ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ: ΘΕΩΡΙΑ ΧΑΡΤΟΦΥΛΑΚΙΟΥ
|
|
- Νικόστρατος Δουμπιώτης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΜΑΘΗΜΑ: ΑΝΑΛΥΣΗ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΔΙΔΑΣΚΩΝ: ΓΕΩΡΓΙΟΣ ΛΕΛΕΔΑΚΗΣ Άσκηση : ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ: ΘΕΩΡΙΑ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΜΕΤΟΧΗ Α ΜΕΤΟΧΗ Β Απόδοση Πιθανότητα Απόδοση Πιθανότητα -0,0 0,50-0,0 0,50 0,50 0,50 0,60 0,50 [ ] Μετοχή Α: Αναμενόμενη Απόδοση: = (0,50 x -0,0 + (0,50 x 0,50 = = -0,05 + 0,5 = 0,0 ή 0% σ = 0,5 x [-0,0-0,0] + 0,5 x [0,50-0,0] = 0,50 x 0,09 + 0,50 x 0,09 = 0,045+0,045=0,09 σ = 0,3 ή 30% Μετοχή Β: Αναμενόμενη Απόδοση: Β = (0,50 x -0,0 + (0,50 x 0,60 = = -0,0 + 0,30 = 0,0 ή 0% σ Β= 0,5 x [-0,0-0,0] + 0,5 x [0,60-0,0] = 0,50 x 0,6 + 0,50 x 0,6 = 0,08 + 0,08 = 0,6 σ Β = 0,4 ή 40% Αναμενόμενη Απόδοση Χαρτοφυλακίου: = (0,60 x 0,0 + (0,40 x 0,0 = = 0, + 0,08 = 0, ή 0%
2 j j j j σ = 0,60 x 0,30 + 0,40 x 0,40 = = 0,36 x 0,90 + 0,6 x 0,6 = = 0, ,056 = 0,058 σ = 0,4 ή 4% Άσκηση : Όταν η απόδοση ενός αξιογράφου εκφράζεται με έναν αριθμό δυνητικών αποδόσεων και την αντίστοιχη πιθανότητα να συμβούν, τότε η αναμενόμενη απόδοση ισούται με τον σταθμικό μέσο όρο αυτών των δυνητικών αποδόσεων όπου κάθε δυνητική απόδοση σταθμίζεται από την αντίστοιχη πιθανότητα να συμβεί. Οπότε ισχύει: ,5 0,44 0,5 0,4 0,5 ( 0,6 0, 0,07 0,04 0,4 4% Αντίστοιχα για τη μετοχή Β: ,35 0, 0,3 0,5 0,35 ( 0, 0,07 0,045 0,035 0,08 8% Είναι γνωστό ότι ο κίνδυνος μετράται ως η μεταβλητότητα των αποδόσεων γύρω από την αναμενόμενη τιμή τους. Για την περίπτωση των δυνητικών αποδόσεων με κάποια πιθανότητα, ο κίνδυνος μετράται από την ακόλουθη σχέση:
3 Κίνδυνος μετοχής Α: 3 [ ] 0, 5 (0, 44 0,4 0, 5 (0,4 0,4 0, 5 ( 0,6 0,4 0, 5 0, 09 0, 5 0, 09 0, 045 0, 3, 3% Κίνδυνος μετοχής Β: 3 [ ] 0, 35 (0, 0, 08 0, 3 (0,5 0, 08 0, 35 ( 0, 0, 08 0, 35 0, 044 0, 3 0, , 35 0, 034 0, ,336 3, 36% Με τους παραπάνω υπολογισμούς γνωρίζουμε όλα τα δεδομένα που χρειάζονται για τον υπολογισμό της αναμενόμενης απόδοσης του χαρτοφυλακίου καθώς και του κινδύνου του (σύμφωνα με τις σχέσεις που χρησιμοποιήθηκαν και στο προηγούμενο θέμα. Συνεπώς: Απόδοση χαρτοφυλακίου Ε( = Α E ( Α + Ε( = 0,75 0,4 + 0,5 0,08 = 0,05 + 0,0 = 0,5 Ε( =,5% 3
4 Κίνδυνος χαρτοφυλακίου 0, 565 0, 045 0, 065 0, 075 0, 6 0, 75 0, 5 0, 3 0, 336 0,0535 0, , , , 8 8, % Άσκηση 3:. Απόδοση: Ε( = 5% σ = 0%. Απόδοση: Ε( = (0,75 x 0,5 + (0,5 x 0,35 = 0,0 ή 0% σ = (0,75 x 0,0 + 0,5 x 0,40 + x 0,75 x 0,5 x 0,5 x 0,0 x 0,40 / = 0,0 ή 0% 3. Απόδοση: Ε( = (0,50 x 0,5 + (0,50 x 0,35 = 0,5 ή 5% σ = (0,50 x 0,0 + 0,50 x 0,40 + x 0,50 x 0,50 x 0,5 x 0,0 x 0,40 / = 0,449 ή 4,49% 4. Απόδοση: Ε( = (0,5 x 0,5 + (0,75 x 0,35 = 0,30 ή 30% σ = (0,5 x 0,0 + 0,75 x 0,40 + x 0,5 x 0,75 x 0,5 x 0,0 x 0,40 / = 0,36 ή 3,6% 5. Απόδοση: Ε( = 35% σ = 40% 4
5 Άσκηση 4: Αναμενόμενη Απόδοση Χαρ/κίου: = (0,70 x 0,0 + (0,30 x 0,05 = = 0,4 + 0,05 = 0,55 ή 5,5% Κίνδυνος Χαρ/κίου: j j j j j σ = (0,70 x 0,0 + (0,30 x = = 0,49 x 0,04= 0,096 σ = 0,4 ή 4% Άσκηση 5: α Απόδοση χαρτοφυλακίου Ε( = Α E ( Α + F F Ε( = 0,70 0,5 + 0,30 0,06 = 0,05 + 0,08 = 0,3 Ε( =,3% Κίνδυνος χαρτοφυλακίου F F F F F 0, 70 0, 0, 084 8, 4% 5
6 β Ο κίνδυνος του χαρτοφυλακίου προκύπτει ως το γινόμενο του ποσοστού επένδυσης στη μετοχή επί την τυπική απόκλιση (κίνδυνο της μετοχής (λόγω του ότι ο κίνδυνος από την επένδυση στα έντοκα γραμμάτια του Ελληνικού Δημοσίου είναι μηδενικός. Ως εκ τούτου ισχύει: 0, 09 0, 0, 75 Συνεπώς για να είναι ο κίνδυνος του χαρτοφυλακίου 9% θα πρέπει να επενδυθεί το 75% των κεφαλαίων στη μετοχή και το 5% στα γραμμάτια του Ελληνικού Δημοσίου. γ Η αναμενόμενη απόδοση του χαρτοφυλακίου θα προκύψει από τη γνωστή σχέση: Ε( = Α E ( Α + F F Ε( = 0,75 0,5 + 0,5 0,06 = 0,5 + 0,05 = 0,75 Ε( =,75% Άσκηση 6: Θεωρούμε ένα χαρτοφυλάκιο το οποίο αποτελείται από τις μετοχές Α και Β με σταθμίσεις και =-. Αν ο συντελεστής συσχέτισης των δύο μετοχών είναι ρ=, τότε η τυπική απόκλιση του χαρτοφυλακίου θα είναι ίση με: ( και η αναμενόμενη απόδοση του χαρτοφυλακίου θα είναι ίση με: ( Για κάποιο συνδυασμό των και το χαρτοφυλάκιο θα ενέχει μηδενικό κίνδυνο δηλαδή θα έχει σ = 0. Αρκεί λοιπόν να βρούμε από τη σχέση ( το όταν σ = 0 και να το αντικαταστήσουμε στη σχέση ( για να βρούμε την αναμενόμενη απόδοση χωρίς κίνδυνο. Θα έχουμε: 6
7 και , 67% Άσκηση 7: Το ποσοστό επένδυσης των στοιχείων που ελαχιστοποιεί τον κίνδυνο είναι αυτό που ελαχιστοποιεί τη διακύμανση του χαρτοφυλακίου Για ρ ΑΒ = 0 δίνεται από τη σχέση: 0,5 0,5 96,5% 0, 0,5 0,6 οπότε για Β = - 96,5% = 3,85%. Άσκηση 8: Μετοχή Α: σ ι = β σ m + σ ε Συστηματικός = β Ασ m = 0,70 x 400 = 96 Μη Συστηματικός = Συνολικός κίνδυνος-συστηματικός Κίνδυνος 7
8 Μετοχή Β: = = 784 Συστηματικός = β Βσ m =, x 400 = 576 Μη Συστηματικός = Συνολικός κίνδυνος-συστηματικός Κίνδυνος = = 44 Άσκηση 9: α = α + β m = 0,4 +, x 0,0 = 0,6 ή 6% Β = 0,04 + 0,9 x 0,0 = 0,3 ή 3% β σ = β σ m + σ ε σ =, x 0,0 + 0,846 = =,44 x 0,04 + 0,08099 = 0,3859 σ = 0,373 ή 37,3% σ = 0,9 x 0,0 + 0,7889 = 0,8 x 0,04 + 0,03 = 0,0644 σ = 0,538 ή 5,38% σ ΑΒ =, x 0,9 x 0,0 = 0,043 σ j = β β j σ m ρ j = σ j /σ σ j ρ ΑΒ = 0,043/( 0,373 x 0,538 = 0,457 γ Η μετοχή Α ενέχει τον μεγαλύτερο κίνδυνο δ Η μετοχή με τον μικρότερο συστηματικό κίνδυνο σ = β σ m + σ ε Συστηματικός Κίνδυνος για την Μετοχή Α = β Ασ m =,0 x 0,0 =,48 Συστηματικός Κίνδυνος για την Μετοχή Β = β σ m = 0,9 x 0,0 = 0,85 ε = α +β m 8
9 a α = (0,30 x 0,4 + (0,70 x 0,04 = 0,07 β = (0,30 x, + (0,70 x 0,9 = 0,99 = 0,07 + 0,99 x 0,0 = 0,69 ή 6,9% m σ = (0,99 x 0,0 +[(0,30 x 0,846 + (0,70 x 0,7889 ] = 0,067 σ = 4,93% Άσκηση 0: α Σύμφωνα με τα αποτελέσματα του υποδείγματος του ενός δείκτη, οι τυπικές αποκλίσεις σ Α και σ Β των μετοχών Α και Β θα είναι ίσες με: 0,8 30 m e 09,76 34,78% m e, 40 96, 96 47, 93% β Η αναμενόμενη απόδοση του χαρτοφυλακίου θα είναι ίση με: F F 0, 3 3 0, , 5 8 4% Ο συντελεστής β του χαρτοφυλακίου θα είναι ίσος με: F 0 0, 3 0,8 0, 45, 0, 78 Η τυπική απόκλιση των αποδόσεων του χαρτοφυλακίου θα είναι ίση με: 0, 78 0, , m e 699, ,45%. 9
Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 41 Αγορές Χρήματος & Κεφαλαίου. Ακαδημαϊκό έτος:
Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 41 Αγορές Χρήματος & Κεφαλαίου Ακαδημαϊκό έτος: 2017 2018 Ασκήσεις 3 ης ΟΣΣ Άσκηση 1 η. Έστω οι προσδοκώμενες αποδόσεις και ο
Διαβάστε περισσότεραwww.oleclassroom.gr ΘΕΜΑ 4 Στον πίνακα που ακολουθεί παρατίθενται οι κατανομές των αποδόσεων δύο μετοχών. Πιθανότητα (π ) 0,5 0,5 0,5 0,5 r Α 10% 6% 13% 3% r Β 0% 5% -1% 16% Α. Να υπολογιστεί η εκτιμώμενη
Διαβάστε περισσότεραKEΦΑΛΑΙΟ 2 Θεωρία Χαρτοφυλακίου
KEΦΑΛΑΙΟ Θεωρία Χαρτοφυλακίου.1 Απόδοση και κίνδυνος Σε αυτή την ενότητα θα μάθουμε να υπολογίζουμε την απόδοση και τον κίνδυνο κάθε αξιόγραφου. Ειδικότερα θα διαχωρίσουμε τον υπολογισμό ανάλογα με το
Διαβάστε περισσότερα0,40 0, ,35 0,40 0,010 = 0,0253 1
ΔΕΟ3 1ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΧΑΡΤΟΦΥΛΑΚΙΑ CAPM ΕΡΩΤΗΣΗ 1 Έστω ότι το χαρτοφυλάκιο της αγοράς αποτελείται από τρεις μετοχές οι οποίες συμμετέχουν με τα εξής ποσοστά:: W1 = 0,25, W2 = 0,35, W3 = 0,40. Ο παρακάτω
Διαβάστε περισσότεραΗ εξίσωση της γραμμής αγοράς χρεογράφων (SML) είναι η εξίσωση του υποδείγματος κεφαλαιακών και περιουσιακών στοιχείων (CAPM)
ΠΔΕ353 Λύση 2 ης γραπτής εργασίας 2015 Άσκηση 1 Η αναμενόμενη απόδοση της μετοχής Α σύμφωνα με το συστηματικό της κίνδυνο θα βρεθεί από το υπόδειγμα CPM E(r $ ) = r ' + β * (Ε r, r ' ) E(r $ ) = 0,05 +
Διαβάστε περισσότεραΔΙΑΧΩΡΙΣΜΟΣ ΚΙΝΔΥΝΟΥ Ο συνολικός κίνδυνος ή τυπική απόκλιση χωρίζεται σε : α) συστηματικό κίνδυνο δηλαδή ο κίνδυνος που οφείλεται στις οικονομικοπολιτικές (γενικές) συνθήκες της αγοράς β) μη συστηματικό
Διαβάστε περισσότεραΘΕΜΑ 3 Επομένως τα μερίσματα για τα έτη 2015 και 2016 είναι 0, 08 0,104
ΘΕΜΑ 3 ΙΑ) Η οικονομική αξία της μετοχής BC θα υπολογιστεί από το συνδυασμό των υποδειγμάτων α) D D προεξόφλησης IV για τα πρώτα έτη 05 και 06 και β) σταθερής k k αύξησης μερισμάτων D IV (τυπολόγιο σελ.
Διαβάστε περισσότεραΔΕΟ31 Θεωρία Κεφαλαιαγοράς και υποδείγματα αποτίμησης κεφαλαιακών περιουσιακών στοιχείων
ΔΕΟ31 Θεωρία Κεφαλαιαγοράς και υποδείγματα αποτίμησης κεφαλαιακών περιουσιακών στοιχείων 1.1 Θεωρία Κεφαλαιαγοράς Η θεωρία κεφαλαιαγοράς αποτελεί τη συνέχεια της θεωρίας χαρτοφυλακίου. Στη θεωρία χαρτοφυλακίου
Διαβάστε περισσότεραΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΚΤΙΚΗ
Δημήτριος Βασιλείου Καθηγητής Ελληνικού Ανοικτού Πανεπιστημίου Νικόλαος Ηρειώτης Αναπληρωτής Καθηγητής Εθνικού & Καποδιστριακού Πανεπιστημίου Αθηνών 1 Χρηματοοικονομική Διοίκηση Θεωρία και Πρακτική Δημήτριος
Διαβάστε περισσότεραΑγορές Χρήματος και Κεφαλαίου. Ενότητα # 3: Θεωρία Χαρτοφυλακίου Διδάσκων: Σπύρος Σπύρου Τμήμα: Λογιστικής και Χρηματοοικονομικής
Αγορές Χρήματος και Κεφαλαίου Ενότητα # 3: Θεωρία Χαρτοφυλακίου Διδάσκων: Σπύρος Σπύρου Τμήμα: Λογιστικής και Χρηματοοικονομικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του
Διαβάστε περισσότεραΑκολουθούν ενδεικτικές ασκήσεις που αφορούν τη δεύτερη εργασία της ενότητας ΔΕΟ31
Άσκηση η 2 η Εργασία ΔEO3 Ακολουθούν ενδεικτικές ασκήσεις που αφορούν τη δεύτερη εργασία της ενότητας ΔΕΟ3 Η επιχείρηση Α εκδίδει σήμερα ομολογία ονομαστικής αξίας.000 με ετήσιο επιτόκιο έκδοσης 7%. Το
Διαβάστε περισσότεραΑξιολόγηση Επενδύσεων
Αξιολόγηση Επενδύσεων Διάλεξη για το CAPM Δράκος και Καραθανάσης Κεφάλαιο 18 Εαρινό Εξάμηνο 2018 1 Οι Κύριες Υποθέσεις του Υποδείγματος CAPM Το CAPM (Capital Asset Pricing Model-Υπόδειγμα Αποτίμησης Κεφαλαιακών(Περιουσιακών)
Διαβάστε περισσότεραΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ. Συσχέτιση (Correlation) - Copulas
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ Συσχέτιση (Correlation) - Copulas Σημασία της μέτρησης της συσχέτισης Έστω μία εταιρεία που είναι εκτεθειμένη σε δύο μεταβλητές της αγοράς. Πιθανή αύξηση των 2 μεταβλητών
Διαβάστε περισσότεραΑ. α) ίνεται η συνάρτηση F(x)=f(x)+g(x). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F (x)=f (x)+g (x).
Νίκος Σούρµπης - - Γιώργος Βαρβαδούκας ΘΕΜΑ ο Α. α) ίνεται η συνάρτηση F()=f()+g(). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F ()=f ()+g (). β)να γράψετε στο τετράδιό σας τις παραγώγους
Διαβάστε περισσότεραΕπιλογή επενδύσεων κάτω από αβεβαιότητα
Επιλογή επενδύσεων κάτω από αβεβαιότητα Στατιστικά κριτήρια επιλογής υποδειγμάτων Παράδειγμα Θεωρήστε τον παρακάτω πίνακα ο οποίος δίνει τις ροές επενδυτικών σχεδίων λήξης μιας περιόδου στο μέλλον, όταν
Διαβάστε περισσότεραΣτατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος)
Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος) 1 γ Ποιος είναι ο αριθμητικός μέσος όρος ενός δείγματος ετησίων αποδόσεων μιας μετοχής, της οποίας
Διαβάστε περισσότεραΣτατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος)
Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος) 1. Ποιος είναι ο αριθμητικός μέσος όρος ενός δείγματος ετησίων αποδόσεων μιας μετοχής, της οποίας
Διαβάστε περισσότεραCase 04: Επιλογή Χαρτοφυλακίου IΙ «Null Risk Securities» ΣΕΝΑΡΙΟ
Case 04: Επιλογή Χαρτοφυλακίου IΙ «Null Risk Securities» ΣΕΝΑΡΙΟ εκαετές πρόγραµµα επενδύσεων Οκτώ επενδυτικές ευκαιρίες Έντοκα γραµµάτια δηµοσίου, κοινές µετοχές εταιρειών, οµόλογα οργανισµών κ.ά. H επένδυση
Διαβάστε περισσότεραΣχηματισμός χαρτοφυλακίου με χρήση Excel. Θεωρία και πράξη
Σχηματισμός χαρτοφυλακίου με χρήση Excel. Θεωρία και πράξη Γκούμας Στράτος. Πτυχιούχος Οικονομολόγος. MSc Εφαρμοσμένη Οικονομική και Χρηματοοικονομική (Ε.Κ.Π.Α./ Τμήμα Οικονομικών) e-mal: s_4goum@yahoo.com,
Διαβάστε περισσότεραΒ. Τα μερίσματα θα αυξάνονται συνεχώς με ένα σταθερό ρυθμό 5% ανά έτος.
Τελικές 009 Θέμα 4 Η οικονομική διεύθυνση της «ΓΒΑ ΑΕ» εξετάζει την αξία των κοινών μετοχών της εταιρίας. Το τελευταίο μέρισμα που διανεμήθηκε () ήταν 6 ανά μετοχή. Έχει εκτιμηθεί ότι ο συστηματικός κίνδυνος
Διαβάστε περισσότεραΔιαχείριση Χαρτοφυλακίου ΟΕΕ. Σεμινάριο
Διαχείριση Χαρτοφυλακίου ΟΕΕ Σεμινάριο 1 Ενότητες Διαχείριση Χαρτοφυλακίου ΚΙΝΔΥΝΟΣ ΟΜΟΛΟΓΙΕΣ ΜΕΤΟΧΕΣ ΚΙΝΔΥΝΟΣ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΥΠΟΔΕΙΓΜΑΤΑ ΜΕΤΡΑ ΑΞΙΟΛΟΓΗΣΗΣ ΤΗΣ ΑΠΟΔΟΣΗΣ ΧΑΡΤΟΦΥΛΑΚΙΟΥ 2 ΠΑΡΑΔΕΙΓΜΑ 1 Ένας
Διαβάστε περισσότεραΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ
ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΧΑΡΤΟΦΥΛΑΚΙΑ ΕΠΕΝΔΥΣΕΩΝ, ΜΟΝΤΕΛΑ, ΤΟ ΡΙΣΚΟ ΚΑΙ Η ΒΕΛΤΙΣΤΗ ΕΠΙΛΟΓΗ ΤΟΥΣ Δημήτριος Παπαευαγγέλου Επιβλέπων:
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 05 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο R, να αποδείξετε ότι: f + g ' = f ' + g ', R Μονάδες 7 Α. Πότε λέµε ότι µια συνάρτηση
Διαβάστε περισσότεραΆσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:
Άσκηση 1: Δύο τυχαίες μεταβλητές Χ και Υ έχουν στατιστικές μέσες τιμές 0 και διασπορές 25 και 36 αντίστοιχα. Ο συντελεστής συσχέτισης των 2 τυχαίων μεταβλητών είναι 0.4. Να υπολογισθούν η διασπορά του
Διαβάστε περισσότεραwww.onlineclassroom.gr
ΕΡΩΤΗΣΗ 3 (25 μονάδες) www.onlineclassroom.gr Το τμήμα έρευνας μιας χρηματιστηριακής εταιρείας συλλέγοντας δεδομένα και αναλύοντας τα κατέληξε ότι για τις παρακάτω μετοχές που διαπραγματεύονται στο χρηματιστήριο
Διαβάστε περισσότεραΑξιολογηση Επενδυσεων Χαρτοφυλακίου
Αξιολογηση Επενδυσεων Χαρτοφυλακίου Περιεχόµενα 1. Το µέτρο του Treynor 2. Το µέτρο του Sharpe 3. Συγκριση µεταξύ των µέτρων Treynor και Sharpe 4. Μέτρηση διαφορποίησης ενός χαρτοφυλακίου 5. Το µέτρο του
Διαβάστε περισσότεραα έχει μοναδική λύση την x α
ΚΕΦΑΛΑΙΟ 3 ο ΕΞΙΣΩΣΕΙΣ Να εξετάσετε ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες είναι λάθος.. H εξίσωση ( α)( β) ( β)( γ) έχει τις ίδιες λύσεις με την εξίσωση α γ για οποιεσδήποτε τιμές των
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ. 40. Ακόμα είναι. και F1 f και ακόμα Τέλος έχουμε F3 f1 f2 f3 F2 f. N i
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 0-06 ΜΑΘΗΜΑ / ΤΑΞΗ : ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Θερινά ΗΜΕΡΟΜΗΝΙΑ: /0/06 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Κατσαρός Δημήτρης - Συμεώνογλου Βασίλης ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α Σχολικό
Διαβάστε περισσότεραΚ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α ΣΕ ΟΛΟΥΣ!!!!!!!!!!!
Όνομα: Επίθετο: Ημερομηνία: Πρωί: Απόγευμα: x Θεματική ενότητα:χρηματοοικονομικά πρότυπα, ΚΩΔ Αε Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α ΣΕ ΟΛΟΥΣ!!!!!!!!!!! 1/6 1. Η μετοχή Sέχει σημερινή τιμή S 0 και οι μελλοντικές της
Διαβάστε περισσότεραΔΕΟ31 Λύση 2 ης γραπτής εργασίας
1 ΔΕΟ31 Λύση 2 ης γραπτής εργασίας 2015-16 Προσοχή! Όλες οι εργασίες ελέγχονται για αντιγραφή. Μελετήστε προσεκτικά και δώστε τη δική σας λύση ΘΕΜΑ 1 ο Α) Αρχικά θα πρέπει να υπολογίσουμε τη μηνιαία πραγματοποιηθείσα
Διαβάστε περισσότεραΔΙΕΘΝΕΙΣ ΕΠΕΝΔΥΣΕΙΣ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ
ΔΙΕΘΝΕΙΣ ΕΠΕΝΔΥΣΕΙΣ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ Ενότητα 9: Διεθνείς Επενδύσεις Χαρτοφυλακίου ΙΙ Μιχαλόπουλος Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Διαβάστε περισσότεραΠΙΣΤΟΠΟΙΗΤΙΚΟ ΕΠΙΠΕΔΟΥ Δ - ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ (έκδοση )
ΠΙΣΤΟΠΟΙΗΤΙΚΟ ΕΠΙΠΕΔΟΥ Δ - ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ (έκδοση 18.4.2016) 440. Για μια κατάθεση 100 με ετήσιο επιτόκιο 12% και τριμηνιαίο ανατοκισμό, η ετήσια πραγματική απόδοση είναι : α) 12,42%
Διαβάστε περισσότεραH τιμολόγηση των δικαιωμάτων με το υπόδειγμα Black Scholes
TΟΜΟΣ Γ - ΔΙΚΑΙΩΜΑΤΑ Μάθημα 19 H τιμολόγηση των δικαιωμάτων με το υπόδειγμα Black Scholes Στην προηγούμενη ενότητα είδαμε ορισμένα από τα χαρακτηριστικά των δικαιωμάτων χρησιμοποιώντας τις τιμές των δικαιωμάτων
Διαβάστε περισσότεραΗ ΑΣΤΑΘΕΙΑ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΒΗΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ - TMHMA XΡHMATOIOKONOMIKHΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ Μ.Π.Σ. ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΓΙΑ ΣΤΕΛΕΧΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΜΕ ΘΕΜΑ: Η ΑΣΤΑΘΕΙΑ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΒΗΤΑ ΖΑΦΕΙΡΑΚΗΣ ΔΗΜΟΣΘΕΝΗΣ
Διαβάστε περισσότεραΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ. Value at Risk (VaR) και Expected Shortfall
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ Value at Risk (VaR) και Expected Shortfall Ορισμός του VaR VaR, Value at Risk, Αξία σε Κίνδυνο. Η JP Morgan εισήγαγε την χρήση του. Μας δίνει σε ένα μόνο νούμερο, την
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ
Διαβάστε περισσότεραf x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α1 Αν οι συναρτήσεις f,g
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2ο ΑΠΟΔΟΣΗ ΚΑΙ ΚΙΝΔΥΝΟΣ
8 ΚΕΦΑΛΑΙΟ 2ο ΑΠΟΔΟΣΗ ΚΑΙ ΚΙΝΔΥΝΟΣ Στα κεφάλαια που ακολουθούν θα ασχοληθούμε με την ανάλυση και αποτίμηση αξιογράφων σταθερού εισοδήματος και μετοχών. Στην ανάλυση των αξιογράφων αυτών είναι απαραίτητο
Διαβάστε περισσότεραMANAGEMENT OF FINANCIAL INSTITUTIONS
MAAGEMET OF FIACIAL ISTITUTIOS ΔΙΑΛΕΞΗ: «ΚΙΝΔΥΝΟΣ ΑΓΟΡΑΣ» (MARKET RISK) Πανεπιστήμιο Πειραιώς Τμήμα Χρηματοοικονομικής Καθηγητής Γκίκας Χαρδούβελης ΠΕΡΙΕΧΟΜΕΝΑ Κίνδυνος Αγοράς και Επενδυτικό Χαρτοφυλάκιο
Διαβάστε περισσότεραΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 14 ΦΕΒΡΟΥΑΡΙΟΥ 2011
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 14 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΑΠΟΓΕΥΜΑΤΙΝΗ ΕΞΕΤΑΣΗ (12
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ ΟΜΑΔΑ Β ΤΕΤΑΡΤΗ ΜΑΪΟΥ 5 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:
Διαβάστε περισσότεραΧρηματοοικονομική Διοίκηση
Χρηματοοικονομική Διοίκηση Ενότητα 8: Απόδοση - Κίνδυνος Επενδύσεων Γιανναράκης Γρηγόρης Τμήμα Διοίκηση Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής Υποθέσεις του Απλού γραμμικού υποδείγματος της Παλινδρόμησης Η μεταβλητή ε t (διαταρακτικός όρος) είναι τυχαία μεταβλητή με μέσο όρο
Διαβάστε περισσότεραi μιας μεταβλητής Χ είναι αρνητικός αριθμός
ΕΡΩΤΗΣΕΙΣ Σ Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Nα χαρακτηρίσετε τις προτάσεις που ακoλουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες:
Συχνότητα v i O φυσικός αριθμός που δείχνει πόσες φορές εμφανίζεται η τιμή x i της εξεταζόμενης μεταβλητής Χ στο σύνολο των παρατηρήσεων. Είναι φανερό ότι το άθροισμα όλων των συχνοτήτων είναι ίσο με το
Διαβάστε περισσότεραΗ ΕΚΤΙΜΗΣΗ ΤΟΥ ΒΗΤΑ ΤΩΝ ΜΕΤΟΧΩΝ ΜΕΣΩ ΕΝΟΣ ΥΠΟΔΕΙΓΜΑΤΟΣ ΜΕ ΔΙΑΧΡΟΝΙΚΑ ΜΕΤΑΒΑΛΛΟΜΕΝΟΥΣ ΣΥΝΤΕΛΕΣΤΕΣ ΠΕΡΙΕΧΟΜΕΝΑ
1 ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 1.1 ΕΙΣΑΓΩΓΗ...2 1.2 ΣΚΟΠΟΙ ΚΑΙ ΧΡΗΣΙΜΟΤΗΤΑ ΤΗΣ ΕΡΓΑΣΙΑΣ...6 1.3 ΠΕΡΙΟΡΙΣΜΟΙ ΤΗΣ ΕΡΓΑΣΙΑΣ...9 1.4 ΣΥΝΤΟΜΗ ΕΠΙΣΚΟΠΗΣΗ ΥΠΟΛΟΙΠΩΝ ΚΕΦΑΛΑΙΩΝ...9 ΚΕΦΑΛΑΙΟ 2 2.1 ΘΕΩΡΙΑ ΧΑΡΤΟΦΥΛΑΚΙΟΥ...11
Διαβάστε περισσότεραΑπλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης
Διαβάστε περισσότερα1.Μια εταιρία αναμένεται να αποδώσει μέρισμα στο τέλος του έτους ίσο με D 1=2
ΔΕΟ31 - Επαναληπτικές Ερωτήσεις τόμου Δ 1.Μια εταιρία αναμένεται να αποδώσει μέρισμα στο τέλος του έτους ίσο με D 1= Καθώς η ζήτηση για τα προϊόντα της επιχείρησης αναμένεται να αυξηθεί στο μέλλον, το
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι Ονοματεπώνυμο: Όνομα Πατρός:... ΑΜ:. Ημερομηνία: Σ Παρακαλώ μη γράφετε στα παρακάτω τετράγωνα Μέρος
Διαβάστε περισσότεραΤμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 3η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα
Τμήμα Διοίκησης Επιχειρήσεων Γρεβενά Μάθημα: Οικονομετρία Διάλεξη 3η: Απλή Γραμμική Παλινδρόμηση Διδάσκουσα: Κοντογιάννη Αριστούλα Ιδιότητες εκτιμώμενης ευθείας παλινδρόμησης με τη μέθοδο των ελαχίστων
Διαβάστε περισσότεραΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΓΙΑ ΣΤΕΛΕΧΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΓΙΑ ΣΤΕΛΕΧΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΑΜΟΙΒΑΙΩΝ ΚΕΦΑΛΑΙΩΝ ΜΕ ΤΟΝ ΔΙΑΦΟΡΟΠΟΙΟΥΜΕΝΟ ΔΕΙΚΤΗ ΤΟΥ SHARPE» ΕΠΙΜΕΛΕΙΑ: Καπέλλα
Διαβάστε περισσότεραΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ
Διαβάστε περισσότεραΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 6.1 Ετεροσκεδαστικότητα: Εισαγωγή Συχνά, η υπόθεση της σταθερής διακύμανσης των όρων σφάλματος,
Διαβάστε περισσότεραΔΙΕΘΝΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΑΓΟΡΕΣ
ΔΙΕΘΝΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΑΓΟΡΕΣ Ενότητα 4: ΘΕΩΡΙΑ ΤΗΣ ΚΕΦΑΛΑΙΑΓΟΡΑΣ ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΧρηματοοικονομική Διοίκηση
Χρηματοοικονομική Διοίκηση 6η Εισήγηση Ο κίνδυνος στην αξιολόγηση επενδύσεων Φωτεινή Ψιμάρνη-Βούλγαρη Αβεβαιότητα και κίνδυνος Μπορεί να είναι ως προς: Την πρόβλεψη των εισπράξεων (νέο ή παλιό προϊόν,
Διαβάστε περισσότεραΤυχαία μεταβλητή είναι μία συνάρτηση ή ένας κανόνας που αντιστοιχίζει ένα αριθμό σε κάθε αποτέλεσμα ενός πειράματος.
ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Τυχαία μεταβλητή είναι μία συνάρτηση ή ένας κανόνας που αντιστοιχίζει ένα αριθμό σε κάθε αποτέλεσμα ενός πειράματος. Εναλλακτικά η τιμή της τυχαίας μεταβλητής είναι ένα αριθμητικό γεγονός.
Διαβάστε περισσότεραΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις
ΔΕΟ - Επαναληπτικές Εξετάσεις Λύσεις ΘΕΜΑ () Το Διάγραμμα Διασποράς εμφανίζεται στο επόμενο σχήμα. Από αυτό προκύπτει καταρχήν μία θετική σχέση μεταξύ των δύο μεταβλητών. Επίσης, από το διάγραμμα φαίνεται
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 20 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ
ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ Ενότητα 6: «ΑΠΟΔΟΣΗ ΚΙΝΔΥΝΟΥ ΚΑΙ ΛΟΓΙΣΤΙΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ» ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ
Όνομα: Επίθετο: Ημερομηνία: Πρωί: Απόγευμα: x Θεματική ενότητα: 1. (α) (3 βαθμοί) Οι τιμές δύο παράγωγων προϊόντων Χ και Υ σε κάθε χρονική στιγμή είναι X και Y με X = e s2 dw s και Y = X 2 e 2s2 ds, ενώ
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 05 ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Μ. Τετάρτη 8 Απριλίου 05 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α Α. Σχολικό σελ. 65 Α. Σχολικό
Διαβάστε περισσότεραΑΝΙΣΟΤΗΤΕΣ. Αν α-β>0 τότε α>β «Αν η διαφορά είναι θετικός αριθμός τότε ο πρώτος αριθμός δηλαδή το α είναι μεγαλύτερος από τον δεύτερο δηλαδή το β»
ΑΝΙΣΟΤΗΤΕΣ Μεταξύ δύο πραγματικών αριθμών μεγαλύτερος είναι εκείνος που βρίσκεται πιο δεξιά στον άξονα των πραγματικών αριθμών. Αν θέλουμε να συγκρίνουμε δύο αριθμούς α και β βρίσκουμε τη διαφορά τους
Διαβάστε περισσότεραΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ
ΜΑΘΗΜΑ ΙΑΡΚΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 3 ΩΡΕΣ ΘΕΜΑ Ο Α ) Να αποδείξετε ότι για δυο ασυµβίβαστα ενδεχόµενα Α, Β ενός δειγµατικού χώρου Ω ισχύει P( A B) = P( A) + P( B) ( µονάδες 8 ) Β ) Να δώσετε τον
Διαβάστε περισσότεραΜεταπτυχιακό Πρόγραμμα. MSc in Accounting & Finance ΤΕΙ ΠΕΙΡΑΙΑ Μάθημα: ΕΠΕΝΔΥΣΕΙΣ. Μέτρηση Κινδύνου & Απόδοσης Επενδύσεων
Μεταπτυχιακό Πρόγραμμα MSc in Accounting & Finance ΤΕΙ ΠΕΙΡΑΙΑ Μάθημα: ΕΠΕΝΔΥΣΕΙΣ Μέτρηση Κινδύνου & Απόδοσης Επενδύσεων Μέτρηση Κινδύνου & Απόδοσης Επενδύσεων Οτιδήποτε δύναται να μετρηθεί, δύναται και
Διαβάστε περισσότεραΑπόδοση/ Κίνδυνος (Είδη κινδύνου, σχέση κινδύνου- απόδοσης)
Απόδοση/ Κίνδυνος (Είδη κινδύνου, σχέση κινδύνου- απόδοσης) 1. Το ασφάλιστρο κινδύνου (risk premium) μιας μετοχής: 1) Είναι η διαφορά μεταξύ κεφαλαιακού κέρδους της μετοχής και μερισματικής απόδοσης της
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 5 ΣΤΡΑΤΗΓΙΚΕΣ ΑΝΤΙΣΤΑΘΜΙΣΗΣ ΜΕ ΣΜΕ. 5.1 Γενικά
ΚΕΦΑΛΑΙΟ 5 ΣΤΡΑΤΗΓΙΚΕΣ ΑΝΤΙΣΤΑΘΜΙΣΗΣ ΜΕ ΣΜΕ 5.1 Γενικά Πάρα πολλοί από τους συµµετέχοντες στις αγορές ΣΜΕ αποσκοπούν στην αντιστάθµιση συγκεκριµένων κινδύνων που αντιµετωπίζουν. Τέτοιοι κίνδυνοι προέρχονται
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ
ΕΠΑΛ-ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ 1. Δίνεται η συνάρτηση f με f() s όπου η μέση τιμή και s η διακύμανση ενός δείγματος ν παρατηρήσεων μιας μεταβλητής Χ. Η εφαπτομένη της Α 1, f ( 1) έχει εξίσωση
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 4ο Διαδικασία των συντελεστών αυτοσυσχέτισης Ονομάζουμε συνάρτηση αυτοσυσχέτισης (autocorrelation function) και συμβολίζεται με τα γράμματα
Διαβάστε περισσότεραΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ
Διαβάστε περισσότερα(f(x)+g(x)) =f (x)+g (x), x R
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. Αν οι συναρτήσεις, g είναι παραγωγίσιµες στο IR, να αποδείξετε ότι (()+g()) ()+g (), R Μονάδες 7 Α.
Διαβάστε περισσότεραΣύγχρονες Μορφές Χρηματοδότησης
Σύγχρονες Μορφές Χρηματοδότησης Ενότητα 13: ΘΕΩΡΙΑ ΧΑΡΤΟΦΥΛΑΚΙΩΝ ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΑ.Τ.Ε.Ι. ΗΠΕΙΡΟΥ «ΕΚΤΙΜΗΣΗ ΚΙΝΔΥΝΟΥ ΚΑΙ ΑΠΟΔΟΣΗΣ ΧΡΗΜΑΤΙΣΤΗΡΙΑΚΩΝ ΠΡΟΪΟΝΤΩΝ» Εμπειρική Ανάλυση σε Αμοιβαία Κεφαλαία ΝΙΚΟΛΟΓΙΑΝΝΗ ΑΙΚΑΤΕΡΙΝΗ
Α.Τ.Ε.Ι. ΗΠΕΙΡΟΥ Σχολή Διοίκησης Οικονομίας Τμήμα Χρηματοοικονομικής και Ελεγκτικής «ΕΚΤΙΜΗΣΗ ΚΙΝΔΥΝΟΥ ΚΑΙ ΑΠΟΔΟΣΗΣ ΧΡΗΜΑΤΙΣΤΗΡΙΑΚΩΝ ΠΡΟΪΟΝΤΩΝ» Εμπειρική Ανάλυση σε Αμοιβαία Κεφαλαία ΝΙΚΟΛΟΓΙΑΝΝΗ ΑΙΚΑΤΕΡΙΝΗ
Διαβάστε περισσότεραΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική
ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7o Μάθημα: Απλή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Διαβάστε περισσότεραΘεωρία Χαρτοφυλακίου ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ
Θεωρία Χαρτοφυλακίου ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ by Dr. Stergios Athianos 1- ΟΡΙΣΜΟΣ ΤΗΣ ΕΠΕΝΔΥΣΗΣ Τοποθέτηση συγκεκριμένου ποσού με στόχο να αποκομίσει ο επενδυτής μελλοντικές αποδόσεις οι οποίες θα τον αποζημιώσουν
Διαβάστε περισσότεραΑντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης
Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να
Διαβάστε περισσότεραΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΣΧΕΣΕΙΣ
ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΣΧΕΣΕΙΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΣΤΟ ΠΡΟΗΓΟΥΜΕΝΟ ΜΑΘΗΜΑ ΑΝΑΦΕΡΘΗΚΑΜΕ ΣΤΙΣ ΚΑΤΑΣΤΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΤΗΣ ΜΟΡΦΗΣ f(p,v,t)=0 ΠΟΥ ΧΡΗΣΙΜΟΠΟΙΟΥΝΤΑΙ ΓΙΑ ΝΑ ΣΥΝΔΕΟΥΝ ΤΗΝ ΠΙΕΣΗ,
Διαβάστε περισσότεραΣτατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες
Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού
Διαβάστε περισσότεραΕργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40]
Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική 8// (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [4] Τα τελευταία χρόνια παρατηρείται συνεχώς αυξανόμενο ενδιαφέρον για τη μελέτη της συγκέντρωσης
Διαβάστε περισσότεραΑναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1)
Σημειώσεις Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου Αθήνα -3-7 Εκτίμηση των Παραμέτρων β & β Απλό γραμμικό υπόδειγμα: Y X () Η αναμενόμενη τιμή του Υ, δηλαδή, μέση τιμή του Υ, δίνεται παρακάτω: EY ( ) X EY
Διαβάστε περισσότεραΕισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της
Διαβάστε περισσότεραΠ Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η
Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς o ΘΕΜΑ Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) A. Aν οι συναρτησεις
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
1 ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Πότε µια συνάρτηση f σε ένα διάστηµα του πεδίου ορισµού της λέγεται γνησίως αύξουσα και πότε γνησίως φθίνουσα; 2. Να αποδείξετε ότι η παράγωγος
Διαβάστε περισσότεραΑπλή Παλινδρόμηση και Συσχέτιση
Απλή Παλινδρόμηση και Συσχέτιση Πωλήσεις, Δαπάνες Διαφήμισης και Αριθμός Πωλητών Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) 98 050 6 3 989
Διαβάστε περισσότεραΜεταπτυχιακό Πρόγραμμα. MSc in Accounting & Finance ΤΕΙ ΠΕΙΡΑΙΑ Μάθημα: ΕΠΕΝΔΥΣΕΙΣ ΑΓΟΡΕΣ ΧΡΗΜΑΤΟΣ & ΚΕΦΑΛΑΙΟΥ
Μεταπτυχιακό Πρόγραμμα MSc in Accounting & Finance ΤΕΙ ΠΕΙΡΑΙΑ Μάθημα: ΕΠΕΝΔΥΣΕΙΣ ΑΓΟΡΕΣ ΧΡΗΜΑΤΟΣ & ΚΕΦΑΛΑΙΟΥ Η Έννοια της αγοράς Οι αγορές αποτελούν τους μηχανισμούς ανταλλαγής πραγματικών περιουσιακών
Διαβάστε περισσότεραΧρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές
Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές Εαρινό εξάμηνο 2018-2019 μήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό μήμα, Πανεπιστήμιο
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΕΠΕΝΔΥΣΕΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ
ΑΝΑΛΥΣΗ ΕΠΕΝΔΥΣΕΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ Δημήτριος Βασιλείου Καθηγητής Ελληνικού Ανοικτού Πανεπιστημίου Νικόλαος Ηρειώτης Αναπληρωτής Καθηγητής Πανεπιστημίου Αθηνών 1 Ανάλυση Επενδύσεων και Διαχείριση
Διαβάστε περισσότεραΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο R, να αποδείξετε ότι (f() + g() )=f ()+g (), R Μονάδες 7 Α. Σε
Διαβάστε περισσότεραΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ
ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται
Διαβάστε περισσότεραΑσκήσεις επανάληψης στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου, χ. Έτος του Μανώλη Ψαρρά Άσκηση 1 η
1 Ο ΓΕΝΙΚΟ ΛΤΚΕΙΟ ΓΕΡΑΚΑ Απρίλης 014 Ασκήσεις επανάληψης στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου, χ. Έτος 013-14 του Μανώλη Ψαρρά Άσκηση 1 η Όπως γνωρίζουμε, ο στίβος του κλασσικού αθλητισμού σε ένα
Διαβάστε περισσότεραΝα απαντήσετε τα παρακάτω θέματα σύμφωνα με τις οδηγίες των εκφωνήσεων. Η διάρκεια της εξέτασης είναι 3 (τρεις) ώρες.
Οικονομικό Πανεπιστήμιο Αθηνών ΜΠΣ Χρηματοοικονομικής και Τραπεζικής για Στελέχη Μάθημα: Οικονομική για Στελέχη Επιχειρήσεων Εξέταση Δεκεμβρίου 2007 Ονοματεπώνυμο: Να απαντήσετε τα παρακάτω θέματα σύμφωνα
Διαβάστε περισσότεραΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ
- - ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 009-0 ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΥΝΟΨΗΣ
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 13: Επανάληψη Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana 1 Γιατί μελετούμε την Οικονομετρία;
Διαβάστε περισσότεραΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 2008 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 28 ΙΑΝΟΥΑΡΙΟΥ 2008
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ (ΕΜΠΟΡΙΟΥ) ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 008 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 8 ΙΑΝΟΥΑΡΙΟΥ 008 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ (9 π.µ.
Διαβάστε περισσότεραΔιαχείριση Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική
Διαβάστε περισσότερα3 η ΕΡΓΑΣΙΑ , , , , , , , , , , , ,189
3 η ΕΡΓΑΣΙΑ Παραδειγμα για το ΘΕΜΑ 1 Ο Οι μετρήσεις της μέγιστης ημερήσιας τιμής ενός συγκεκριμένου αέριου ρύπου (σε μικρογραμμάρια ανά κυβικό εκατοστό αέρα) σε 57 πόλεις μιας χώρας δίνονται στον Πίνακα
Διαβάστε περισσότερασ = και σ = 4 αντιστοίχως. Τότε θα ισχύει
Θέματα ομάδας A 1. Σε κάποιο πείραμα τύχης μία τυχαία μεταβλητή λαμβάνει τις τιμές = 10 και = 10. Τότε η μέση τιμή x της θα είναι α. 10 β. 10 γ.,5 10 δ. 19,5 10 1= 10, = 10,. Δυο τυχαίες μεταβλητές, ακολουθούν
Διαβάστε περισσότεραΈτος 1 Έτος 2 Έτος 3 Έτος 4 Έτος 5 Εισπράξεις 270.000 300.000 350.000 500.000 580.000
Θέμα 1 0 Η εταιρία ΑΒΓ σχεδιάζει να επενδύσει σήμερα (στο έτος 0), σε ένα έργο το οποίο θα έχει αρχικό κόστος 00.000, διάρκεια ζωής 5 έτη και αναμένεται να δώσει τις ακόλουθες εισπράξεις: Έτος 1 Έτος 2
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση
Διαβάστε περισσότερα