAU Código: 5 XUÑO 016 FÍSICA Puntuación máxima: Cuestiones 4 puntos (1 cada cuestión, teórica o práctica). Problemas 6 puntos (1 cada apartado). No se valorará la simple anotación de un ítem cómo solución
b) Segundo os datos do problema, en tres anos queda a metade de átomos, logo ese é o tempo de semidesintegración.
FÍSICA MODERNA FÍSICA NUCLEAR. PROBLEMAS 1. Un detector de radioactividade mide unha velocidade de desintegración de 15 núcleos min -1. Sabemos que o tempo de semidesintegración é de 0 min. Calcula: a)
Materiais e instrumentos que se poden empregar durante a proba
1. Formato da proba A proba consta de cinco problemas e nove cuestións, distribuídas así: Problema 1: dúas cuestións. Problema 2: tres cuestións. Problema 3: dúas cuestións Problema 4: dúas cuestión. Problema
Física e química 4º ESO. As forzas 01/12/09 Nome:
DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Física e química 4º ESO As forzas 01/12/09 Nome: [6 Ptos.] 1. Sobre un corpo actúan tres forzas: unha de intensidade 20 N cara o norte, outra de 40 N cara o nordeste
RADIACTIVIDADE. PROBLEMAS
RADIACTIVIDADE. PROBLEMAS 1. Un detector de radiactividade mide unha velocidade de desintegración de 15 núcleos/minuto. Sabemos que o tempo de semidesintegración é de 0 min. Calcula: a) A constante de
PAU. Código: 25 SETEMBRO 2012 FÍSICA OPCIÓN A OPCIÓN B
PAU Código: 5 SETEMBRO 01 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teóica ou páctica). Poblemas 6 puntos (1 cada apatado). Non se valoaá a simple anotación dun ítem como solución
PAU XUÑO 2012 MATEMÁTICAS II
PAU Código: 6 XUÑO 01 MATEMÁTICAS II (Responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio = 3 puntos, exercicio 3= puntos, exercicio
Tema 4 Magnetismo. 4-5 Lei de Ampere. Campo magnético creado por un solenoide. 4-1 Magnetismo. Experiencia de Oersted
Tema 4 Magnetismo 4-1 Magnetismo. Experiencia de Oersted 4-2 Lei de Lorentz. Definición de B. Movemento dunha carga nun campo magnético. 4-3 Forza exercida sobre unha corrente rectilínea 4-4 Lei de Biot
ln x, d) y = (3x 5 5x 2 + 7) 8 x
EXERCICIOS AUTOAVALIABLES: CÁLCULO DIFERENCIAL. Deriva: a) y 7 6 + 5, b) y e, c) y e) y 7 ( 5 ), f) y ln, d) y ( 5 5 + 7) 8 n e ln, g) y, h) y n. Usando a derivada da función inversa, demostra que: a)
ESTRUTURA ATÓMICA E CLASIFICACIÓN PERIÓDICA DOS ELEMENTOS
Química P.A.U. ESTRUTURA ATÓMICA E CLASIFICACIÓN PERIÓDICA DOS ELEMENTOS ESTRUTURA ATÓMICA E CLASIFICACIÓN PERIÓDICA DOS ELEMENTOS CUESTIÓNS NÚMEROS CUÁNTICOS. a) Indique o significado dos números cuánticos
MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos)
21 MATEMÁTICAS (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 Dada a matriz a) Calcula os valores do parámetro m para os que A ten inversa.
PROBLEMAS CUESTIONS 1.
PROBLMAS 1. Dende un cantil dispárase horizontalmente un proectil de 2 kg cunha velocidade inicial de 100 m/s. Se cando o proectil choca contra o mar a súa velocidade é de 108 m/s, calcular: a/ A enería
1. Formato da proba [CS.PE.B03]
1. Formato da proba A proba consta de cinco problemas e nove cuestións, distribuídas así: Problema 1: tres cuestións. Problema 2: dúas cuestións. Problema 3: dúas cuestións Problema 4: dúas cuestión. Problema
Métodos Matemáticos en Física L4F. CONDICIONES de CONTORNO+Fuerzas Externas (Cap. 3, libro APL)
L4F. CONDICIONES de CONTORNO+Fuerzas Externas (Cap. 3, libro Condiciones de contorno. Fuerzas externas aplicadas sobre una cuerda. condición que nos describe un extremo libre en una cuerda tensa. Ecuación
Código: 25 SETEMBRO 2012 PAU FÍSICA OPCIÓN A OPCIÓN B
PAU Código: 25 SETEMBRO 2012 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teóica ou páctica). Poblemas 6 puntos (1 cada apatado). Non se valoaá a simple anotación dun ítem como solución
Eletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::...
Eletromagnetismo Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística Lista -.1 - Mostrar que a seguinte medida é invariante d 3 p p 0 onde: p 0 p + m (1)
ENERXÍA, TRABALLO E POTENCIA
NRXÍA, TRABALLO POTNCIA NRXÍA Pódese definir enerxía coo a capacidade que ten un corpo para realizar transforacións nel eso ou noutros corpos. A unidade de enerxía no SI é o Joule (J) pero é frecuente
MEDIDAS EXPERIMENTAIS DE DIVERSOS CAMPOS MAGNÉTICOS Xosé Peleteiro Salgado Área de Física Aplicada. Facultade de Ciencias. Ourense
MEDIDAS EXPERIMENTAIS DE DIVERSOS CAMPOS MAGNÉTICOS Xosé Peleteiro Salgado Área de Física Aplicada. Facultade de Ciencias. Ourense Se presentan tres procedementos diferentes nos que coas medidas realizadas
XEOMETRÍA NO ESPAZO. - Se dun vector se coñecen a orixe, o módulo, a dirección e o sentido, este está perfectamente determinado no espazo.
XEOMETRÍA NO ESPAZO Vectores fixos Dos puntos do espazo, A e B, determinan o vector fixo AB, sendo o punto A a orixe e o punto B o extremo, é dicir, un vector no espazo é calquera segmento orientado que
DINAMICA DE TRASLACION
DINAMICA DE TRASLACION 1.-CINEMATICA ELEMENTOS DO MOVEMENTO: Móvil, Sistema de Referencia e Traxectoria MAGNITUDES CINEMATICAS: - Vector de Posición: r= xi + yj + zk - Vector desplazamento: r= xi + yj
Tema 6 Ondas Estudio cualitativo de interferencias, difracción, absorción e polarización. 6-1 Movemento ondulatorio.
Tema 6 Ondas 6-1 Movemento ondulatorio. Clases de ondas 6- Ondas harmónicas. Ecuación de ondas unidimensional 6-3 Enerxía e intensidade das ondas harmónicas 6-4 Principio de Huygens: reflexión e refracción
TRIGONOMETRIA. hipotenusa L 2. hipotenusa
TRIGONOMETRIA. Calcular las razones trigonométricas de 0º, º y 60º. Para calcular las razones trigonométricas de º, nos ayudamos de un triángulo rectángulo isósceles como el de la figura. cateto opuesto
CALCULO DA CONSTANTE ELASTICA DUN RESORTE
11 IES A CAÑIZA Traballo de Física CALCULO DA CONSTANTE ELASTICA DUN RESORTE Alumno: Carlos Fidalgo Giráldez Profesor: Enric Ripoll Mira Febrero 2015 1. Obxectivos O obxectivo da seguinte practica é comprobar,