Ενότητα 7. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ενότητα 7. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος"

Transcript

1 Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 7 Σιέττος Κωνσταντίνος

2 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειτα σε άδειες χρήσης Crea%ve Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άδεια χρήσης άλλου τύπου, αυτή πρέπει να αναγράφεται ρητώς.

3 Επίλυση προβληµάτων στις Επιστήµες του Μηχανικού υναµική Συστηµάτων: - Εξισώσεις κίνησης Newon σε 1-D - Προβλήµατα συναγωγής: Εξισώσεις Lorenz Κωνσταντίνος Σιέττος

4 Yπολογισµός της Κίνησης Σωµάτων υπό την Επίδραση υνάµεων Στην γενική του µορφή: το πρόβληµα των ν-σωµάτων Η εργασία του Poincaré στο πρόβληµα των τριών σωµάτων ουσιαστικά αποτέλεσε την θεµελίωση της θεωρίας του χάους Η απόδειξη της ύπαρξης λύσης στο πρόβληµα των τριών σωµάτων δόθηκε από τον Φιλανδό µαθηµατικό Karl Friiof Sundman στις αρχές του περασµένου αιώνα αλλά η λύση που δίνεται είναι πρακτικά ανεφάρµοστη Το πρόβληµα των ν-σωµάτων ν>3 δεν µπορεί να λυθεί αναλυτικά

5 Αριθµητική Επίλυση: Μοριακή υναµική Η µέθοδος χρησιµοποιήθηκε για πρώτη φορά από τους Alder and Wainwrigh το 1959 για να υπολογίσουν τις ταλαντώσεις των ατόµων µέσα στα µόρια (εξ ου και ο τίτλος Μια ατοµική διάταξη λεπτού υµενίου από µια προσοµοίωση Μοριακής υναµικής ( Gungor and Maroudas, Applied Physics Leers, 77, ).

6 Αριθµητική Επίλυση: Μοριακή υναµική Χρησιµοποιείται σε εύρος πολύπλοκων προβληµάτων που εκτείνονται από - την Μηχανική και την Επιστήµη των Υλικών - Την µελέτη της δυναµικής σε προβλήµατα οικολογίας όπως είναι η µελέτη των σχηµατισµών σµήνους πτηνών (flocing/ swarmimg) και ψαριών (fish schooling) µέχρι την µελέτη της δυναµικής κίνησης πεζών/ οχηµάτων

7 Μοριακή υναµική: Παραδείγµατα Στιγµιότυπο από σχηµατισµό σµήνους πτηνών κίνηση πεζών σε συνθήκες πυκνής κυκλοφορίας

8 H µέθοδος: Επίλυση Εξισώσεων Newon Στην απλή (γενική της) µορφή η µέθοδος αφορά την αριθµητική ολοκλήρωση των εξισώσεων του Νεύτωνα για ένα σύστηµα Ν αλληλεπιδρώντων σωµάτων d r r R 3 v το άνυσµα των θέσεων στον 3-D χώρο ως προς ένα σηµείο αναφοράς m d v F 1, 2,..., N v R 3 είναι το άνυσµα των ταχυτήτων F : R N 3 R είναι ο όρος που εκφράζει τη συνεισφορά των δυνάµεων που δρούν από την ύπαρξη συζευγµένων πεδίων στο -h σώµα

9 Αλγόριθµος Επίλυσης των Εξισώσεων Newon Μια πολύ απλή σχηµατική παράσταση του αλγόριθµου είναι η εξής Βήµα 0. Θέτουµε τις αρχικές θέσεις και ταχύτητες r v Do while {ime < ime_se} End Do 1. Υπολόγισε όλες τις δυνάµεις 2. Επίλυσε τις εξισώσεις κίνησης F N j Για τον υπολογισµό των νέων θέσεων και νέων ταχυτήτων µετά από χρόνο + F d r v j m d v F r v

10 Αλγόριθµος Επίλυσης των Εξισώσεων Newon Βήµα 2: Αριθµητική χρονική ολοκλήρωση των εξισώσεων κίνησης Από τον χρόνο d r v m d v F + Προσέγγιση της χρονικής παραγώγου µε πεπερασµένες διαφορές ιάφορες: 1. Explici Euler 2. Αλγόριθµος Verle 3. Runge-Kua..

11 Μέθοδος Explici Euler: H πιο απλή. Από τον χρόνο dr d r v r( + ) r( ) + dv v( d v m + ) v( ) F ηλαδή: r + v( + ) v( ) + F ( ) ( ) r( ) + v( ) Οι παραπάνω σχέσεις εξάγονται εύκολα από την ανάπτυξη κατά Taylor στον χρόνο της r(+ ) και της v(+ ) m

12 Μέθοδος Explici Euler: H πιο απλή..αλλά σίγουρα όχι η καλύτερη.. Από τον χρόνο r d r v ( ) r( ) + v( ) + m d v + v( + ) v( ) + F ( ) Σφάλµα σε κάθε βήµα: της τάξης του Ο( 2 ) Για 1/ αριθµό βηµάτων το σφάλµα της τάξης του (1/ ) * 2 ~ Θα πρέπει το βήµα να είναι πάρα πολύ µικρό.. προβλήµατα ευστάθειας σχήµατος m F

13 Μέθοδος Verle Ο συνηθέστερα χρησιµοποιούµενος αλγόριθµος για την επίλυση των εξισώσεων Νewon σε κάθε χρονική στιγµή είναι ο αλγόριθµος Verle Από τον χρόνο r d r v m ( ) 2 r ( ) r ( ) + F ( ) v ( ) m d v F ( + ) ( ) r r 2 Οι παραπάνω σχέσεις εξάγονται εύκολα από την ανάπτυξη κατά Taylor στον χρόνο της θέσηςr ( ) ( ) ( ) 1 F ( ) 2 + r + v + + O( 3) 1 F ( ) 2 r r v + 2 m 2 m r ( ) ( ) ( ) + O ( 3)

14 Μέθοδος Verle Ο συνηθέστερα χρησιµοποιούµενος αλγόριθµος για την επίλυση των εξισώσεων Νewon σε κάθε χρονική στιγµή είναι ο αλγόριθµος Verle r m 2 + v ( ) ( ) 2 r ( ) r ( ) + F ( ) ( + ) ( ) r r 2 Οι παραπάνω σχέσεις εξάγονται εύκολα από την ανάπτυξη κατά Taylor στον χρόνο της θέσης r ( ) ( ) ( ) 1 F ( ) 1 F 2 2 ( ) + r + v + + O( 3) r r v + O 2 m 2 m r ( ) ( ) ( ) Παρατηρήστε ότι είναι Ο(4) τάξης ακριβής ως προς το βήµα Όµως χρειάζεται ο υπολογισµός της θέσης την χρονική στιγµή ( + ) + r για τον υπολογισµό της ταχύτητας την χρονική στιγµή v ( ) ηλαδή δεν µπορούµε ποτέ να έχουµε ταυτόχρονα τις θέσεις και τις ταχύτητες την ίδια χρονική στιγµή ( 3)

15 Μέθοδος Verle Ο συνηθέστερα χρησιµοποιούµενος αλγόριθµος για την επίλυση των εξισώσεων Νewon σε κάθε χρονική στιγµή είναι ο αλγόριθµος Verle r 2 + v m ( ) ( ) 2 r ( ) r ( ) + F ( ) Επίσης προβλήµατα ευστάθειας σχήµατος! ( + ) ( ) r r 2 m 2 F ( ) << 2r( ) r( ) όταν << 1 Πεπερασµένη ακρίβεια Μηχανής!

16 Η µέθοδος Η µέθοδος velociy velociy-verle Verle Από τον χρόνο d v r + d m F v ( ) ( ) m F v v ( ) ( ) v r r ( ) ( ) m F v v 2 2

17 Ένα απλό πρόβληµα: Εκκρεµές σε πεδίο Βαρύτητας Αναλυτική Λύση: Ισχύει για θ<<1 ɺ θ ω ɺ ω g L sin ( θ) F( θ) ( ) cos( g / L) ( ) g Lθ sin( g / L) θ θ 0 ω / 0 Αριθµητική Επίλυση: Ισχύει για κάθε θ Euler: θ ( + ) θ( ) + ω( ) ω( + ) ω( ) + F( ) g Verle: θ( + ) 2θ( ) θ( ) + 2 F( ) ω ( ) θ ( + ) θ( ) 2

18 Ένα απλό πρόβληµα: Εκκρεµές σε πεδίο Βαρύτητας Γράψτε ένα πρόγραµµα forran που θα διαβάζει τις αρχικές συνθήκες θ(0) και ω(0) το µήκος L, τον χρόνο ολοκλήρωσης, και τον τελικό χρόνο ολοκλήρωσης f και θα τυπώνει σε ένα αρχείο τις τροχιές θ(), ω(), F() συναρτήσει του χρόνου Χρησιµοποιήστε ARRAYS για τις µεταβλητές, θ, ω, F Γράψτε µια συνάρτηση (funcion) για τον υπολογισµό της ύναµης συναρτήσει της γωνίας θ Γράψτε δύο υπορουτίνες για την εφαρµογή της Euler και της Verle Τα ορίσµατα θα είναι οι arrays,θ, ω καθώς και τα, f, L καθώς και ο δείκτης που θα δείχνει πόσα στοιχεία από τις array «γέµισαν»

19 Εκκρεµές σε πεδίο Βαρύτητας: Με Euler program main ineger nmax,index,i Parameer (nmax ) real (nmax),x(nmax),v(nmax) real x0,v0 real,f wrie(*,*) give hea0,omega0,,f,lamda read(*,*) x0,v0,,f,lamda x(1)x0 v(1)v0 T(1)0 call euler (,x,v,,f,lamda,index) open(uni1,file.,saus unnown ) do i1,index wrie(1,*) (i),x(i),v(i) enddo close(1) end real funcion force (hea,lamda) real g,lamda parameer (g9.81) force(-g/lamda)*sin(hea) reurn end subrouine euler (,x,v,,f,lamda,index) ineger nmax,i,index parameer(nmax ) real (nmax),x(nmax),v(nmax),lamda,,f real force i1 do while ((i-1).l.f) ii+1 (i)(i-1)+ x(i)x(i-1)+v(i-1)* v(i)v(i-1)+*force(x(i-1),lamda) indexi enddo end

20 Εκκρεµές σε πεδίο Βαρύτητας: Με Verle program main ineger nmax,index,i Parameer (nmax ) real (nmax),x(nmax),v(nmax) real x0,v0 real,f wrie(*,*) give hea0,omega0,,f,lamda read(*,*) x0,v0,,f,lamda x(1)x0 v(1)v0 T(1)0 call verle (,x,v,,f,lamda,index) open(uni1,file.,saus unnown ) do i1,index wrie(1,*) (i),x(i),v(i) enddo Reurn end real funcion force (hea,lamda) real g,lamda parameer (g9.81) force(-g/lamda)*sin(hea) reurn end subrouine verle (,x,v,,f,lamda,index) ineger nmax,i,index parameer(nmax ) real (nmax),x(nmax),v(nmax),lamda,,f real force i2 x(i)x(i-1)+v(i-1)* v(i)v(i-1)+*force(x(i-1),lamda) (i)(i-1)* do while ((i-1).l.f) ii+1 (i)(i-1)+ x(i)2*x(i-1)-x(i-2)+force(x(i-1),lamda)***2 v(i-1)(x(i)-x(i-2)/(2*) indexi enddo v(i)(x(i)-x(i-1))/ end

21 Προσοµοιώσεις και απεικόνιση Χρησιµοποιείστε: L1, Αρχικές συνθήκες: hea00.2, omega00.0 Τελικός χρόνος: : f10 οκιµάστε διάφορα από 1.Ε-02 µέχρι 1.Ε-06 Πλοτάρετε τα αποτελέσµατα µε o gnuplo και ερµηνεύστε τα σε σχέση µε τις τιµές του και την αναλυτική λύση που ισχύει όµως µόνο για θ<<1 ( ) ( ) ɺ θ0 θ θ cos g / L sin( g / L) 0 + g / L ω ɺ θ 0 cos g / L θ0 g / L sin g / ( ) ( ) ( L)

22 Προσοµοιώσεις και απεικόνιση Για την απεικόνιση της αναλυτικής λύσης για θ<<1 gnuplo> se dummy gnuplo> g9.81 gnuplo> lamda1 gnuplo>omegasqr(g/lamda) gnuplo>x00.2 gnuplo>v00.0 gnuplo>x()x0*cos(omega*)+(v0/omega)*sin(omega*) gnuplo>v()v0*cos(omega*)-(x0*omega)*sin(omega*) gnuplo>plo x(),v() gnuplo> plo euler.x using 1:($2-x($1)) wih lines

23 Αριθµητική Χρονική Ολοκλήρωση συστήµατος συνήθων διαφορικών εξισώσεων dx f( x, y, z,... ) dy g( x, y, z,...) dz h( x, y, z,... )... Σχήµατα Χρονικής Ολοκλήρωσης - Euler - Runge-Kua - Gear -. x y z Euler ( + ) x( ) + f( x, y, z,... ) ( + ) y( ) + g( x, y, z,... ) ( + ) z( ) + h( x, y, z,... )...

24 Προβλήµατα συναγωγής και οι εξισώσεις Lorenz Η συναγωγή είναι η µακροσκοπική κίνηση των µορίων σε ρευστά και αποτελεί ένα από τους τρεις κύριους µηχανισµούς για την µεταφορά ενέργειας και µάζας. Οι άλλοι δύο µηχανισµοί είναι η αγωγή (conducion) και η ακτινοβολία (radiaion). Η αγωγή αφορά την µεταφορά ενέργειας µέσω επαφής σωµάτων χωρίς την µακροσκοπική κίνηση/ µεταφορά µορίων και είναι ο κύριος µηχανισµός µεταφοράς θερµότητας σε στερεά.. Η ακτινοβολία (π.χ. ηλιακή ακτινοβολία) αφορά την µεταφορά ενέργειας στον χώρο µέσω ηλεκτροµαγνητικών κυµάτων χωρίς την βοήθεια/διαµεσολάβηση κάποιου ρευστού ή στερεού µέσου. Στα ρευστά η µεταφορά µάζας και θερµότητας µε συναγωγή λαµβάνει χώρα µέσω δύο βασικών µηχανισµών: της διάχυσης και της µεταφοράς. Στην ατµόσφαιρα η συναγωγή της θερµότητας προϋποθέτει την κίνηση µαζών αέρα. Ο αέρας είναι κακός αγωγός της θερµότητας και για αυτόν τον λόγο η συναγωγή είναι ο κύριος µηχανισµός µεταφοράς θερµότητας στην ατµόσφαιρα της Γης. Η συναγωγή συµβαίνει όταν ένα λεπτό στρώµα αέρα έρχεται σε επαφή µε µια θερµή επιφάνεια, ζεσταίνεται αρχικά µέσω αγωγής και µε το φαινόµενο της άνωσης επειδή ο θερµός αέρας έχει µικρότερη πυκνότητα από τον ψυχρό αέρα ανυψώνεται µεταφέροντας µαζί του την θερµότητα που έχει απορροφήσει. Αυτό είναι η κύρια αρχή που χρησιµοποιείται για την ανύψωση αερόστατων

25 Προβλήµατα συναγωγής και οι εξισώσεις Lorenz u ρ + u u p+ τ+ρ g Μια από τις πιο διάσηµες εξισώσεις που χρησιµοποιούνται για την περιγραφή του φαινοµένου και γενικά για την περιγραφή της ροής ρευστών είναι η εξίσωση Navier-Soes και οι παραλλαγές της. Στην βασική τους µορφή η εξίσωση Navier-Soes δίνονται από την ακόλουθη µερική διαφορική εξίσωση: u ρ + u u p+ τ+ρ g Είναι στην ουσία µια µαθηµατική διατύπωση του δεύτερου νόµου κίνησης του Newon (Μάζα) (επιτάχυνση) (Άθροισµα εξωτερικών δυνάµεων). Η εξίσωση αυτή αναφέρει ότι ένα σωµατίδιο ρευστού επιταχύνεται υπό την επίδραση των δυνάµεων βαρύτητας πίεσης και ιξώδους τάσης που ασκούνται πάνω σε αυτό από το περιβάλλον του. Ο πρώτος όρος στο αριστερό µέρος της εξίσωσης αναφέρεται στην τοπική επιτάχυνση του ρεστού, ο δεύτερος όρος αντιστοιχεί στην επιτάχυνση από συναγωγή. Ο πρώτος όρος στο δεξί µέλος των εξισώσεων αντιστοιχεί στην επιτάχυνση του ρευστού λόγω διαφοράς πίεσης, Ο δεύτερος αντιστοιχεί στην επιβράδυνση λόγω τριβής (ιξώδους δύναµης) και ο τρίτος όρος είναι η βαρυτική επιτάχυνση.

26 Προβλήµατα συναγωγής και οι εξισώσεις Lorenz u ρ + u u p+ τ+ρ g Το 1961 ο Edward N. Lorenzείχε καταφέρει να παράγει ένα απλοποιηµένο σύστηµα συνήθων διαφορικών εξισώσεων από την εξίσωση Navier-Soes µε σκοπό την µελέτη καιρικών φαινοµένων. Οι προσοµοιώσεις εκείνη την εποχή γίνονταν σε αναλογικούς υπολογιστές µε πολλές τάξης µεγέθους µικρότερη υπολογιστική ισχύ από ένα σηµερινό απλό προσωπικό υπολογιστή. Edward N. Lorenz, Μια ηµέρα ο Lorenz θέλοντας να παράγει µια µεγαλύτερη χρονοσειρά από το µοντέλο του αποφάσισε να αρχίσει τις προσοµοιώσεις από εκεί που τις είχε αφήσει από προηγούµενα «τρεξίµατα». Μετά από κάποιες ώρες τρεξίµατος στον αναλογικό υπολογιστή είδε κάτι που τον ξάφνιασε: η νέα προσοµοίωση απέκλινε κατά πολύ από προηγούµενες προσοµοιώσεις οι οποίες είχαν ξεκινήσει από τις ίδιες αρχικές συνθήκες. Αυτό αποτελούσε έκπληξη διότι οι συνήθεις διαφορικές εξισώσεις που χρησιµοποιούσε ήταν ντετερµινιστικές. Με ίδιες αρχικές συνθήκες «ο καιρός» θα έπρεπε να εξελισσόταν µε τον ίδιο τρόπο κάθε φορά.

27 Προβλήµατα συναγωγής και οι εξισώσεις Lorenz Όµως µια µικρή αλλαγή στα όρια της υπολογιστικής ακρίβειας έδινε µετά από κάποιο χρόνο προσοµοίωσης τελείως διαφορετικές συµπεριφορές. Ήταν η απαρχή της θεωρίας του ντετερµινιστικού χάους. Το φαινόµενο αυτό είναι γνωστό ως το φαινόµενο της πεταλούδας: το φτερούγισµα µιας πεταλούδας στην Κίνα θεωρητικά µπορεί να προκαλέσει µετά από µερικές ηµέρες ισχυρές καταιγίδες στην Αµερική. Έτσι οι µακροπρόθεσµες καιρικές προβλέψεις δεν µπορεί να είναι αξιόπιστες. Edward N. Lorenz, η µεταβλητή Χ είναι ανάλογη της έντασης της συναγωγής dx dυ dz σ Χ +συ Χ Ζ + R X Y Χ Y b Z η µεταβλητή Υ είναι ανάλογη της διαφοράς θερµοκρασίας µεταξύ των ανοδικών και καθοδικών ρευµάτων αέρα η µεταβλητή είναι Z ανάλογη της απόκλισης του κατακόρυφου πεδίο της θερµοκρασίας από την γραµµική σχέση σ είναι ο αριθµός Prandl R είναι ο αριθµός Rayleigh Η παράµετρος b αντιπροσωπεύει το µέγεθος της περιοχής

28 Oι εξισώσεις Lorenz-Χρονική Ολοκλήρωση-Το πρόγραµµα Forran program lorenz Implici real*8 (a-h,o-z) ime0.0 end c Kahe poe svzoume so arxeio is imes vn X,Y,Z horizon0.1 Nsepsfloor(horizon/) c sigma10.0 rho0.5 bea8.0/3.0 c iniial condiions x010.0 y00.0 x010.0 open(uni1,file'lorenzresuls.x',saus'unnown') Kseps0 dx dυ dz σ Χ +συ ΧΖ + R X Y Χ Y b Z Do while (ime.l.end) Xx0+*(-sigma*x0+sigma*y0) Yy0+*(-x0*z0+rho*x0-y0) Zz0+*(x0*y0-bea*z0) X0x Y0y Z0z sepsseps+1 Timeime+ If (seps.eq.nseps) hen wrie(1,*) ime,x,y,z Kseps0 Endif enddo end

29 Oι εξισώσεις Lorenz-αποτελέσµατα προσοµοίωσης οκιµάστε να τροποποιήστε το πρόγραµµα για να του δίνετε εσείς από το πληκτρολόγιο αρχικές συνθήκες, την τιµή των παραµέτρων καθώς και την τελική τιµή του χρόνου. dx dυ dz σ Χ +σ Υ ΧΖ + R X Y Χ Y b Z Τρέξτε το πρόγραµµα για rh04, sigma10.0, bea8/3, Χ02, Υ01.5, Ζ01.0 Και Χ0-2, Υ0-1.5, Ζ01.0 Ποιες ειναι οι τελικές τιµές στη µόνιµη κατάσταση στις δυο αυτές περιπτώσεις;

30 Oι εξισώσεις Lorenz-αποτελέσµατα προσοµοίωσης Τι συµβαίνει: το διάγραµµα διακλάδωσης λύσεων ισορροπίας(dx/dy/dz/0) dx dυ dz σ Χ +σ Υ ΧΖ + R X Y Χ Y b Z 6 4 ( b( R 1), b( R 1), R 1) R

31 Oι εξισώσεις Lorenz-αποτελέσµατα προσοµοίωσης Ταλαντωτικές λύσεις Κατασκευή ιαγράµµατος φάσης dx dυ dz σ Χ +σ Υ ΧΖ + R X Y Χ Y b Z ιάγραµµα φάσης: To διάγραµµα που παριστάνει την εξέλιξη των τροχιών ως προς τις µεταβλητές του συστήµατος. Τρέξτε για rho360, x02,y02,z01.5, end100,0.001, horizon0.1, end100. Κατασκευάστε το διάγραµµα φάσης Χ(), Y() από τις τροχιές µετά ime> Υ Χ

32 Oι εξισώσεις Lorenz-αποτελέσµατα προσοµοίωσης Ο περίφηµος Χαοτικός ελκυστής Lorenz Κατασκευάστε το 3-d διάγραµµα φάσης, Χ-Υ-Ζ για rho28, x010,y00,z010, 0.001, horizon0.05, end100. dx dυ dz σ Χ +σ Υ ΧΖ + R X Y Χ Y b Z Ζ Χ Υ -50

33 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικόυ έργου του διδάσκοντα Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα Ε.Μ.Π.» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικού πόρους.

Ενότητα 3 (μέρος 1 ο )

Ενότητα 3 (μέρος 1 ο ) Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 3 (μέρος 1 ο ) Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

Ενότητα 1 Διάλεξη 1. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος

Ενότητα 1 Διάλεξη 1. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 1 Διάλεξη 1 Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

Εφαρµόζοντας τη µέθοδο αριθµητικής ολοκλήρωσης Euler και Runge-Kutta 2 ης, συστηµατική σύγκριση των πέντε µεθόδων. Η επιλογή των σταθερών

Εφαρµόζοντας τη µέθοδο αριθµητικής ολοκλήρωσης Euler και Runge-Kutta 2 ης, συστηµατική σύγκριση των πέντε µεθόδων. Η επιλογή των σταθερών ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ, 6-7, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑ ΟΣΗΣ:..6 Επιµέλεια απαντήσεων: Ι. Λυχναρόπουλος. Έστω το πρόβληµα αρχικών τιµών: ( dx( d x

Διαβάστε περισσότερα

Ενότητα 6. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος

Ενότητα 6. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 6 Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Μαθηματικά και Φυσική με Υπολογιστές

Μαθηματικά και Φυσική με Υπολογιστές ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά και Φυσική με Υπολογιστές Εφαρμογές στη Φυσική Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Ενότητα 1 Διάλεξη 3. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος

Ενότητα 1 Διάλεξη 3. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 1 Διάλεξη 3 Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑ 14 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #1: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ

ΠΑΡΑΔΕΙΓΜΑ 14 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #1: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ ΠΑΡΑΔΕΙΓΜΑ 14 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 009-010, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #1: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΑΣΚΗΣΗ 1 Έστω το πρόβλημα

Διαβάστε περισσότερα

Υπολογιστές Ι. Άδειες Χρήσης. Υποπρογράμματα. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

Υπολογιστές Ι. Άδειες Χρήσης. Υποπρογράμματα. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Υποπρογράμματα Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Θερμοδυναμική - Εργαστήριο

Θερμοδυναμική - Εργαστήριο Θερμοδυναμική - Εργαστήριο Ενότητα 1: Αριθμητικές μέθοδοι στα φαινόμενα μεταφοράς και στη θερμοδυναμική Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Υπόγεια Υδραυλική και Υδρολογία

Υπόγεια Υδραυλική και Υδρολογία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4: Αναλυτική επίλυση του μαθηματικού ομοιώματος: Σύμμορφη Απεικόνιση Καθηγητής Κωνσταντίνος Λ. Κατσιφαράκης Αναπληρωτής Καθηγητής

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ. Ενότητα 1: Εισαγωγή. Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ

ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ. Ενότητα 1: Εισαγωγή. Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Εισαγωγή Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Δομημένος Προγραμματισμός Ενότητα 5(γ): Εργαστηριακή Άσκηση Αναπλ. Καθηγητής: Κωνσταντίνος Στεργίου Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Θέµα 1 (25 µονάδες) Ένα εκκρεµές µήκους l κρέµεται έτσι ώστε η σηµειακή µάζα να βρίσκεται ακριβώς

Διαβάστε περισσότερα

Ανασκόπηση εννοιών ρευστομηχανικής

Ανασκόπηση εννοιών ρευστομηχανικής Υδραυλική &Υδραυλικά Έργα Ανασκόπηση εννοιών ρευστομηχανικής Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Φωτογραφίες σχηματισμού σταγόνων νερού Φωτογραφίες schlieren θερμικά

Διαβάστε περισσότερα

Καλώς ήλθατε. Καλό ξεκίνημα.

Καλώς ήλθατε. Καλό ξεκίνημα. Καλώς ήλθατε. Καλό ξεκίνημα. Αν. Καθηγητής Γεώργιος Παύλος ( Φυσικός) - ρ.καρκάνης Αναστάσιος (Μηχανολόγος Μηχανικός) Με τι θα ασχοληθούμε στα πλαίσια του μαθήματος: Α. Μαθηματική θεωρία ιανυσματικά μεγέθη,

Διαβάστε περισσότερα

Δυναμική Ηλεκτρικών Μηχανών

Δυναμική Ηλεκτρικών Μηχανών Δυναμική Ηλεκτρικών Μηχανών Ενότητα 1: Εισαγωγή Βασικές Αρχές Επ. Καθηγήτρια Τζόγια Χ. Καππάτου Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 7: Μη Πεπερασμένα Όρια. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 7: Μη Πεπερασμένα Όρια. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 7: Μη Πεπερασμένα Όρια Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών Εθνικό Μετσόβιο Πολυτεχνείο. Στοχαστικές Ανελίξεις. Ασκήσεις Κεφαλαίου 2. Κοκολάκης Γεώργιος

Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών Εθνικό Μετσόβιο Πολυτεχνείο. Στοχαστικές Ανελίξεις. Ασκήσεις Κεφαλαίου 2. Κοκολάκης Γεώργιος Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών Εθνικό Μετσόβιο Πολυτεχνείο Στοχαστικές Ανελίξεις Ασκήσεις Κεφαλαίου 2 Κοκολάκης Γεώργιος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ Σηµειώσεις µαθήµατος ηµήτρης Βαλουγεώργης Αναπληρωτής Καθηγητής Τµήµα Μηχανολόγων Μηχανικών Βιοµηχανίας Εργαστήριο Φυσικών και Χηµικών ιεργασιών Πολυτεχνική Σχολή Πανεπιστήµιο Θεσσαλίας

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Γενική Φυσική Ενότητα: Κινητική

Γενική Φυσική Ενότητα: Κινητική Γενική Φυσική Ενότητα: Κινητική Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ασκήσεις κινητικής... 4 1.1 Άσκηση 1... 4 1.2 Άσκηση 2... 4 1.3 Άσκηση 3... 4 1.4 Άσκηση 4... 4 1.5 Άσκηση

Διαβάστε περισσότερα

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΕΙΣΑΓΩΓΗ Σκοπός της κινηματικής είναι η περιγραφή της κίνησης του ρευστού Τα αίτια που δημιούργησαν την κίνηση και η αναζήτηση των δυνάμεων που την διατηρούν είναι αντικείμενο της

Διαβάστε περισσότερα

Δυναμική Ηλεκτρικών Μηχανών

Δυναμική Ηλεκτρικών Μηχανών Δυναμική Ηλεκτρικών Μηχανών Ενότητα 1: Εισαγωγή Βασικές Αρχές Επ. Καθηγήτρια Τζόγια Χ. Καππάτου Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

website:

website: Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 6 Μαρτίου 2017 1 Εισαγωγή Κάθε φυσικό σύστημα

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ (Equations of Motion)

ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ (Equations of Motion) ΚΕΦΑΛΑΙΟ 4 ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ (Equations of Motion) Με τις Εξισώσεις Κίνησης αναλύουμε την απόκριση ενός ρευστού υπό την επίδραση εσωτερικών και εξωτερικών δυνάμεων. Οι εξισώσεις αυτές προκύπτουν από τη

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι

Διαβάστε περισσότερα

Αστικά υδραυλικά έργα

Αστικά υδραυλικά έργα Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Αστικά υδραυλικά έργα Υδραυλική ανάλυση δικτύων διανομής Δημήτρης Κουτσογιάννης, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδεια Χρήσης

Διαβάστε περισσότερα

ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. 21 Μαίου Γράψτε το ονοµατεπώνυµο και αριθµό ταυτότητάς σας στο πάνω µέρος της αυτής της σελίδας.

ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. 21 Μαίου Γράψτε το ονοµατεπώνυµο και αριθµό ταυτότητάς σας στο πάνω µέρος της αυτής της σελίδας. ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική 21 Μαίου 2009 Γράψτε το ονοµατεπώνυµο και αριθµό ταυτότητάς σας στο πάνω µέρος της αυτής της σελίδας. Επίσης γράψετε το password σας. Στο τέλος της εξέτασης θα πρέπει

Διαβάστε περισσότερα

ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. 5 Μαίου 2012

ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. 5 Μαίου 2012 ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική 5 Μαίου 2012 Συµπληρώστε τα στοιχεία σας στο παρακάτω πίνακα τώρα Ονοµατεπώνυµο Αρ. Ταυτότητας Username Password Δηµιουργήστε ένα φάκελο στο home directory σας µε

Διαβάστε περισσότερα

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Παράκτια Ωκεανογραφία

Παράκτια Ωκεανογραφία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διάλεξη 3η: Παράκτια Υδροδυναμική Κυκλοφορία Γιάννης Ν. Κρεστενίτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 18: Επίλυση Γενικών Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 5 η : Διδιάστατη και τριδιάστατη αγωγή θερμότητας Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Εκμετάλλευση και Προστασία των Υπόγειων Υδατικών Πόρων

Εκμετάλλευση και Προστασία των Υπόγειων Υδατικών Πόρων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εκμετάλλευση και Προστασία των Υπόγειων Υδατικών Πόρων Ενότητα 8: Μοντέλα προσομοίωσης σε πορώδεις υδροορείς Αναπληρωτής Καθηγητής Νικόλαος

Διαβάστε περισσότερα

Ενότητα 1 Διάλεξη 2β

Ενότητα 1 Διάλεξη 2β Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 1 Διάλεξη 2β Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός Ι Ενότητα 1 - Εισαγωγή. Ευστράτιος Γαλλόπουλος

Επιστηµονικός Υπολογισµός Ι Ενότητα 1 - Εισαγωγή. Ευστράτιος Γαλλόπουλος Ενότητα 1 - Εισαγωγή Ευστράτιος Γαλλόπουλος c Ε. Γαλλόπουλος 201-2015 Ασκηση 1 Τι ονοµάζουµε υπολογιστικούς πυρήνες ; πυρήνων. Να δώσετε 3 παραδείγµατα τέτοιων Απάντηση ιαδικασίες (που µπορεί να είναι

Διαβάστε περισσότερα

Μαθηματικά Και Στατιστική Στη Βιολογία

Μαθηματικά Και Στατιστική Στη Βιολογία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά Και Στατιστική Στη Βιολογία Ενότητα 10 : Δυναμικά Συστήματα Στέφανος Σγαρδέλης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Εισαγωγή στην Αστρόβιλη Άκυκλη Ροή

Εισαγωγή στην Αστρόβιλη Άκυκλη Ροή ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΑΕΡΟΔΥΝΑΜΙΚΗ Διδάσκων: Δρ. Ριζιώτης Βασίλης Εισαγωγή στην Αστρόβιλη Άκυκλη Ροή Άδεια Χρήσης

Διαβάστε περισσότερα

ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ. ΕΝΟΤΗΤΑ: Γραμμικές Συναρτήσεις Διάκρισης. ΔΙΔΑΣΚΟΝΤΕΣ: Βλάμος Π. Αυλωνίτης Μ. ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ. ΕΝΟΤΗΤΑ: Γραμμικές Συναρτήσεις Διάκρισης. ΔΙΔΑΣΚΟΝΤΕΣ: Βλάμος Π. Αυλωνίτης Μ. ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΕΝΟΤΗΤΑ: Γραμμικές Συναρτήσεις Διάκρισης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΟΝΤΕΣ: Βλάμος Π. Αυλωνίτης Μ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα η : Τυχαίες Μεταβλητές, Συναρτήσεις Κατανομής Πιθανότητας. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών

Διαβάστε περισσότερα

Περιβαλλοντική Χημεία

Περιβαλλοντική Χημεία ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Περιβαλλοντική Χημεία Ενότητα 3: Ισοζύγιο Ενέργειας Ευάγγελος Φουντουκίδης Τμήμα Πολιτικών Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Διδάσκων: Κολιόπουλος Παναγιώτης

Διδάσκων: Κολιόπουλος Παναγιώτης ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 6: ΤΑΛΑΝΤΩΣΗ ΣΕ ΤΥΧΟΥΣΑ ΔΙΕΓΕΡΣΗ ΟΛΟΚΛΗΡΩΜΑ DUHAMEL Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦ ΑΡΜ ΟΣΜ ΕΝΩΝ Μ ΑΘΗΜ ΑΤΙΚΩΝ ΚΑΙ Φ ΥΣΙΚΩΝ ΕΠΙΣΤΗΜ ΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 3-4 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 3-4 ΗΜ/ΝΙΑ 1ο-2ο 3ο-4ο 5ο-6ο 5ο-6ο Μαθηματικού 7ο-8ο Φυσικού

Διαβάστε περισσότερα

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: ,

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: , Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Τηλ.: 10 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 10 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr ΣΜΑΡΑΓ Α ΣΑΡΑΝΤΟΠΟΥΛΟΥ, MSC, ΥΠΟΨΗΦΙΑ Ι ΑΚΤΩΡ ΕΜΠ Ε

Διαβάστε περισσότερα

ΡΑΔΙΟΧΗΜΕΙΑ 1. ΑΠΑΡΙΘΜΗΤΕΣ ΙΟΝΤΙΣΜΟΥ ΑΕΡΙΩΝ ΚΕΦΑΛΑΙΟ 6.ΜΕΤΡΗΤΕΣ ΡΑΔΙΕΝΕΡΓΕΙΑΣ

ΡΑΔΙΟΧΗΜΕΙΑ 1. ΑΠΑΡΙΘΜΗΤΕΣ ΙΟΝΤΙΣΜΟΥ ΑΕΡΙΩΝ ΚΕΦΑΛΑΙΟ 6.ΜΕΤΡΗΤΕΣ ΡΑΔΙΕΝΕΡΓΕΙΑΣ ΡΑΔΙΟΧΗΜΕΙΑ ΔΙΑΧΕΙΡΙΣΗ ΡΑΔΙΕΝΕΡΓΩΝ ΑΠΟΒΛΗΤΩΝ ΤΟΞΙΚΟΤΗΤΑ ΡΑΔΙΕΝΕΡΓΩΝ ΙΣΟΤΟΠΩΝ Τμήμα Χημικών Μηχανικών ΚΕΦΑΛΑΙΟ 6.ΜΕΤΡΗΤΕΣ ΡΑΔΙΕΝΕΡΓΕΙΑΣ 1. ΑΠΑΡΙΘΜΗΤΕΣ ΙΟΝΤΙΣΜΟΥ ΑΕΡΙΩΝ Ιωάννα Δ. Αναστασοπούλου Βασιλική

Διαβάστε περισσότερα

Ενότητα 9: Ασκήσεις. Άδειες Χρήσης

Ενότητα 9: Ασκήσεις. Άδειες Χρήσης Μηχανική των Ρευστών Ενότητα 9: Ασκήσεις Βασίλειος Λουκόπουλος, Επίκουρος Καθηγητής Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 4 η : Χαρακτηριστικά Τυχαίων Μεταβλητών. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ.

Διαβάστε περισσότερα

E = 1 2 k. V (x) = Kx e αx, dv dx = K (1 αx) e αx, dv dx = 0 (1 αx) = 0 x = 1 α,

E = 1 2 k. V (x) = Kx e αx, dv dx = K (1 αx) e αx, dv dx = 0 (1 αx) = 0 x = 1 α, Μαθηματική Μοντελοποίηση Ι 1. Φυλλάδιο ασκήσεων Ι - Λύσεις ορισμένων ασκήσεων 1.1. Άσκηση. Ενα σωμάτιο μάζας m βρίσκεται σε παραβολικό δυναμικό V (x) = 1/2x 2. Γράψτε την θέση του σαν συνάρτηση του χρόνου,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #8: Όριο και Συνέχεια Συνάρτησης Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διαβάστε περισσότερα

Περιβαλλοντική Χημεία

Περιβαλλοντική Χημεία ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Περιβαλλοντική Χημεία Εργαστηριακό Μέρος Ενότητα 3: Ισοζύγιο Ενέργειας Ευάγγελος Φουντουκίδης Τμήμα Πολιτικών Μηχανικών Τ.Ε. Άδειες

Διαβάστε περισσότερα

Μαθηματικά και Φυσική με Υπολογιστές

Μαθηματικά και Φυσική με Υπολογιστές ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά και Φυσική με Υπολογιστές Σύνθετοι αναλυτικοί - αριθμητικοί υπολογισμοί Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ. Ενότητα 2: Αγωγή. Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ

ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ. Ενότητα 2: Αγωγή. Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Αγωγή Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος

ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ ΥΨΗΛΩΝ ΣΥΧΝΟΤΗΤΩΝ (Θ) Ενότητα 5: Μικροκυματικές Διατάξεις ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή (2 ο Μέρος) Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή (2 ο Μέρος) Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή ( ο Μέρος) Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής Μαθηματικός Λογισμός Ενότητα: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΟΛΛΑΠΛΗ ΟΛΟΚΛΗΡΩΣΗ- ΜΕΘΟΔΟΛΟΓΙΑ ΕΠΙΛΥΣΗΣ ΑΣΚΗΣΕΩΝ Παναγιώτης Βλάμος Αδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

16. Να γίνει µετατροπή µονάδων και να συµπληρωθούν τα κενά των προτάσεων: α. οι τρεις ώρες είναι... λεπτά β. τα 400cm είναι...

16. Να γίνει µετατροπή µονάδων και να συµπληρωθούν τα κενά των προτάσεων: α. οι τρεις ώρες είναι... λεπτά β. τα 400cm είναι... 1. Ο νόµος του Hooke υποστηρίζει ότι οι ελαστικές παραµορφώσεις είναι.των...που τις προκαλούν. 2. Ο τρίτος νόµος του Νεύτωνα υποστηρίζει ότι οι δυνάµεις που αναφέρονται στο νόµο αυτό έχουν... µέτρα,......

Διαβάστε περισσότερα

Εξισώσεις Κίνησης (Equations of Motion)

Εξισώσεις Κίνησης (Equations of Motion) Εξισώσεις Κίνησης (Equations of Motion) Αναλύουμε την απόκριση ενός ρευστού υπό την επίδραση εσωτερικών και εξωτερικών δυνάμεων. Η εφαρμογή της ρευστομηχανικής στην ωκεανογραφία βασίζεται στη Νευτώνεια

Διαβάστε περισσότερα

γλωσσάρι - συντομεύσεις

γλωσσάρι - συντομεύσεις γλωσσάρι - συντομεύσεις ΠΠΣ ΠΜΣ ΔΠΜΣ ΣΘΕ ΚΜ Θ Φ Ε ΔΜ ECTS Κ Υ Β ΕΑ ΘΜ ΠΙΦΜ ΣΠΕΕ ΥΠ δξγλ τμφυσ ΓΝΜ ΘΡΜ ΕΦΜ ΠΛΗ ΣΠΕ Πρόγραμμα Προπτυχιακών Σπουδών Πρόγραμμα Μεταπτυχιακών Σπουδών Διατμηματικό Πρόγραμμα Μεταπτυχιακών

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μετάδοση Θερμότητας Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας Κωνσταντίνος - Στέφανος Νίκας Τμήμα Μηχανολόγων Μηχανικών

Διαβάστε περισσότερα

Περιβαλλοντική Γεωτεχνική Θεματική Ενότητα 7 Μεταφορά ρύπων στο υπόγειο νερό

Περιβαλλοντική Γεωτεχνική Θεματική Ενότητα 7 Μεταφορά ρύπων στο υπόγειο νερό Περιβαλλοντική Γεωτεχνική Θεματική Ενότητα 7 Μεταφορά ρύπων στο υπόγειο νερό Εξισώσεις και λύσεις για τη μεταφορά ρύπων Α Μέρος Μ. Πανταζίδου, Αναπληρώτρια Καθηγήτρια ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδειες

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΦΥΣ 145 Υπολογιστικές Μέθοδοι στη Φυσική. Τελική εξέταση 19 Μάη 2008 Οµάδα 2 η

ΦΥΣ 145 Υπολογιστικές Μέθοδοι στη Φυσική. Τελική εξέταση 19 Μάη 2008 Οµάδα 2 η ΦΥΣ 145 Υπολογιστικές Μέθοδοι στη Φυσική Τελική εξέταση 19 Μάη 2008 Οµάδα 2 η Γράψτε το ονοµατεπώνυµο, αριθµό ταυτότητάς και το password σας στο πάνω µέρος της αυτής της σελίδας. Πρέπει να απαντήσετε σε

Διαβάστε περισσότερα

Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Δομημένος Προγραμματισμός Ενότητα 6(γ): Εργαστηριακή Άσκηση Αναπλ. Καθηγητής: Κωνσταντίνος Στεργίου Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ]

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ] ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ] Συγγραφείς ΝΤΑΟΥΤΙΔΗΣ ΠΡΟΔΡΟΜΟΣ Πανεπιστήμιο Minnesota, USA ΜΑΣΤΡΟΓΕΩΡΓΟΠΟΥΛΟΣ ΣΠΥΡΟΣ Αριστοτέλειο

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 Α) Τί είναι µονόµετρο και τί διανυσµατικό µέγεθος; Β) Τί ονοµάζουµε µετατόπιση και τί τροχιά της κίνησης; ΘΕΜΑ 2 Α) Τί ονοµάζουµε ταχύτητα ενός σώµατος και ποιά η µονάδα

Διαβάστε περισσότερα

Δυναμική Ηλεκτρικών Μηχανών

Δυναμική Ηλεκτρικών Μηχανών Δυναμική Ηλεκτρικών Μηχανών Ενότητα 1: Εισαγωγή Βασικές Αρχές Επ. Καθηγήτρια Τζόγια Χ. Καππάτου Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Πληροφορική. Ενότητα 1: Α. Οργάνωση μαθήματος. Β. Στοιχεία Προγραμματισμού -Προγραμματιστικές Δομές, Πρόγραμμα, Γλώσσες.

Πληροφορική. Ενότητα 1: Α. Οργάνωση μαθήματος. Β. Στοιχεία Προγραμματισμού -Προγραμματιστικές Δομές, Πρόγραμμα, Γλώσσες. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πληροφορική Ενότητα 1: Α. Οργάνωση μαθήματος. Β. Στοιχεία Προγραμματισμού -Προγραμματιστικές Δομές, Πρόγραμμα, Γλώσσες. Κωνσταντίνος Καρατζάς

Διαβάστε περισσότερα

Υποστηρικτικό υλικό για την εργασία «Πειραματική διάταξη για τη μελέτη της ροής ρευστού σε σωλήνα» του Σπύρου Χόρτη.

Υποστηρικτικό υλικό για την εργασία «Πειραματική διάταξη για τη μελέτη της ροής ρευστού σε σωλήνα» του Σπύρου Χόρτη. Υποστηρικτικό υλικό για την εργασία «Πειραματική διάταξη για τη μελέτη της ροής ρευστού σε σωλήνα» του Σπύρου Χόρτη. Η εργασία δημοσιεύτηκε στο 9ο τεύχος του περιοδικού Φυσικές Επιστήμες στην Εκπαίδευση,

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 10: Ισοδυναμία ντετερμινιστικών και μη ντετερμινιστικών αυτομάτων Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

κατά το χειµερινό εξάµηνο του ακαδηµαϊκού έτους ΕΜ-351 του Τµήµατος Εφαρµοσµένων Μαθηµατικών της Σχολής Θετικών

κατά το χειµερινό εξάµηνο του ακαδηµαϊκού έτους ΕΜ-351 του Τµήµατος Εφαρµοσµένων Μαθηµατικών της Σχολής Θετικών Ύλη που διδάχτηκε κατά το χειµερινό εξάµηνο του ακαδηµαϊκού έτους 2005-2006 στα πλαίσια του µαθήµατος ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑ ΥΛΙΚΩΝ Ι ΕΜ-351 του Τµήµατος Εφαρµοσµένων Μαθηµατικών της Σχολής Θετικών Επιστηµών

Διαβάστε περισσότερα

Παρεμβολή πραγματικού χρόνου σε συστήματα CNC

Παρεμβολή πραγματικού χρόνου σε συστήματα CNC Παρεμβολή πραγματικού χρόνου σε συστήματα CNC Γραμμική Κυκλική Spline Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Παρεμβολή πραγματικού χρόνου σε συστήματα CNC Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΕΣ Ι. Τι είναι μια υπορουτίνα; με υπορουτίνα ΥΠΟΡΟΥΤΙΝΕΣ. Παράδειγμα #1: η πράξη SQ. Ποια η διαφορά συναρτήσεων και υπορουτίνων;

ΥΠΟΛΟΓΙΣΤΕΣ Ι. Τι είναι μια υπορουτίνα; με υπορουτίνα ΥΠΟΡΟΥΤΙΝΕΣ. Παράδειγμα #1: η πράξη SQ. Ποια η διαφορά συναρτήσεων και υπορουτίνων; ΥΠΟΛΟΓΙΣΤΕΣ Ι Τι είναι μια υπορουτίνα; ΥΠΟΡΟΥΤΙΝΕΣ Μια ομάδα εντολών, σχεδιασμένη να εκτελεί έναν ή περισσότερους υπολογισμούς Ιδανικές για περιπτώσεις που ο υπολογισμός επαναλαμβάνεται πολλές φορές μέσα

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 10 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5

Διαβάστε περισσότερα

Υδραυλική των Υπόγειων Ροών

Υδραυλική των Υπόγειων Ροών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Αριθμητικά μοντέλα υπόγειων υδροορέων Καθηγητής Κωνσταντίνος Λ. Κατσιαράκης Αναπληρωτής Καθηγητής Νικόλαος Θεοδοσίου Καθηγητής

Διαβάστε περισσότερα

4. Σειρές Τέηλορ και Μακλώριν

4. Σειρές Τέηλορ και Μακλώριν Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής Σειρές Τέηλορ και Μακλώριν Το θεώρηµα του Τέηλορ Το θεώρηµα του Τέηλορ (Tayl) µάς δίνει τη δυνατότητα να αναπτύσσουµε συναρτήσεις

Διαβάστε περισσότερα

Γενική Φυσική. Ενότητα 1: Κινητική. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών

Γενική Φυσική. Ενότητα 1: Κινητική. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών Γενική Φυσική Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών Τι είναι το διαφορικό (1 από 2) Η μεταβολή μίας συνάρτησης f(x), όταν το x αυξάνεται κατά Δx γράφεται : Δy AΔx B( Δx ) 2 Αν οι

Διαβάστε περισσότερα

εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B

εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B 4 Εργο και Ενέργεια 4.1 Εργο σε µία διάσταση Το έργο µιας σταθερής δύναµης F x, η οποία ασκείται σε ένα σώµα που κινείται σε µία διάσταση x, ορίζεται ως W = F x x Εργο ύναµης = ύναµη Μετατόπιση Εχουµε

Διαβάστε περισσότερα

Σεµινάριο Αυτοµάτου Ελέγχου

Σεµινάριο Αυτοµάτου Ελέγχου ΤΕΙ ΠΕΙΡΑΙΑ Τµήµα Αυτοµατισµού Σεµινάριο Αυτοµάτου Ελέγχου Ειδικά θέµατα Ανάλυσης συστηµάτων Σύνθεσης συστηµάτων ελέγχου Μελέτης στοχαστικών συστηµάτων. Καλλιγερόπουλος Σεµινάριο Αυτοµάτου Ελέγχου Ανάλυση

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε Κεφάλαιο Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε. Εισαγωγή Η µέθοδος των πεπερασµένων διαφορών είναι από τις παλαιότερες και πλέον συνηθισµένες και διαδεδοµένες υπολογιστικές τεχνικές

Διαβάστε περισσότερα

ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ - ΧΑΟΣ

ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ - ΧΑΟΣ ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ - ΧΑΟΣ ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ Είναι η φιλοσοφική πίστη ότι κάθε γεγονός ή δράση είναι το αναπόφευκτο αποτέλεσµα προηγούµενων γεγονότων και δράσεων. Έτσι τουλάχιστον κατ αρχήν κάθε γεγονός ή δράση

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 14: Γραμματικές Χωρίς Συμφραζόμενα Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα). Θέμα ο. ια το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και M= M = M, υπολογίστε την επιτάχυνση της µάζας. ίνεται το g. (0) Λύση.

Διαβάστε περισσότερα

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Aνάλυση Σήματος. 2 η Σειρά Ασκήσεων Θεόδωρος Αλεξόπουλος

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Aνάλυση Σήματος. 2 η Σειρά Ασκήσεων Θεόδωρος Αλεξόπουλος Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Aνάλυση Σήματος 2 η Σειρά Ασκήσεων Θεόδωρος Αλεξόπουλος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΕΞΑΜΗΝΟ ΕΞΑΜΗΝΟ. (κατ. Φυσικού. Εφαρμογών) Μαθηματικού Εφαρμογών) και Σχεδιασμοί Αμφ. 1, Εμβιομηχανική του μυοσκελετικού αμφ.

ΕΞΑΜΗΝΟ ΕΞΑΜΗΝΟ. (κατ. Φυσικού. Εφαρμογών) Μαθηματικού Εφαρμογών) και Σχεδιασμοί Αμφ. 1, Εμβιομηχανική του μυοσκελετικού αμφ. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2010-2011 ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 1 ΤΕΛΙΚΟ ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2010-2011 ΗΜ/ΝΙΑ ΩΡΑ

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.9: Το Διαφορικό Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Β.9: Το Διαφορικό 1 Άδειες

Διαβάστε περισσότερα

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Βιβλιογραφία C Kittel, W D Knight, A Rudeman, A C Helmholz και B J oye, Μηχανική (Πανεπιστηµιακές Εκδόσεις ΕΜΠ, 1998) Κεφ, 3 R Spiegel, Θεωρητική

Διαβάστε περισσότερα

Διαφορική ανάλυση ροής

Διαφορική ανάλυση ροής Διαφορική ανάλυση ροής Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών ΜΕ και ΔΕ ροής: Διαφορές Οριακές και αρχικές συνθήκες Οριακές συνθήκες: Φυσική σημασία αλληλεπίδραση του όγκου ελέγχου με το περιβάλλον

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΧΕΙΜΕΡΙΝΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΕΠΙ ΠΤΥΧΙΩ ΕΑΡΙΝΗ ΕΞΕΤΑΣΤΙΚΗ

ΠΡΟΓΡΑΜΜΑ ΧΕΙΜΕΡΙΝΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΕΠΙ ΠΤΥΧΙΩ ΕΑΡΙΝΗ ΕΞΕΤΑΣΤΙΚΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΕΥΤΕΡΑ 23/1/2017 ΤΡΙΤΗ 24/1/2017 1η 1ο ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΚΑΙ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ, 4 3ο ΘΕΡΜΟΔΥΝΑΜΙΚΗ, 4 Γαλλικά (9.00 11.00)

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΑΡΙΝΗΣ ΕΞΕΤΑΣΤΙΚΗΣ & ΕΠΙ ΠΤΥΧΙΩ ΧΕΙΜΕΡΙΝΑ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ

ΠΡΟΓΡΑΜΜΑ ΕΑΡΙΝΗΣ ΕΞΕΤΑΣΤΙΚΗΣ & ΕΠΙ ΠΤΥΧΙΩ ΧΕΙΜΕΡΙΝΑ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΠΑΡΑΣΚΕΥΗ 24/5/2019 ΠΕΜΠΤΗ 23/5/2019 ΤΕΤΑΡΤΗ 22/5/2 ΤΡΙΤΗ 21/5/2019 ΔΕΥΤΕΡΑ 20/5/201 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΕΑΡΙΝΗΣ ΕΞΕΤΑΣΤΙΚΗΣ & ΕΠΙ

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική Ι

Κλασική Ηλεκτροδυναμική Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΤΕΧΝΙΚΕΣ ΥΠΟΛΟΓΙΣΜΟΥ ΗΛΕΚΤΡΙΚΟΥ ΔΥΝΑΜΙΚΟΥ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα