1. Δυναμοςφνολα (Παράδειγμα )
|
|
- Αρσένιος Καλαμογδάρτης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 1. Δυναμοςφνολα (Παράδειγμα ) Δίνεται το ςφνολο ( ) * ( ) +, όπου και P(S) το δυναμοςφνολο του S. Αν A={a,b} S={a,b,c,d,e} B={a,f} Δθλαδι ςτο P(S:A) ανικουν όλα τα υποςφνολα του S τα οποί α περιζχουν το Α. Α) Να βρεθοφν τα στοιχεία του P(S:A). ( ) όλα τα υποςφνολα του S. Βρίςκουμε τα υποςφνολα του S που περιζχουν το A. Με 2 ςτοιχεία: Με 3 ςτοιχεία: Με 4 ςτοιχεία: Με 5 ςτοιχεία: {a,b} (1 ςφνολο) {a,b,*} (3 ςφνολα, όπου *=c,d,e) {a,b,*,*} (3 ςφνολα, όπου *,*=(c,d),(c,e)(d,e)) {a,b,*,*,*} (1 ςφνολο, όπου *,*,*=c,d,e) Άρα: ( ) P(S:A)={{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e},{a,b,c,d,e}} Β) Να βρεθεί το P(Α:Β). Αναηθτοφμε όλα τα υποςφνολα του Α που «περιζχουν» το Β. P(A)={Ø,{a},{b},{a,b}} Επειδι το B={a,f} δεν υπάρχουν τζτοια υποςφνολα του Α. Άρα P(A:B)= Ø. Γ) Να δειχτεί οτι για κάθε C ισχφει P(C: Ø)=P(C). Επειδι το Ø είναι ςποζύνολο κάθε ζςνόλος ιζσύει P(C: Ø)=P(C).
2 2. Διαγράμματα Venn (Παράδειγμα δεν περιζχει Venn) Α) Να δειχτεί ότι - - * + * + A B A B - A B B) Να δειχτεί ότι * + * + * + A B A Β A Β A Β A Β 3. Αναπαράςταςθ Συνόλων Δίνονται τα ςφνολα S={1,2,3,4,5,6,7} και τα Α={1,2,4,6}, Β={1,3,6,7} και Γ={2,5,7}. Να δοκεί θ παράςταςθ των ςυνόλων (α) (β) και (γ) ( )
3 S= Α= Β= Γ= Α Β Α Β Α ( ) ( ) Γ Να αποδειχτεί ότι (1.7.21) * + * + * + (επιμεριςμόσ) * ( ) ( + * + (και με διάγραμμα Venn)
4 5. Οι μακθτζσ του 1 ου Δθμοτικοφ Θεςςαλονίκθσ λαμβάνουν κάποια διπλώματα ςτο τζλοσ τθσ χρονιάσ ςτθν τελετι λιξθσ τθσ ςχολικισ χρονιάσ. Αυτό το χρόνο 120 μακθτζσ πιραν δίπλωμα παρακολοφκθςθσ μακθμάτων (δεν ζκαναν οφτε μία απουςία), 180 μακθτζσ δίπλωμα ςυμμετοχισ ςτουσ ςχολικοφσ ακλθτικοφσ αγώνεσ και 80 δίπλωμα αριςτείασ. Από αυτοφσ, οι 40 μακθτζσ που πιραν δίπλωμα παρακολοφκθςθσ δεν πιραν κανζνα άλλο δίπλωμα, οι 50 μακθτζσ που πιραν το δίπλωμα ςυμμετοχισ ςτουσ ακλθτικοφσ αγώνεσ δεν πιραν κανζναν άλλο δίπλωμα κια οι 10 μακθτζσ που πιραν δίπλωμα αριςτείασ δεν πιραν κανζνα άλλο δίπλωμα. Επιπλζον, 10 μακθτζσ παίρνουν και τα τρία διπλώματα ενώ 65 μακθτζσ δεν παίρνουν κανζνα δίπλωμα. Σχεδιάςτε ζνα Venn διάγραμμα και βρείτε πόςοι μακθτζσ είχε το ςχολείο αυτι τθ χρονιά. (Wiley άςκθςθ ) Οι εξισ εξιςώςεισ μποροφν να γραφοφν: x + y = 120 x + z = 80 y + z = 180. Η λφςθ ςε αυτό το ςφςτθμα είναι x = 5, y = 65 και z = 55. Επομζνωσ το ςυνολικό πλικοσ παιδιών τθσ ςχολικισ χρονιάσ είναι = Είναι ςωςτζσ οι παρακάτω δφο προτάςεισ; Για αυτζσ που δεν είναι δώςτε ζνα παράδειγμα ςτο οποίο να φαίνεται ότι δεν ιςχφει (χρθςιμοποιείςτε είτε Venn είτε αναλυτικά). (Wiley άςκθςθ ) ( )
5 Αντιπαράδειγμα: A = {1,2,3} B ={1,3,4} C = {1,2,4} ( ) Αλθκζσ. * ( ) + * + (επιμεριςμόσ) * ( ) ( + 7. Για κάκε μία από τισ παρακάτω απαιτιςεισ δώςτε μία διαμζριςθ του ςυνόλου {1,2,3,4,5,6} (Wiley άςκθςθ 3.2.8) 1. Κάκε υποςφνολο ζχει ίδιο μζγεκοσ. {{1,3},{2,4},{5,6}} 2. Κανζνα υποςφνολο δεν ζχει ίδιο μζγεκοσ με άλλο. {{2},{3,6},{4,1,5}} 3. Υπάρχουν όςο το δυνατόν περιςςότερα υποςφνολα. {{1},{2},{3},{4},{5},{6}} 4. Υπάρχουν όςο το δυνατό λιγότερα υποςφνολα. {{1,2,3,4,5,6}}
6 8. Δείξτε ότι: αν τότε, όπου τα Α και Β είναι υποςφνολα του ςφμπαντοσ U. (Wiley άςκθςθ ) ( ) ( ) ( ) 9.Αναπαραςτιςτε τα παρακάτω ςφνολα. (Wiley 3.1 Ex 4) Το ςφνολο των ακεραίων που είναι πολλαπλάςια του 3. Λφση: * + Το ςφνολο των τζλειων τετραγώνων. Λφση: * + Το ςφνολο των φυςικών αρικμών που τελειώνουν με 1. Λφση: * + Το ςφνολο. Λφση: * Στο παρακάτω πρόβλθμα να βρείτε από τθν τριάδα ςυνόλων ποιο δεν είναι ίςο με τα υπόλοιπα. (Wiley 3.1.9) * + * + Αυτό που είναι διαφορετικό είναι το B, αφοφ υπάρχει ςτοιχείο του που δεν ανικει ςτο Ν. Για παράδειγμα, αν α=3 και b=5, τότε 11. Καπηεζιανό Γινόμενο Πλήθορ (1.7.23)
7 Γίνεηαι Α={α,β,γ} Β={α,δ}, όπος Α =3 και Β =2. Σηα παπακάηω ζύνολα να βπεθεί ο απιθμόρ ηων ζηοισείων. a) P(A) =2 3 =8 b) P(Β) =2 2 =4 c). Τα Α και Β έσοςν ένα κοινό ζηοισείο (ηο α). Αν αθποίζοςμε ηο πλήθορ ηων ζηοισείων ηοςρ ηο α θα ηο μεηπήζοςμε δύο θοπέρ. Άπα ππέπει να ηο αθαιπέζοςμε μία θοπά και γενικά ππέπει να αθαιπέζοςμε μία θοπά οηι,δήποηε βπίζκεηαι ζηην ηομή ηων δύο ζςνόλων. Άπα: Ππάγμαηι, * + d) ( * +) ( * +) * + * ( )+ * + * + *+ * + ( * +) ( * +) αθού ηα ζύνολα πος ενώνονηαι δεν έσοςν κοινό ζηοισείο. e) * + f) * ( )+ g) * Καπηεζιανό Γινόμενο Σηοισεία (1.7.24) Να πεπιγπαθούν ηα ζηοισεία ηων Β 2, Β 4 αν Β={0,1}. Το Β 2 έσει ζςνολικά 4 ζηοισεία (2 2 ) {( ) * +} * + {( ) * +} Το ζύνολο θα έσει Β 4 =2 4 =16 ζηοισεία. Απαπίθμηζη ηων ηεηπάδων. Όλοι οι δςαδικοί απιθμοί από ηο 0 έωρ ηο 15 (μποπείρ να ηο κάνειρ και ζε μοπθή δένηπος)
8 13. Καπηεζιανό Γινόμενο Απόδειξη (1.7.25) Να δεισηεί όηι *( ) + * ( )+ * ( )+ * ( ) + * Καπηεζιανό Γινόμενο Απόδειξη (1.7.25) Να δεισηεί όηι ( ) ( ) *( ) + *+ * ( )+ * ( ) + * +
9 Άλυτεσ Αςκιςεισ 1. Είναι ςωςτζσ οι παρακάτω προτάςεισ; Για αυτζσ που δεν είναι δώςτε ζνα παράδειγμα ςτο οποίο να φαίνεται ότι δεν ιςχφει (χρθςιμοποιείςτε είτε Venn είτε αναλυτικά). (Wiley ) a. ( ) b. ( ) c. d. Αν, τότε 2. Ποιεσ από τισ παρακάτω διαμερίςεισ του ςυνόλου Α={1,2,3,4,5,6,7,8} δεν είναι διαμζριςθ και γιατί; (Wiley ) a. Σ={1,2,{3,4,5},{6,7,8}} b. Τ={{1,5},{6,7,2},{4,3,5},{8}} c. Υ={{1,8},{4,3,5},{7,2}} d. Φ={{4,2,3},{5,1,8},{6,7}} 3. Αποδείξτε ότι αν ( ) τότε ( ). (Wiley 3.3 Prop 2) 4. Δείξτε ότι αν τότε (Wiley ) 5. Δείξτε ότι αν τότε (Wiley )
ΦΥΕ 14 ΑΚΑΔ. ΕΤΟΣ Η ΕΡΓΑΣΙΑ. Ημερομηνία παράδοςησ: 12 Νοεμβρίου (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 10 μονάδεσ θ κάκε μία)
ΦΥΕ ΑΚΑΔ. ΕΤΟΣ 007-008 Η ΕΡΓΑΣΙΑ Ημερομηνία παράδοςησ: Νοεμβρίου 007 (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 0 μονάδεσ θ κάκε μία) Άςκηςη α) Να υπολογιςκεί θ προβολι του πάνω ςτο διάνυςμα όταν: (.
ςυςτιματα γραμμικϊν εξιςϊςεων
κεφάλαιο 7 Α ςυςτιματα γραμμικϊν εξιςϊςεων αςικζσ ζννοιεσ Γραμμικά, λζγονται τα ςυςτιματα εξιςϊςεων ςτα οποία οι άγνωςτοι εμφανίηονται ςτθν πρϊτθ δφναμθ. Σα γραμμικά ςυςτιματα με δφο εξιςϊςεισ και δφο
lim x και lim f(β) f(β). (β > 0)
. Δίνεται θ παραγωγίςιμθ ςτο * α, β + ( 0 < α < β ) ςυνάρτθςθ f για τθν οποία ιςχφουν: f(α) lim (-) a και lim ( f(β)) = Να δείξετε ότι: α. f(α) < α και f(β) > β β. Αν g() = τότε θ C f και C g ζχουν ζνα
ΜΑ032: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Εαρινό εξάμηνο , Διδάςκων: Γιώργοσ Γεωργίου ΕΝΔΙΑΜΕΗ ΕΞΕΣΑΗ, 21 Μαρτίου, 2012 Διάρκεια: 2 ώρεσ
ΜΑ: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Εαρινό εξάμηνο -, Διδάςκων: Γιώργοσ Γεωργίου ΕΝΔΙΑΜΕΗ ΕΞΕΣΑΗ, Μαρτίου, Διάρκεια: ώρεσ ΟΝΟΜΑ: Αρ. Πολ. Σαυτ. Πρόβλημα. Θεωροφμε τα διανφςματα u =,,,, v =,,,4, w =,,,, (α) Υπολογίςτε
Παράςταςη ςυμπλήρωμα ωσ προσ 1
Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ ΣΤ1 Προςθεςη αφαίρεςη ςτο ΣΤ1 2 ή ΣΤ1 Ονομάηουμε ςυμπλιρωμα ωσ προσ μειωμζνθ βάςθ R ενόσ μθ προςθμαςμζνου αρικμοφ Χ = ( Χ θ-1 Χ θ-2... Χ 0 ) R ζναν άλλον αρικμό Χ'
1. Αν θ ςυνάρτθςθ είναι ΠΟΛΤΩΝΤΜΙΚΗ τότε το πεδίο οριςμοφ είναι το διότι για κάκε x θ f(x) δίνει πραγματικό αρικμό.
ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΑ ΝΑ ΒΡΙΚΟΤΜΕ ΣΟ ΠΕΔΙΟ ΟΡΙΜΟΤ ΤΝΑΡΣΗΗ Για να οριςκεί μια ςυνάρτθςθ πρζπει να δοκοφν δφο ςτοιχεία : Σο πεδίο οριςμοφ τθσ Α και Η τιμι τθσ f() για κάκε Α. Οριςμζνεσ φορζσ μασ δίνουν μόνο τον
α) Στο μιγαδικό επίπεδο οι εικόνεσ δφο ςυηυγϊν μιγαδικϊν είναι ςθμεία ςυμμετρικά ωσ προσ τον πραγματικό άξονα
ΘΕΜΑ Α ΠΑΝΕΛΛΗΝΙΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ ΚΑΙ ΕΠΑΛ ΟΜΑΔΑ Β ΔΕΤΣΕΡΑ 8 ΜΑΪΟΤ ΕΞΕΣΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΣΙΚΑ ΘΕΣΙΚΗ ΚΑΙ ΣΕΧΝΟΛΟΓΙΚΗ ΚΑΣΕΤΘΤΝΗ ΤΝΟΛΟ ΕΛΙΔΩΝ: ΣΕΕΡΙ A. Ζςτω μια ςυνάρτθςθ f θ
Αςκιςεισ ςε (i) Δομζσ Ευρετθρίων και Οργάνωςθ Αρχείων (ii) Κανονικοποίθςθ
Αςκιςεισ ςε (i) Δομζσ Ευρετθρίων και Οργάνωςθ Αρχείων (ii) Κανονικοποίθςθ Δεκζμβριοσ 2016 Άςκθςθ 1 Θεωρείςτε ότι κζλουμε να διαγράψουμε τθν τιμι 43 ςτο Β+ δζντρο τθσ Εικόνασ 1. Η διαγραφι αυτι προκαλεί
Γ' ΛΥΚΕΙΟΥ Η ΤΑΞΗ ΤΗΣ ΤΕΛΙΚΗΣ ΕΠΙΛΟΓΗΣ. Στθ ΓϋΛυκείου οι Ομάδεσ Προςανατολιςμοφ είναι τρεισ:
Γ' ΛΥΚΕΙΟΥ Η ΤΑΞΗ ΤΗΣ ΤΕΛΙΚΗΣ ΕΠΙΛΟΓΗΣ Στθ ΓϋΛυκείου οι Ομάδεσ Προςανατολιςμοφ είναι τρεισ: 1. Ομάδα Ανκρωπιςτικών Σπουδών 2. Ομάδα Οικονομικών, Πολιτικών, Κοινωνικών & Παιδαγωγικών Σπουδών 3. Ομάδα Θετικών
ΑΝΣΙΣΡΟΦΗ ΤΝΑΡΣΗΗ. f y x y f A αντιςτοιχίηεται ςτο μοναδικό x A για το οποίο. Παρατθριςεισ Ιδιότθτεσ τθσ αντίςτροφθσ ςυνάρτθςθσ 1. Η. f A τθσ f.
.. Αντίςτροφθ ςυνάρτθςθ Ζςτω θ ςυνάρτθςθ : A θ οποία είναι " ". Τότε ορίηεται μια νζα ςυνάρτθςθ, θ μζςω τθσ οποίασ το κάκε ιςχφει y. : A με Η νζα αυτι ςυνάρτθςθ λζγεται αντίςτροφθ τθσ. y y A αντιςτοιχίηεται
Η θεωρία τησ ςτατιςτικήσ ςε ερωτήςεισ-απαντήςεισ Μέροσ 1 ον (έωσ ομαδοποίηςη δεδομένων)
1)Πώσ ορύζεται η Στατιςτικό επιςτόμη; Στατιςτικι είναι ζνα ςφνολο αρχϊν και μεκοδολογιϊν για: το ςχεδιαςμό τθσ διαδικαςίασ ςυλλογισ δεδομζνων τθ ςυνοπτικι και αποτελεςματικι παρουςίαςι τουσ τθν ανάλυςθ
Πολυπλέκτες. 0 x 0 F = S x 0 + Sx 1 1 x 1
Πολυπλέκτες Ο πολυπλζκτθσ (multipleer - ) είναι ζνα ςυνδυαςτικό κφκλωμα που επιλζγει δυαδικι πλθροφορία μιασ από πολλζσ γραμμζσ ειςόδου και τθν κατευκφνει ςε μια και μοναδικι γραμμι εξόδου. Η επιλογι μιασ
Ενδεικτικζσ Λφςεισ Θεμάτων
c AM (t) x(t) ΤΕΙ Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σειρά Β Ειςηγητήσ: Δρ Απόςτολοσ Γεωργιάδησ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Ενδεικτικζσ Λφςεισ Θεμάτων Θζμα 1 ο (1 μον.) Ζςτω περιοδικό ςιμα πλθροφορίασ με περίοδο.
MySchool Πρακτικζσ οδθγίεσ χριςθσ
MySchool Πρακτικζσ οδθγίεσ χριςθσ 1) Δθμιουργία τμθμάτων (ΣΧΟΛΙΚΗ ΜΟΝΑΔΑ, Διαχείριςθ, Διαχείριςθ τμθμάτων) Το πρώτο που πρζπει να κάνουμε ςτο MySchool είναι να δθμιουργιςουμε τα τμιματα που υπάρχουν ςτο
8 τριγωνομετρία. βαςικζσ ζννοιεσ. γ ςφω. εφω και γ. κεφάλαιο
κεφάλαιο 8 τριγωνομετρία Α βαςικζσ ζννοιεσ τθν τριγωνομετρία χρθςιμοποιοφμε τουσ τριγωνομετρικοφσ αρικμοφσ, οι οποίοι ορίηονται ωσ εξισ: θμω = απζναντι κάκετθ πλευρά υποτείνουςα Γ ςυνω = εφω = προςκείμενθ
Θεςιακά ςυςτιματα αρίκμθςθσ
Θεςιακά ςυςτιματα αρίκμθςθσ Δρ. Χρήστος Ηλιούδης αρικμθτικό ςφςτθμα αρίκμθςθσ (Number System) Αξία (value) παράςταςθ Οι αξίεσ (π.χ. το βάροσ μιασ ποςότθτασ μιλων) μποροφν να παραςτακοφν με πολλοφσ τρόπουσ
ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση Συγγραφή:
Δείκτεσ απόδοςθσ υλικών
Δείκτεσ απόδοςθσ υλικών Κάκε ςυνδυαςμόσ λειτουργίασ, περιοριςμϊν και ςτόχων, οδθγεί ςε ζνα μζτρο τθσ απόδοςθσ τθσ λειτουργίασ του εξαρτιματοσ και περιζχει μια ομάδα ιδιοτιτων των υλικϊν. Αυτι θ ομάδα των
ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ. Αντώνης Μαϊργιώτης
ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ Αντώνης Μαϊργιώτης Να γραφεί αλγόριθμοσ με τη βοήθεια διαγράμματοσ ροήσ, που να υπολογίζει το εμβαδό Ε ενόσ τετραγώνου με μήκοσ Α. ΑΡΧΗ ΔΙΑΒΑΣΕ
ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι
Παράςταςη κινητήσ υποδιαςτολήσ ςφμφωνα με το πρότυπο ΙΕΕΕ Δρ. Χρήστος Ηλιούδης το πρότυπο ΙΕΕΕ 754 ζχει χρθςιμοποιθκεί ευρζωσ ςε πραγματικοφσ υπολογιςτζσ. Το πρότυπο αυτό κακορίηει δφο βαςικζσ μορφζσ κινθτισ
ΑΚΗΗ ΠΡΟΓΡΑΜΜΑΣΙΜΟΤ ΑΠΑΙΣΟΤΜΕΝΩΝ ΤΛΙΚΩΝ Π.Α.Υ. 1
ΑΚΗΗ ΠΡΟΓΡΑΜΜΑΣΙΜΟΤ ΑΠΑΙΣΟΤΜΕΝΩΝ ΤΛΙΚΩΝ Π.Α.Υ. 1 Να καταρτιςτεί πρόγραμμα παραγγελιϊν λαμαρίνασ, αν οι προβλεπόμενεσ ςυνολικζσ απαιτοφμενεσ ποςότθτεσ αυτισ τθσ πρϊτθσ φλθσ για τθν εκτζλεςθ του προγράμματοσ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΘΕΜΑ Α ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 7 ΜΑΪΟΥ - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ
δ) Αf=R-{ 2}=(-,-2)U(-2,2)U(2,+ ). f (x) f(x) ε) Αf=R- 3 =(-,- 3 )U(- 3, 3 )U( 3,+ ).
ΡΑΡΑΝΙΚΟΛΑΟΥ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ ) Nα μελετιςετε ωσ προσ τθ μονοτονία τισ ςυναρτιςεισ: β) f ( ) α) f ( ) γ) f ( ) δ) Αf=R-{ }=(-,-)U(-,)U(,+ ) ( 4) ( 4) ( 4) fϋ()= ( 4) f ( ) δ) f ( ) ε)
HY437 Αλγόριθμοι CAD
HY437 Αλγόριθμοι CAD Διδάςκων: Χ. Σωτηρίου http://inf-server.inf.uth.gr/courses/ce437/ 1 Περιεχόμενα Σφνολα και Σχζςεισ Πράξεισ Συνόλων Κατθγορίεσ Σχζςεων Σχζςεισ Ιςοδυναμίασ, Διάταςθσ, Συμβατότθτασ Συναρτιςεισ
Στα προθγοφμενα δφο εργαςτιρια είδαμε τθ δομι απόφαςθσ (ι επιλογισ ι ελζγχου ροισ). Ασ κυμθκοφμε:
ΔΟΜΗ ΑΠΟΦΑΗ Στα προθγοφμενα δφο εργαςτιρια είδαμε τθ δομι απόφαςθσ (ι επιλογισ ι ελζγχου ροισ). Ασ κυμθκοφμε: Όταν το if που χρθςιμοποιοφμε παρζχει μόνο μία εναλλακτικι διαδρομι εκτζλεςθ, ο τφποσ δομισ
Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2
Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Δρ. Χρήζηος Ηλιούδης Μθ Προςθμαςμζνοι Ακζραιοι Εφαρμογζσ (ςε οποιαδιποτε περίπτωςθ δεν χρειάηονται αρνθτικοί αρικμοί) Καταμζτρθςθ. Διευκυνςιοδότθςθ.
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Α ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ IMC (Key Stage II) 9 Μαρτίου 2016 ΧΡΟΝΟΣ: 2 ΩΡΕΣ Λύςεισ : Πρόβλημα 1 (α) Να βρείτε τθν τιμι του για να ιςχφει θ πιο κάτω ςχζςθ: (β) Ο Ανδρζασ τελειϊνει
Γενικά Μαθηματικά ΙΙ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 13 η : Επαναλθπτικι Ενότθτα Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται
ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΗ ΗΛΕΚΣΡΟΝΙΚΟΤ ΤΣΗΜΑΣΟ ΑΡΧΑΙΡΕΙΩΝ
ΕΝΔΟΠΑΝΕΠΙΣΗΜΙΑΚΟ ΔΙΚΣΤΟ ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΗ ΗΛΕΚΣΡΟΝΙΚΟΤ ΤΣΗΜΑΣΟ ΑΡΧΑΙΡΕΙΩΝ Εγχειρίδιο διαχειριςτι Πάτρα, Δεκζμβριοσ 2011 το κάτω μζροσ ςτο μενοφ τθσ ςελίδασ διαχείριςθσ, υπάρχει θ επιλογι αρχαιρεςίεσ. Χρθςιμοποιϊντασ
ΗΥ101: Ειςαγωγι ςτθν Πλθροφορικι
Παράςταςη κινητήσ υποδιαςτολήσ Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ Παράςταςη ςταθεροφ ςημείου Παράςταςη αριθμών κινητοφ ςημείου 2 Παράςταςη ςταθεροφ ςημείου Στθν παράςταςθ αρικμϊν ςτακεροφ ςθμείου (Fixed
Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ Λουκάσ Βλάχοσ Τμιμα Φυςικισ Α.Π.Θ. Θεςςαλονίκθ, 2014 Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ
Η γραφικι παράςταςθ τθσ ςυνάρτθςθσ f(x)=αx+β είναι μια ευκεία με εξίςωςθ y=αx+β θ οποία τζμνει τον άξονα των y ςτο ςθμείο Β(0,β) και ζχει κλίςθ λ=α.
ε καρτεςιανό ςφςτθμα ςυντεταγμζνων Οxy δίνεται ευκεία ε. Σί ονομάηουμε : α) γωνία που ςχθματίηει θ ευκεία ε με τον άξονα xϋx; β) ςυντελεςτι διευκφνςεωσ τθσ ευκείασ ε; ΑΠΑΝΤΗΣΗ α) Παρατιρθςθ β) Παρατιρθςθ
Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό. μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ
Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ Για τθν ανάδειξθ του κζματοσ κα λφνουμε κάποια προβλιματα
ΛΕΙΤΟΥΓΙΚΆ ΣΥΣΤΉΜΑΤΑ. 5 ο Εργαςτιριο Ειςαγωγι ςτθ Γραμμι Εντολϊν
ΛΕΙΤΟΥΓΙΚΆ ΣΥΣΤΉΜΑΤΑ 5 ο Εργαςτιριο Ειςαγωγι ςτθ Γραμμι Εντολϊν Τι είναι θ Γραμμι Εντολϊν (1/6) Στουσ πρϊτουσ υπολογιςτζσ, και κυρίωσ από τθ δεκαετία του 60 και μετά, θ αλλθλεπίδραςθ του χριςτθ με τουσ
Seventron Limited. Οδηγίες χρήσης EnglishOnlineTests.com
Seventron Limited Οδηγίες χρήσης EnglishOnlineTests.com EnglishOnlineTests.com Seventron.com March 2013 Περιεχόμενα Πίνακασ ελζγχου/control Panel... 2 Προςκικθ μακθτι... 3 Ανάκεςθ μακθτι ςε ενότθτα...
Η άςκθςθ αποτελεί τροποποιθμζνθ εκδοχι του κζματοσ φυςικισ, τθσ Ευρωπαϊκισ Ολυμπιάδασ Φυςικών Επιςτθμών 2009_επιμζλεια κζματοσ: Κώςτασ Παπαμιχάλθσ
ΕΚΦΕ Αχαρνών Η άςκθςθ αποτελεί τροποποιθμζνθ εκδοχι του κζματοσ φυςικισ, τθσ Ευρωπαϊκισ Ολυμπιάδασ Φυςικών Επιςτθμών 9_επιμζλεια κζματοσ: Κώςτασ Παπαμιχάλθσ Εφαρμογζσ τθσ Αρχισ του Αρχιμιδθ & τθσ ςυνκικθσ
Δομζσ Δεδομζνων Πίνακεσ
Δομζσ Δεδομζνων Πίνακεσ Διάλεξθ 2 Περιεχόμενα Πίνακεσ: Οριςμοί, Γενικζσ ζννοιεσ Αποκικευςθ πινάκων Ειδικζσ μορφζσ πινάκων Αλγόρικμοι Αναηιτθςθσ Σειριακι Αναηιτθςθ Δυαδικι Αναηιτθςθ Οριςμοί, Γενικζσ ζννοιεσ
Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν:
Μζθοδος Simplex Η πλζον γνωςτι και περιςςότερο χρθςιμοποιουμζνθ μζκοδοσ για τθν επίλυςθ ενόσ γενικοφ προβλιματοσ γραμμικοφ προγραμματιςμοφ, είναι θ μζκοδοσ Simplex θ οποία αναπτφχκθκε από τον George Dantzig.
Γράφοι. Δομζσ Δεδομζνων Διάλεξθ 9
Γράφοι Δομζσ Δεδομζνων Διάλεξθ 9 Περιεχόμενα Γράφοι Γενικζσ ζννοιεσ, οριςμόσ, κτλ Παραδείγματα Γράφων Αποκικευςθ Γράφων Βαςικοί Οριςμοί Γράφοι και Δζντρα Διάςχιςθ Γράφων Περιοδεφων Πωλθτισ Γράφοι Οριςμόσ:
Δϋ Δθμοτικοφ 12 θ Κυπριακι Μακθματικι Ολυμπιάδα Απρίλιοσ 2011
1. Αν τϊρα είναι Απρίλθσ, ποιοσ μινασ κα είναι μετά από 100 μινεσ; Α. Απρίλθσ Β. Αφγουςτοσ. Σεπτζμβρθσ Δ. Μάρτθσ Ε. Ιοφλθσ 2. Ποιο είναι το αποτζλεςμα των πιο κάτω πράξεων; ; Α. 135 Β. 27. 63 Δ. 21 Ε.
Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο του Άβακα
Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο του Άβακα Αυτζσ οι οδθγίεσ ζχουν ςτόχο λοιπόν να βοθκιςουν τουσ εκπαιδευτικοφσ να καταςκευάςουν τισ δικζσ τουσ δραςτθριότθτεσ με το μοντζλο του Άβακα. Παρουςίαςη
ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2019 Λύσεις ασκήσεων προόδου
ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2019 Λύσεις ασκήσεων προόδου Θέμα 1: a. Δείξτε κατά πόσον η πρόταση ((p q) r) ((p q) (q r)) αποτελεί ή όχι ταυτολογία. Κάποιος ιδιόρρυθμος δικαστής ρωτήθηκε κατά
ΑΝΩΣΕΡΑ ΜΑΘΗΜΑΣΙΚΑ. Διαφορικόσ και Ολοκληρωτικόσ Λογιςμόσ Δφο ή Περιςςοτζρων Μεταβλητϊν
ΑΝΩΣΕΡΑ ΜΑΘΗΜΑΣΙΚΑ Διαφορικόσ και Ολοκληρωτικόσ Λογιςμόσ Δφο ή Περιςςοτζρων Μεταβλητϊν 1 υναρτιςεισ Περιςςοτζρων Μεταβλθτϊν Παράδειγμα.(E.F. Dbois S =επιφάνεια ςϊματοσ W =βάροσ ςϊματοσ H =φψοσ ςϊματοσ
ΑΤΣΟΝΟΜΟΙ ΠΡΑΚΣΟΡΕ ΕΡΓΑΙΑ ΕΞΑΜΗΝΟΤ HEARTSTONE ΑΛΕΞΑΝΔΡΟ ΛΟΤΚΟΠΟΤΛΟ ΑΜ:
ΑΤΣΟΝΟΜΟΙ ΠΡΑΚΣΟΡΕ ΕΡΓΑΙΑ ΕΞΑΜΗΝΟΤ HEARTSTONE ΑΛΕΞΑΝΔΡΟ ΛΟΤΚΟΠΟΤΛΟ ΑΜ: 2008030075 ΕΙΑΓΩΓΗ Το Heartstone είναι ζνα ψθφιακό παιχνίδι καρτϊν που διεξάγιεται πάνω ςτο Battle.net, ζναν διακομιςτι τθσ εταιρίασ
Ιςίδωροσ Ροδομαγουλάκθσ Αλγόρικμοι Δικτφων και Πολυπλοκότθτα K-median
Ιςίδωροσ Ροδομαγουλάκθσ Αλγόρικμοι Δικτφων και Πολυπλοκότθτα 00-0 K-median Επιςκόπθςθ του κεφαλαίου 5 από το βιβλίο «Approximation algorithms» του V. Vazirani 56 c c 6 c c Metric Uncapacitated Facility
ΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ ΘΔΜΑ Α ΘΔΜΑ Β
4 o ΔΙΓΩΝΙΜ ΠΡΙΛΙΟ 04: ΔΝΔΔΙΚΣΙΚΔ ΠΝΣΗΔΙ ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΤΔΥΘΥΝΣΗΣ 4 ο ΔΙΓΩΝΙΣΜ ΔΝΔΔΙΚΤΙΚΔΣ ΠΝΤΗΣΔΙΣ ΘΔΜ. β. β 3. α 4. γ 5. α.σ β.σ γ.λ δ.σ ε.λ. ΘΔΜ Β Σωςτι είναι θ απάντθςθ γ. Έχουμε ελαςτικι
Μάκθςθ Κατανομϊν Πικανότθτασ και Ομαδοποίθςθ
Μάκθςθ Κατανομϊν Πικανότθτασ και Ομαδοποίθςθ Κϊςτασ Διαμαντάρασ Τμιμα Πλθροφορικισ ΤΕΙ Θεςςαλονίκθσ 1 Μάκθςθ κατανομισ πικανότθτασ Σε όλθ τθν ανάλυςθ μζχρι τϊρα ζγινε ςιωπθρά θ παραδοχι ότι γνωρίηουμε
Βάρειπ Δεδξμέμωμ. Επγαστήπιο ΙΙ. Τμήμα Πλεπουοπικήρ ΑΠΘ
Βάρειπ Δεδξμέμωμ Επγαστήπιο ΙΙ Τμήμα Πλεπουοπικήρ ΑΠΘ 2016-2017 2 Σκξπόπ ςξσ 2 ξσ εογαρςηοίξσ Σκοπόρ αςτού τος επγαστεπίος είναι: Η μελέτε επωτεμάτων σε μία μόνο σσέσε. Εξετάδοςμε τοςρ τελεστέρ επιλογήρ
ΛΥΣΕΙΣ ΒΙΟΛΟΓΙΑΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2010
ΛΥΣΕΙΣ ΒΙΟΛΟΓΙΑΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2010 ΘΕΜΑ Α Α1 δ Α2 β Α3 α Α4 β Α5 γ ΘΕΜΑ Β Β1. Σελ.17 Τα κφτταρα διπλοειδι Β2. Σελ.14 Το DNA φωςφοδιεςτερικόσ δεςμόσ Β3. Σελ.37,38 Σθμειϊνεται.αντίγραφα ενόσ γονιδίου
Γενικά Μαθηματικά ΙΙ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 5 η : Μερικι Παράγωγοσ Ι Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται
(ομοιότητεσ-διαφορζσ)
ΣΥΓΚΡΙΣΗ (ομοιότητεσ-διαφορζσ) ΣΟΤ ΓΙΟΦΤΡΙΟΤ ΣΗ ΑΡΣΑ ΚΑΙ ΣΗ ΙΦΙΓΕΝΕΙΑ ΕΝ ΑΤΛΙΔΙ ΟΜΟΙΟΤΗΤΕΣ Μφκοσ γιοφυριοφ τθσ Άρτασ Μεγάλοσ αρικμόσ μαςτόρων και μακθτάδων προςπακοφν να ολοκλθρώςουν το χτίςιμο του γεφυριοφ,
Αςφάλεια και Προςταςία Δεδομζνων
Αςφάλεια και Προςταςία Δεδομζνων Κρυπτογράφθςθ υμμετρικι και Αςφμμετρθ Κρυπτογραφία Αλγόρικμοι El Gamal Diffie - Hellman Σςιρόπουλοσ Γεώργιοσ ΣΙΡΟΠΟΤΛΟ ΓΕΩΡΓΙΟ 1 υμμετρικι Κρυπτογραφία υμμετρικι (Κλαςικι)
ΑΝΑΠΣΤΞΗ ΕΥΑΡΜΟΓΩΝ Ε ΠΡΟΓΡΑΜΜΑΣΙΣΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΤΚΕΙΟΤ ΣΕΦΝΟΛΟΓΙΚΗ ΚΑΣΕΤΘΤΝΗ
ΑΝΑΠΣΤΞΗ ΕΥΑΡΜΟΓΩΝ Ε ΠΡΟΓΡΑΜΜΑΣΙΣΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΤΚΕΙΟΤ ΣΕΦΝΟΛΟΓΙΚΗ ΚΑΣΕΤΘΤΝΗ 1) Να γράψετε το τμιμα αλγορίκμου που αντιςτοιχεί ςτο παρακάτω διάγραμμα ροισ. 2) Να γράψετε το τμιμα αλγορίκμου που αντιςτοιχεί
= = 124
Λζξεισ Κάκε μακθτισ μζςα ςτθν ομάδα κα πρζπει να ζχει μια αρικμομθχανι. Ζνασ μακθτισ κα διαβάηει φωναχτά τουσ αρικμοφσ. Οι υπόλοιποι μακθτζσ κα τουσ γράφουν ςτθν αρικμομθχανι πατϊντασ κάκε φορά το πλικτρο
Ασκήσεις βιολογίας. Καρυότυποσ-DNA. Φιρφιρισ Χριςτοσ ΦΡΟΝΣΙΣΗΡΙΑ ΠΡΟΟΠΣΙΚΗ 1
Παράδειγμα 1. Ο ανκρώπινοσ καρυότυποσ διακζτει 46 χρωμοςώματα και το ανκρώπινο γονιδίωμα 3x10 9 ηεφγθ βάςεων. Από τα παραπάνω βιοχθμικά δεδομζνα,τι μποροφμε να γνωρίηουμε για το γενετικό υλικό των ανκρωπίνων
Αυτόνομοι Πράκτορες. Αναφορά Εργασίας Εξαμήνου. Το αστέρι του Aibo και τα κόκαλα του
Αυτόνομοι Πράκτορες Αναφορά Εργασίας Εξαμήνου Το αστέρι του Aibo και τα κόκαλα του Jaohar Osman Η πρόταςθ εργαςίασ που ζκανα είναι το παρακάτω κείμενο : - ξ Aibo αγαπάει πάρα πξλύ ρα κόκαλα και πάμρα ρα
ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΙΚΗΣ ΛΟΓΙΚΗΣ
ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΙΚΗΣ ΛΟΓΙΚΗΣ Λογικι πρόταςθ: Με τον όρο λογικι πρόταςθ (ι απλά πρόταςθ) ςτα μακθματικά, εννοοφμε μια ζκφραςθ με πλιρεσ νόθμα που δζχεται τον χαρακτθριςμό ι μόνο αλθκισ ι μόνο ψευδισ. Παραδείγματα:
x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό.
Κωδικοποιητές Ο κωδικοποιθτισ (nor) είναι ζνα κφκλωμα το οποίο διακζτει n γραμμζσ εξόδου και το πολφ μζχρι m = 2 n γραμμζσ ειςόδου και (m 2 n ). Οι ζξοδοι παράγουν τθν κατάλλθλθ λζξθ ενόσ δυαδικοφ κϊδικα
Β3. Χρωμοςωμικι ανωμαλία-ζλλειψθ Σελ.101 «Η ζλλειψθ είναι θ απϊλεια διανοθτικι κακυςτζρθςθ».
ΠΑΝΕΛΛΑΔΙΚΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ ΣΡΙΣΗ 19 ΙΟΤΝΙΟΤ 2018 ΕΞΕΣΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΒΙΟΛΟΓΙΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ Α Α1.δ Α2.β Α3.α Α4.α Α5.β ΘΕΜΑ Β Β1. 1γ 2β 3γ 4α 5γ 6γ 7β Β2.
Αντιδράςεισ Οξείδωςθσ-Αναγωγισ. Fe(s) + CuSO 4 (aq) Fe(s) + Cu 2+ (aq) FeSO 4 (aq) + Cu(s) Fe 2+ (aq) + Cu(s)
Αντιδράςεισ Οξείδωςθσ-Αναγωγισ Fe(s) + CuSO 4 (aq) Fe(s) + Cu 2+ (aq) FeSO 4 (aq) + Cu(s) Fe 2+ (aq) + Cu(s) Αρικμόσ οξείδωςθσ (ι κατάςταςθ οξείδωςθσ) ενόσ ατόμου ςε μια ζνωςθ είναι το πραγματικό φορτίο
ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2018 Λύσεις ασκήσεων προόδου
ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 018 Λύσεις ασκήσεων προόδου Θέμα 1: a. Δείξτε κατά πόσον η πρόταση ((p q) r) ((p q) (q r)) αποτελεί ή όχι ταυτολογία. b. Κάποιος ιδιόρρυθμος δικαστής ρωτήθηκε
ΠΡΟΣΕΙΝΟΜΕΝΕ ΑΠΑΝΣΗΕΙ ΣΗ ΒΙΟΛΟΓΙΑ ΚΑΣΕΤΘΤΝΗ 2013
ΠΡΟΣΕΙΝΟΜΕΝΕ ΑΠΑΝΣΗΕΙ ΣΗ ΒΙΟΛΟΓΙΑ ΚΑΣΕΤΘΤΝΗ 2013 ΘΕΜΑ Α Α1. γ Α2. β Α3. α Α4. δ Α5. α ΘΕΜΑ Β Β1. ελ. 123-124 «Η γονιδιακι κεραπεία εφαρμόςτθκε και ειςάγονται πάλι ς αυτόν.» Β2. ελ. 133 «Διαγονιδιακά ονομάηονται
ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ 4.1
ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ 4. Να γίνει πρόγραμμα το οποίο να επιλφει το Διαγώνιο Σφςτθμα: A ι το ςφςτθμα : ι ςε μορφι εξιςώςεων το ςφςτθμα : Αλγόρικμοσ m(). Διαβάηουμε τθν τιμι του ( θ διάςταςθ του Πίνακα Α )..
Μετατροπεσ Παραςταςεων
Δρ. Χρήστος Ηλιούδης Μεηαηποπή 346 10 ζε δςαδικο 346 10 1) 346/2 = 173 με ςπόλοιπο 0 2) 173/2 = 86 με ςπόλοιπο 1 3) 86/2 = 43 με ςπόλοιπο 0 4) 43/2 = 21 με ςπόλοιπο 1 5) 21/2 = 10 με ςπόλοιπο 1 6) 10/2
16. Πίνακεσ και Συναρτήςεισ
Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων 16. Πίνακεσ και Συναρτήςεισ Ιωάννθσ Κατάκθσ Σιμερα o Κλιςθ με τιμι o Κλιςθ με αναφορά o Πίνακεσ και ςυναρτιςεισ o Παραδείγματα Ειςαγωγι o Στισ προθγοφμενεσ
3 ο ΓΥΜΝΑΣΙΟ ΤΡΙΚΑΛΩΝ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΑΣ Γ ΓΥΜΝΑΣΙΟΥ
3 ο ΓΥΜΝΑΣΙΟ ΤΡΙΚΑΛΩΝ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΑΣ Γ ΓΥΜΝΑΣΙΟΥ 1) Τίτλοσ τθσ ζρευνασ: «Ποια είναι θ επίδραςθ τθσ κερμοκραςίασ ςτθ διαλυτότθτα των ςτερεϊν ςτο νερό;» 2) Περιγραφι του ςκοποφ τθσ ζρευνασ: Η ζρευνα
Βάςεισ Δεδομζνων Ι. Ενότητα 4: Μετατροπή ςχήματοσ Ο/Σ ςε ςχεςιακό. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Ρλθροφορικισ ΤΕ
Βάςεισ Δεδομζνων Ι Ενότητα 4: Μετατροπή ςχήματοσ Ο/Σ ςε ςχεςιακό Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Ρλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons.
ΡΑΝΕΛΛΘΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΧΗΜΕΙΑ ΘΕΤΙΚΘΣ ΚΑΤΕΥΘΥΝΣΘΣ
ΡΑΝΕΛΛΘΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΧΗΜΕΙΑ ΘΕΤΙΚΘΣ ΚΑΤΕΥΘΥΝΣΘΣ Θζμα Α Α1: γ, Α2: β, Α3: α, Α4: β, A5: β Θζμα Β Β1: Σ ι Λ (ελλιπισ διατφπωςθ), Λ, Σ, Σ, Σ Β2: α) Οι διαφορζσ μεταξφ ς και π δεςμοφ είναι: α. Στον ς
Άπειρεσ κροφςεισ. Τθ χρονικι ςτιγμι. t, ο δακτφλιοσ ςυγκροφεται με τον τοίχο με ταχφτθτα (κζντρου μάηασ) μζτρου
Άπειρεσ κροφςεισ Δακτφλιοσ ακτίνασ κυλάει ςε οριηόντιο δάπεδο προσ ζνα κατακόρυφο τοίχο όπωσ φαίνεται ςτο ςχιμα. Ο ςυντελεςτισ τριβισ ίςκθςθσ του δακτυλίου με το δάπεδο είναι, ενϊ ο τοίχοσ είναι λείοσ.
Ελληνικά λογιζηικά ππόηςπα
Ελληνικά λογιζηικά ππόηςπα ΕΛΠ - Διασείπιζη παγίων Version V.01 Date:25.02.2015 Department:Product Management Περιετόμενα 1 Πάγια... 2 1.1 Αρχείο παγίων... 2 1.2 Μζκοδοσ απόςβεςθσ των μονάδων παραγωγισ...
Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων
Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων Δρ. Θεοδώρου Παύλοσ theodorou@uoc.gr Περιεχόμενα Τι είναι οι Βάςεισ Δεδομζνων (DataBases) Τι είναι Σφςτθμα Διαχείριςθσ Βάςεων Δεδομζνων (DBMS) Οι Στόχοι
Πανελλαδικε σ Εξετα ςεισ Γ Τα ξησ Ημερη ςιου και Δ Τα ξησ Εςπερινου Γενικου Λυκει ου
Ζνωςθ Ελλινων Χθμικϊν Πανελλαδικε σ Εξετα ςεισ Γ Τα ξησ Ημερη ςιου και Δ Τα ξησ Εςπερινου Γενικου Λυκει ου Χημεία 03/07/2017 Τμιμα Παιδείασ και Χθμικισ Εκπαίδευςθσ 0 Πανελλαδικε σ Εξετα ςεισ Γ Τα ξησ Ημερη
ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΚΑΙ ΕΥΦΥΗ ΣΥΣΤΗΜΑΤΑ. Άνοιξη ΕΡΓΑΣΙΑ 1 η
ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΚΑΙ ΕΥΦΥΗ ΣΥΣΤΗΜΑΤΑ Άνοιξη 2011 ΕΡΓΑΣΙΑ 1 η Άςκηςη 1 η : Βάςη δεδομζνων ταινιών Σαρ δίνεηαι ηο απσείο movies.ecl, ηο οποίο πεπιέσει μια βάζη δεδομένυν με ηαινίερ ζηη μοπθή: % movie(m,y)
1. Με βάςθ το διάγραμμα ςκζψθσ που ςασ δίνετε να λφςετε τισ αςκιςεισ που ακολουκοφν.
1. Με βάςθ το διάγραμμα ςκζψθσ που ςασ δίνετε να λφςετε τισ αςκιςεισ που ακολουκοφν. =c V c=, V= V c = P V R T R T V= P Α. Να υπολογιςτεί ο όγκοσ μετρθμζνοσ ςε stp ςυνκικεσ 1,6gr CH 4 (Ar C=1,H=1) B. Nα
Θ διαδικαςία κοςτολόγθςθσ εφρεςθσ του κόςτουσ παραγωγισ των προϊόντων χωρίηεται ςε διαφορετικζσ τεχνικζσ μεκόδουσ: Α) Την απορροφητική ή πλήρη κοςτολόγηςη Β) Την οριακή ή άμεςη κοςτολόγηςη Απορροφητική
Συνεκπαίδευςη ςτο 1 ο Δ.Σ. Παλαιοκάςτρου
Συνεκπαίδευςη ςτο 1 ο Δ.Σ. Παλαιοκάςτρου «Unus pro omnibus, omnes pro uno» Όπωσ υποςτιριξε ο Knight (1983) το ςφγχρονο ςχολείο οφείλει να είναι μια ςπουδή ςτην δημοκρατία. Με αυτιν τθν ιδζα ςαν οδθγό,
Προχωρθμζνα Θζματα Συςτθμάτων Ελζγχου
ΠΑΝΕΠΙΣΗΜΙΟ ΑΙΓΑIΟΤ & ΑΕΙ ΠΕΙΡΑΙΑ Σ.Σ. Σμήματα Ναυτιλίας και Επιχειρηματικών Τπηρεσιών & Μηχ. Αυτοματισμού ΣΕ Π.Μ.. «Νέες Σεχνολογίες στη Ναυτιλία και τις Μεταφορές» Προχωρθμζνα Θζματα Συςτθμάτων Ελζγχου
η τζχνη τησ εκπαίδευςησ ο καθηγητήσ ςτο ςπίτι, 24 ώρεσ το 24ωρο
η τζχνη τησ εκπαίδευςησ ο καθηγητήσ ςτο ςπίτι, 24 ώρεσ το 24ωρο 210-9519043, info@odsk.gr Ειςαγωγή ιμερα, με τθν αλματϊδθ πρόοδο τθσ τεχνολογίασ και ειδικότερα ςτον τομζα των τθλεπικοινωνιϊν, ανοίγονται
Ειςαγωγι ςτθν Τεχνολογία Αυτοματιςμοφ
ΠΑΝΕΠΙΣΗΜΙΟ ΑΙΓΑIΟΤ & ΑΕΙ ΠΕΙΡΑΙΑ Σ.Σ. Σμήματα Ναυτιλίας και Επιχειρηματικών Τπηρεσιών & Μηχ. Αυτοματισμού ΣΕ Ειςαγωγι ςτθν Τεχνολογία Αυτοματιςμοφ Ενότθτα # 7: Συςτιματα Ελζγχου Μόνιμο ςφάλμα Ευςτάκεια
Γενικά Μαθηματικά ΙΙ
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 10 η : Εφαρμογζσ Διανυςματικών Συναρτιςεων Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό
Ε. ε περίπτωςθ που θ διαφορά των δφο ηαριϊν είναι 3 τότε ο παίκτθσ ξαναρίχνει μόνο ζνα ηάρι.
1 ο Σετ Ασκήσεων Δομή Επιλογής - Επανάληψης Άςκθςθ 1θ: Ζνα παιχνίδι με ηάρια παίηεται ωσ εξισ: Α. Ο παίκτθσ αρχικά ποντάρει κάποιο ποςό και ρίχνει δφο ηάρια. Β. Ο παίκτθσ κερδίηει (το ποςό που ζχει ποντάρει)
Slide 1. Εισαγωγή στη ψυχρομετρία
Slide 1 Εισαγωγή στη ψυχρομετρία 1 Slide 2 Σφντομη ειςαγωγή ςτη ψυχρομετρία. Διάγραμμα Mollier (πίεςησ-ενθαλπίασ P-H) Σο διάγραμμα Mollier είναι μία γραφικι παράςταςθ ςε ζναν άξονα ςυντεταγμζνων γραμμϊν
ΟΜΑΔΑ: ΘΕΟΚΛΗΣΩ-ΑΝΣΡΕΑ-ΝΕΦΕΛΗ
29/9/2014 το μάκθμα τθσ ευζλικτθσ ηϊνθσ,τα παιδιά χωρίςτθκαν ςε ομάδεσ και ζφτιαξαν τθν δικι τουσ ηωγραφιά χρθςιμοποιϊντασ γεωμετρικά ςχιματα. ΟΜΑΔΑ: ΘΕΟΚΛΗΣΩ-ΑΝΣΡΕΑ-ΝΕΦΕΛΗ ΤΜΜΕΣΡΙΑ: 10 ΚΑΙ 13 ΟΚΣΩΒΡΙΟΤ
ςταφύλια οπωροκηπευτικά ςταφύλια εργαςτήριο τυποποίηςη & ςυςκευαςία ΑΠ-Τ αγροτικών προΰόντων και τροφίμων
οπωροκηπευτικά εργαςτήριο τυποποίηςη & ςυςκευαςία αγροτικών προΰόντων και τροφίμων ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ / ΣΤΕΓ-ΤΤ-Δ / τμήμα ΤΕΧΝΟΛΟΓΩΝ ΓΕΩΠΟΝΩΝ κατεύθυνςη ΠΟΙΟΤΙΚΟΥ ΕΛΕΓΧΟΥ ΑΓΡΟΤΙΚΩΝ ΠΡΟΪΟΝΤΩΝ όπωσ τροποποιικθκε
ΑΣΚΗΣΗ 2: Μελζτη πυκνωτών. Στόχοσ. Θεωρητικό υπόβαθρο. Εκτζλεςη τησ άςκηςησ. Θα μελετιςουμε επίπεδουσ πυκνωτζσ με και χωρίσ διθλεκτρικό.
ΑΣΚΗΣΗ 2: Μελζτη πυκνωτών Στόχοσ Θα μελετιςουμε επίπεδουσ πυκνωτζσ με και χωρίσ διθλεκτρικό. Οι πυκνωτζσ αποκθκεφουν ενζργεια με τθν μορφι θλεκτρικοφ πεδίου. Το θλεκτρικό πεδίο δθμιουργείται ανάμεςα ςε
Ανταλλαγι δυο ταυτόςθμων κβαντικών ςωματιδίων. r 2. r 2 r 1. ,r 1. r 1. r, r r. , r
Ανταλλαγι δυο ταυτόςθμων κβαντικών ςωματιδίων Μποηόνια - Φερμιόνια ςπιν ακζραιο ςπιν θμι-ακζραιο 5 ςυμμετρικι Ψ αντι-ςυμμετρικι Ψ φωτόνια μεςόνια Γκλουόνια κλπ θλεκτρόνια πρωτόνια νετρόνια Μιόνια κλπ β
Διάδοση θερμότητας σε μία διάσταση
Διάδοση θερμότητας σε μία διάσταση Η θεωρητική μελζτη που ακολουθεί πραγματοποιήθηκε με αφορμή την εργαςτηριακή άςκηςη μζτρηςησ του ςυντελεςτή θερμικήσ αγωγιμότητασ του αλουμινίου, ςτην οποία διαγωνίςτηκαν
ΜΗΝΙΑΙΑ ΕΚΘΕΗ ΠΑΡΑΓΩΓΗ ΕΡΓΟΤ. ΜΑΪΟ 2017
Η ζκκεςθ αυτι ςυνοψίηει δεδομζνα παραγωγισ και μετεωρολογικά δεδομζνα από το ζργο.., εγκατεςτθμζνθσ ιςχφοσ 1.472,94kW ςτθ κζςθ, Δ.Δ.., Νομοφ.., ιδιοκτθςίασ τθσ Παρουςιάηονται ςυγκεντρωτικά διαγράμματα
cdna ΒΙΒΛΙΟΘΗΚΗ Καρβέλης Φώτης Φώτο 1
cdna ΒΙΒΛΙΟΘΗΚΗ Καρβέλης Φώτης Φώτο 1 Λόγοι για τουσ οποίουσ αναγκαςτικαμε να δθμιουργιςουμε τθ cdna βιβλιοκικθ Σα γονίδια των ευκαρυωτικών είναι αςυνεχι. Οι περιοριςτικζσ ενδονουκλεάςεισ δεν κόβουν ςτθν
B Εξεταςτική Περίοδοσ Εαρινοφ Εξαμήνου Λφςη Άςκηςησ
B Εξεταςτική Περίοδοσ Εαρινοφ Εξαμήνου 11 1 Λφςη Άςκηςησ Θέμα 1 (, μον.): Δίνεται ο παρακάτω πίνακασ δραςτθριοτιτων ζργου. Πίνακασ Δραςτηριοτήτων Έργου Δραςτηριότητα Διάρκεια Σχέςεισ Α Αρχι του ζργου Β
ΕΝΔΕΙΚΣΙΚΑ ΘΕΜΑΣΑ ΜΑΘΗΜΑΣΙΚΩΝ ΕΞΕΣΑΕΙ ΤΠΟΣΡΟΦΙΩΝ 2014 [2 Ο ΦΤΛΛΑΔΙΟ]
ΕΝΔΕΙΚΣΙΚΑ ΘΕΜΑΣΑ ΜΑΘΗΜΑΣΙΚΩΝ ΕΞΕΣΑΕΙ ΤΠΟΣΡΟΦΙΩΝ 2014 [2 Ο ΦΤΛΛΑΔΙΟ] ΘΕΜΑ 9ο Α. Να ςυγκρίνετε τουσ αρικμοφσ: i) και ii) και iii) 123,012 και 123,02 iv) 5 2 και 10 Β. Σο άκροιςμα των δφο διαδοχικϊν ακζραιων
ΣΙΜΟΛΟΓΗΗ ΤΝΣΑΓΩΝ ΜΕ ΥΑΡΜΑΚΑ ΠΟΤ ΕΦΟΤΝ ΣΙΜΗ ΑΝΑΥΟΡΑ ΜΕΓΑΛΤΣΕΡΗ ΑΠΟ ΣΗΝ ΣΙΜΗ ΛΙΑΝΙΚΗ
ΣΙΜΟΛΟΓΗΗ ΤΝΣΑΓΩΝ ΜΕ ΥΑΡΜΑΚΑ ΠΟΤ ΕΦΟΤΝ ΣΙΜΗ ΑΝΑΥΟΡΑ ΜΕΓΑΛΤΣΕΡΗ ΑΠΟ ΣΗΝ ΣΙΜΗ ΛΙΑΝΙΚΗ Μπορεί να ςυμβαίνει αυτό; Ναί. Απλά τϊρα εμφανίςτθκαν τζτοιεσ τιμζσ ςτον κατάλογο φαρμάκων. Μζχρι τϊρα πάντα οι τιμζσ
ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ. Κεφάλαιο 8 Η γλϊςςα Pascal
ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ Κεφάλαιο 8 Η γλϊςςα Pascal Παράγραφοσ 8.2 Βαςικοί τφποι δεδομζνων Σα δεδομζνα ενόσ προγράμματοσ μπορεί να: είναι αποκθκευμζνα εςωτερικά ςτθν μνιμθ είναι αποκθκευμζνα εξωτερικά
ΑΠΑΝΤΗΣΕΙΣ ΧΗΜΕΙΑΣ Γ ΛΥΚΕΙΟΥ
ΘΕΜΑ Α A1. i A2. i A. ii A4. i A. iii ΑΠΑΝΤΗΣΕΙΣ ΧΗΜΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Β Β1. -1 0-2 0 4HCl (g) + O 2(g) 2H 2 O (g) + 2Cl 2(g), ΔΘ
ΑΚΗΕΙ ΓΙΑ ΣΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ (7)
ΑΚΗΕΙ ΓΙΑ ΣΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ (7) Να ειζάγεηε ζηον SQL Server ηην βάζη δεδομένων πος δημιοςπγήζαηε ζηην Access. Μποπούμε να ειζάγοςμε ζηον SQL Server ηην βάζη δεδομένυν πος δημιοςπγήζαμε ζηην Access. Η
Μεθολογία αςκιςεων αραίωςησ και ανάμειξησ διαλυμάτων (με τθν ίδια δ. ουςία).
Μεθολογία αςκιςεων αραίωςησ και ανάμειξησ διαλυμάτων (με τθν ίδια δ. ουςία). Από τθν τράπεηα κεμάτων Α_ΧΘΜ_0_20651 Διακζτουμε υδατικό διάλυμα (Δ1) KOH 0,1 Μ. α)να υπολογίςετε τθν % w/v περιεκτικότθτα του
Εγχειρίδιο Χρήςησ Support
Εγχειρίδιο Χρήςησ Support Περιεχόμενα 1) Αρχικι Σελίδα...2 2) Φόρμα Σφνδεςθσ...2 3) Μετά τθ ςφνδεςθ...2 4) Λίςτα Υποκζςεων...3 5) Δθμιουργία Νζασ Υπόκεςθσ...4 6) Σελίδα Υπόκεςθσ...7 7) Αλλαγι Κωδικοφ...9
Η γλώςςα προγραμματιςμού C
Η γλώςςα προγραμματιςμού C Οι εντολζσ επανάλθψθσ (while, do-while, for) Γενικά για τισ εντολζσ επανάλθψθσ Συχνά ςτο προγραμματιςμό είναι επικυμθτι θ πολλαπλι εκτζλεςθ μιασ ενότθτασ εντολϊν, είτε για ζνα
Δ ιαγώνιςμα ς το μάθημα Ανάπτυξη Εφαρμογών ςε Προγ ραμματιςτικό Περιβάλ λον
Δ ιαγώνιςμα ς το μάθημα Ανάπτυξη Εφαρμογών ςε Προγ ραμματιςτικό Περιβάλ λον Ο ν ο μ α τ ε π ώ ν υ μ ο : _ Θ Ε Μ Α 1 ο Α. Ν α χ α ρ α κ τ θ ρ ι ς τ ο φ ν ο ι α κ ό λ ο υ κ ε σ π ρ ο τ ά ς ε ι σ μ ε τ ο
Το ςχολείο ςταματά αλλά θ δθμιουργικότθτα των παιδιϊν ςυνεχίηει να αναπτφςςεται! Ζλα κι εςφ ςτθν παρζα μασ!
Summer Cαmp 2016 ςτα Εκπαιδευτιρια Σακκά (νζο) Το ςχολείο ςταματά αλλά θ δθμιουργικότθτα των παιδιϊν ςυνεχίηει να αναπτφςςεται! Ζλα κι εςφ ςτθν παρζα μασ! Το κερινό πρόγραμμα δθμιουργικισ απαςχόλθςθσ και