Αεροδυναμική του δρομέα
|
|
- Μνημοσύνη Καρράς
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ Διδάσκων: Δρ. Ριζιώτης Βασίλης Αεροδυναμική του δρομέα
2 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άδεια χρήσης άλλου τύπου, αυτή πρέπει να αναφέρεται ρητώς.
3 Θεωρία Δίσκου Ορμής Αεροδυναμική του Δρομέα
4 Θεωρία Δίσκου Ορμής - Παραδοχές Ροή Αξονοσυμμετρική Εναλλαγή ενέργειας ρευστού και δίσκου χωρίς απώλειες (ιδεατή ροή) Ο ροϊκός σωλήνας αποτελεί ρεύμα ολίσθησης (slipstream) Το ρευστό μέσα στο σωλήνα έχει σταθερά κατανεμημένη ταχύτητα και πίεση πάνω σε διατομές κάθετες στον άξονα του. Η επιφάνεια του ροϊκού σωλήνα αποτελεί επιφάνεια ασυνέχειας της ταχύτητας. Η φόρτιση πάνω σε ολόκληρο το δίσκο (διαφορά πίεσης ανάντι και κατάντι) είναι σταθερή Το ρεύμα αέρα μέσα στο δίσκο στερείται συστροφής
5 Διατήρηση μάζας (εντός του σωλήνα): m&= ρ Α V = ρ Α V = ρ Α U d s in Εξίσωση συνέχειας και ορμής στον κυλινδρικό όγκο: Q = ρ Α U ρ Α V (μάζα) d s ρua U + ρa V V + QU = T (ορμή) d s Συνδιάζοντας μάζα και ορμή T = ρa V (U V) d s
6 Εξίσωση Bernoulli από μακριά ανάντι έως αμέσως μπροστά από το δρομέα και από αμέσως πίσω από το δρομέα έως μακριά κατάντι ρ ρ p U p V = + s ρ ρ p V p V = + s ρ ( ) + p p = U V
7 Χρησιμοποιώντας ορμή και Bernoulli: 1 V s = (U+ V) 2 T = ρa V (U V) d s Συντελεστής αξονικής επαγωγής a έτσι U V = s U Vs = U (1 a) V = U (1 2a) T = 2ρU 2 A a(1 a) d P = TV = 2ρU A a(1 a) s 3 2 d
8 Συντελεστές ισχύος και ώσης: T CT = = 4a (1 a) ρ U 2 A d 2 P CP = = 4a (1 a) ρ U 3 A d 2 2 CT a CPmax = 0.59 a= 0.33 όριο Betz Cp a
9 Εφαρμόζουμε εξίσωση ορμής στον δακτυλιοειδή όγκο σε ακτίνα r με εύρος dr U dt ( ) 2 = 2ρU a(1 a) 2πrdr
10 Εφαρμόζουμε και εξίσωση ροπής της ορμής για το ίδιο δακτυλιοειδές στοιχείο Κατεύθυνση περιστροφής της ροής Vθ Vs Κατεύθυνση περιστροφής δρομέα V θs r Κατάντι θέση Δίσκος δρομέα V s dm Vθ Vθ Ανάντι θέση
11 Εφαρμόζουμε και εξίσωση ροπής της ορμής για το ίδιο δακτυλιοειδές στοιχείο Κατεύθυνση περιστροφής δρομέα V θs Κατεύθυνση περιστροφής της ροής Vθ r Vs Κατάντι θέση ( ) θ 0 ρvs 2πrdr r V = dm mass flow ορίζουμε Συντελεστή περιφερειακής επαγωγής V s dm Ανάντι θέση Δίσκος δρομέα υποθέτουμε V aʹ = θs = V θs Ωr 1 V 2 θ Vθs = aʹ Ωr Vθ = 2aʹ Ωr
12 Εφαρμόζουμε και εξίσωση ροπής της ορμής για το ίδιο δακτυλιοειδές στοιχείο Κατεύθυνση περιστροφής της ροής Vθ Vs Κατεύθυνση περιστροφής δρομέα V θs r Κατάντι θέση V s dm Δίσκος δρομέα dm ( ) 2 ʹ = ρ2πrdru(1 a)2ωr a Ανάντι θέση
13 U U (1 a) Ωr Οι δυνάμεις και ροπές στο δακτυλίδη εύρους dr, πάνω στην επιφάνεια του δίσκου του δρομέα θα είναι ίσες με τις δυνάμεις και ροπές που ασκούνται στα στοιχεία των πτερυγίων που βρίσκονται εντός αυτού του δακτυλιδιού
14 df n df t Rotor plane W Ωr + Ωraʹ U(1 a)
15 df n δl δd df t direction of rotation Rotor plain θ+β φ α W ρ = ( + ) 2 dfn CL cosφ CD sinφ W c dr C n ρ = ( ) 2 dft CL sinφ CD cosφ W c dr C t Ωr (1+a ) U(1-a)
16 Εξίσωση Ώσης: dt ( ) = 2ρU 2 a(1 a) 2πrdr = ρ = = ( + ) 2 BdFn B CL cosφ CD sinφ W cdr 2 Εξίσωση ροπής περιστροφής: ( ) 2 ʹ dm = ρ2πrdru(1 a)2ωr a ρ = = ( ) 2 BrdFt Br CL sinφ CD cosφ W cdr 2
17 Για δεδομένη γεωμετρία πτερυγίου η αεροδυναμική συμπεριφορά ενός στοιχείου πτερύγωσης καθορίζεται από τις ακόλουθες σχέσεις: a B c C = L + 1-a 8 π r tanφ sinφ aʹ B c C = L 1+aʹ 8 π r cosφ U(1 a) tanφ = Ωr (1 + a ʹ ) α= φ (θ+ β) [ 1 ε tanφ ] [ 1 ε cot φ ] ( ) ( ʹ ) 2 2 W = U (1 a) + Ωr (1+ a ) ε = C /C D L (1) (2) (3) (4) (5)
18 Οι δυνάμεις του κάθε στοιχείου πτερύγωσης: ρ = ( + ) 2 δfn CL cosφ CD sinφ W c δr C n ρ = ( ) 2 δft CL sinφ CD cosφ W c δr C t Η ώση και ροπή περιστροφής του δρομέα = i T B δf i n M= B r i i δf t P = M Ω i
19 Διόρθωση C T Πηγή: Wind Energy Handbook, Burton, Sharpe, Jenkins, Bosannyi, John Wiley a C T 4a(1 a) a a = ( a ) a > a Τ Τ
20 Διόρθωση Ακροπτερυγίου - Prandtl 2 1 f Β R r Fr () = cos ( e ), f() r = π 2 r sinϕ C T 4a(1 a) F a a = ( a ) F a > a Τ Τ Πηγή: Wind Energy Handbook, Burton, Sharpe, Jenkins, Bosannyi, John Wiley
21 Διόρθωση Ακροπτερυγίου - Prandtl Αεροδυναμική του Δρομέα
22 Ροή σε απόκλιση Ω z V cosφ y -u i0 χ V sinφ y V sinφ y sinφ az V cosφ y V sinφ y u i φ az y φ az = 0 V u i x V cosφ y φ y V sinφ y V cosφ y V sinφ y χ ui = u i0(1 f u(r / R) tan cosφ az) 2 f u (r / R) = r R r R r R 5 tan χ = Vsinφ Vcosφ y y u i0
23 Σκίαση του πύργου U Azimuth angle V z V y (x,y) y V x R x tow x
24 Δυναμική ροή (dynamic inflow) 2 R r σlcw n 4 fa a+ CT = 2 U R & σ L = Bc / πr 2U C T δυναμικός όρος 4a(1 a) F a a = ( a ) F a > a Τ Τ β βηματική αλλαγή γωνίας βήματος t
25 Μη μόνιμη ροή Σε συνθήκες μη μόνιμης ροής τα αεροδυναμικά χαρακτηριστικά δεν ακολουθούν τις καμπύλες μόνιμης ροής
26 Το πτερύγιο χωρίζεται σε Ν στοιχεία Για κάθε στοιχείο επιλύουμε τις εξισώσεις (1)-(5) για να υπολογίσουμε τους τοπικούς συντελεστές αξονικής και περιφερειακής επαγωγής και την τοπική φαινόμενη γωνία πρόσπτωσης Hub
27 Για κάθε ένα από τα στοιχεία πτερύγωσης εφαρμόζουμε την ακόλουθη επαναληπτική διαδικασία Βήμα 1: Επιλέγουμε αρχικές τιμές για τα a και a. Τυπικές τιμές εκίνησης a/a =10/1 (π.χ. a=0.1 and a =0.01) Βήμα 2: Υπολογίζουμε τη γωνία φ από την (3) και τη γωνία α από τη (4) Από πίνακες προσδιορίζουμε τα CL και CD Βήμα 3: Υπολογίζουμε νέες τιμές για τα a και a από τις (1) και (2). Επαναλαμβάνουμε τον υπολογισμό έως ότου επιτευχθεί σύγκλιση των a και a. Βήμα 4: Υπολογίζουμε τις δυνάμεις του στοιχείου πτερύγωσης
28 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ Επίλυση για ιδεατή ροή, γραμμική μεταβολή CL με κλίση 2π μηδενική αντίσταση Β=3 μηδενική συστροφή ροής χωρίς απώλειες ακροπτερυγίου Cp Theory BEM ideal C = 4a (1 a) 2 Ptheory a
29 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ Επίλυση για ιδεατή ροή, Β=3 γραμμική μεταβολή CL με κλίση 2π μηδενική αντίσταση μηδενική συστροφή ροής χωρίς απώλειες ακροπτερυγίου CT Theory BEM ideal C = 4a (1 a) Τ theory a
30 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ Επίλυση για ιδεατή ροή, Β= m/s Cp BEM ideal Theory axial induction factor R (m) R (m) Τοπικός συντελεστής Cp U=9m/s
31 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ Επίλυση για ιδεατή ροή, Β= m/s Cp BEM ideal Theory axial induction factor R (m) R (m) Τοπικός συντελεστής Cp U=11m/s
32 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ Επίλυση για ιδεατή ροή, Επίδραση αριθμού πτερυγίου
33 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ Επίλυση για ιδεατή ροή, γραμμική μεταβολή CL με κλίση 2π μηδενική αντίσταση μη μηδενική συστροφή ροής χωρίς απώλειες ακροπτερυγίου Β=3 C = 4a (1 a) 2 Ptheory
34 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ Επίλυση για ιδεατή ροή, Β=3 Τοπικός συντελεστής Cp - επίδραση συστροφής της ροής U=11m/s
35 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ Επίλυση για ιδεατή ροή, γραμμική μεταβολή CL με κλίση 2π μηδενική αντίσταση μη μηδενική συστροφή ροής με απώλειες ακροπτερυγίου Β=3
36 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ Επίλυση για πραγματική συνεκτική ροή Β=3
37 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ Επίλυση για πραγματική συνεκτική ροή Επίδραση αριθμού πτερυγίου
38 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ Πηγή: Wind Energy Handbook, Burton, Sharpe, Jenkins, Bosannyi, John Wiley Επίδραση της στερεότητας
39 P Stall Controlled normal operation P rated δl C L,C D V Rotor plain δd δf t α W α
40 P Stall Controlled normal operation P rated δl δd δf t V cut-in V rated V cut-out V Rotor plain C L,C D α W α
41 P Stall Controlled normal operation P rated δl δd δf t V cut-in V rated V cut-out V Rotor plain C L,C D α W α
42 P Stall Controlled normal operation P rated δd δl δf t V cut-in V Rotor plain C L,C D α W α
43 P Pitch Controlled normal operation P rated δl V cut-in V rated V cut-out V δd δf t C L,C D Rotor plain α W α
44 P Pitch Controlled normal operation P rated δl δd δf t V cut-in V rated V cut-out V Rotor plain C L,C D α W α
45 P Pitch Controlled normal operation P rated δl δd δf t V cut-in V rated V cut-out V Rotor plain C L,C D α W α
46 Stall Controlled parked δd C L,C D δl= δf t Rotor plain α α 90 0 U=W
47 Stall Controlled idling δd C L,C D δl δf t Rotor plain α α 90 0 W
48 Pitch Controlled - idling C L,C D δd δl Rotor plain δf t α 90 0 α W
49 Pitch Controlled start up C L,C D δd δl Rotor plain δf t α 90 0 α W
50 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ β=0 deg CP TSR Power (kw) CS-FP, Ω=1.267 rad/s CT β=0 deg U (m/s) TSR β=0 deg, Ω=1.267 rad/s
51 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ β=0 deg CP TSR Thrust (kn) CS-FP, Ω=1.267 rad/s β=0 deg CT U (m/s) TSR β=0 deg, Ω=1.267 rad/s
52 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ angle of attack (deg) U=5 m/s U=8 m/s U =11 m/s U=15 m/s U=20 m/s U=25 m/s R (m) β=0 deg, Ω=1.267 rad/s
53 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ axial induction factor U=5 m/s U=8 m/s U =11 m/s U=15 m/s U=20 m/s U=25 m/s R (m) β=0 deg, Ω=1.267 rad/s
54 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ tangential induction factor U=5 m/s U=8 m/s U =11 m/s U=15 m/s U=20 m/s U=25 m/s R (m) β=0 deg, Ω=1.267 rad/s
55 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ normal force [N/m] R (m) U=5 m/s U=8 m/s U =11 m/s U=15 m/s U=20 m/s U=25 m/s β=0 deg, Ω=1.267 rad/s
56 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ tangential force [N/m] R (m) U=5 m/s U=8 m/s U =11 m/s U=15 m/s U=20 m/s U=25 m/s β=0 deg, Ω=1.267 rad/s
57 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ CP β=0 deg Power (kw) CS-FP, Ω=1.000 rad/s CS-FP, Ω=1.267 rad/s CS-FP, Ω=1.500 rad/s TSR U (m/s) β=0 deg
58 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ CP β=0 deg Power (kw) CS-FP, Ω=1.000 rad/s CS-FP, Ω=1.267 rad/s CS-FP, Ω=1.500 rad/s TSR U (m/s) β=0 deg
59 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ Πηγή: Wind Energy Handbook, Burton, Sharpe, Jenkins, Bosannyi, John Wiley Επίδραση της ταχύτητας περιστροφής
60 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ CP β=-2 deg β=-1 deg β=0 deg β=1 deg β=2 deg β=3 deg β=5 deg β=10 deg TSR Επίδραση της γωνίας βήματος
61 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ CP β=-2 deg β=-1 deg β=0 deg β=1 deg β=2 deg β=3 deg β=5 deg β=10 deg TSR Επίδραση της γωνίας βήματος
62 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ CT β=-2 deg β=-1 deg β=0 deg β=1 deg β=2 deg β=3 deg β=5 deg β=10 deg TSR Επίδραση της γωνίας βήματος
63 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ Power [kw] β=-2 deg β=-1 deg β=0 deg β=1 deg β=2 deg β=3 deg β=5 deg β=10 deg U [m/s] Επίδραση της γωνίας βήματος
64 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ Πηγή: Wind Energy Handbook, Burton, Sharpe, Jenkins, Bosannyi, John Wiley Επίδραση της γωνίας βήματος
65 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ Power (kw) PRVS CS-FP U (m/s) Σύγκριση stall/pitch variable speed
66 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ Pitch (deg) PRVS CS-FP rotor speed (rad/s) PRVS CS-FP U (m/s) U (m/s) Σύγκριση stall/pitch variable speed
67 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ Thrust (kn) PRVS CS-FP U (m/s) Σύγκριση stall/pitch variable speed
68 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ CP PRVS CS-FP TSR nom Σύγκριση stall/pitch variable speed
69 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ angle of attack (deg) U=5 m/s U=8 m/s U =11 m/s U=15 m/s U=20 m/s U=25 m/s R (m)
70 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ axial induction factor U=5 m/s U=8 m/s U =11 m/s U=15 m/s U=20 m/s U=25 m/s R (m)
71 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ tangential induction factor U=5 m/s U=8 m/s U =11 m/s U=15 m/s U=20 m/s U=25 m/s R (m)
72 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ normal force [N/m] U=5 m/s U=8 m/s U =11 m/s U=15 m/s U=20 m/s U=25 m/s R (m)
73 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ tangential force [N/m] U=5 m/s U=8 m/s U =11 m/s U=15 m/s U=20 m/s U=25 m/s R (m)
74 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ P P rated Διατήρηση σταθερής ισχύος με αλλαγή της γωνίας βήματος Αύξηση ισχύος με αλλαγή στροφών β Ω V rated V Ω rated 3 4 Ω min 1 2 Γωνία βήματος για την οποία λαμβάνεται μέγιστο Cp V rated V Γενική περίπτωση pitch / variable speed
75 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ CP β=-2 deg β=-1 deg β=0 deg β=1 deg β=2 deg β=3 deg β=5 deg β=10 deg TSR Γενική περίπτωση pitch / variable speed
76 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ Γενική περίπτωση pitch / variable speed
77 Τυπικά αποτελέσματα τηςμεθόδου Χαρακτηριστικά απόδοσηςα/γ Γενική περίπτωση pitch / variable speed
78 Α/Γ κατακορύφου άξονα U ΩR D,Ft W α=0, L=0, Fn=0 ψ U U ΩR ψ α W D Fn W α ΩR L Ft L U sin ψ α= arctan Ω R+ U cosψ Ft U α D Fn ΩR W
79 Α/Γ κατακορύφου άξονα U=20 m/s γωνία πρόσπτωσης [deg] U sin ψ α= arctan Ω R+ U cosψ ΩR=60 m/s U=10 m/s γωνία αζιμουθίου [deg]
80 Α/Γ κατακορύφου άξονα λ=4 λ=2 Αλληλεπίδραση πτερυγίων με τον ομόρρου τους (BVI)
81 Α/Γ κατακορύφου άξονα Συντελεστής κάθετης δύναμης Cn γωνία πρόσπτωσης λ=4 Συντελεστής εφαπτομενικής δύναμης Ct
82 Α/Γ κατακορύφου άξονα Virtual camber effect
83 Α/Γ κατακορύφου άξονα λ=4
84 Α/Γ κατακορύφου άξονα λ=3
85 Α/Γ κατακορύφου άξονα Αεροδυναμική του Δρομέα
86 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα» του ΕΜΠ έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.
ΑΕΡΟΔΥΝΑΜΙΚΗ Διδάσκων: Δρ. Ριζιώτης Βασίλης Θεωρία δίσκου ορμής στοιχεία πτερύγωσης
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΑΕΡΟΔΥΝΑΜΙΚΗ Διδάσκων: Δρ. Ριζιώτης Βασίλης Θεωρία δίσκου ορμής στοιχεία πτερύγωσης Άδεια
Αιολική Ενέργεια & Ενέργεια του Νερού
Αιολική Ενέργεια & Ενέργεια του Νερού Ενότητα 5: Σχεδίαση Πτερυγίων 1 Γεώργιος Λευθεριώτης, Επίκουρος Καθηγητής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Στοιχείο πτέρυγας ανάλυση ασκούμενων
Αιολική Ενέργεια & Ενέργεια του Νερού
Αιολική Ενέργεια & Ενέργεια του Νερού Ενότητα 8: Θεωρία ορμής - Σχεδίαση ρότορα αιολικής μηχανής οριζόντιου άξονα Γεώργιος Λευθεριώτης, Επίκουρος Καθηγητής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΑΕΡΟΔΥΝΑΜΙΚΗ Διδάσκων: Δρ. Ριζιώτης Βασίλης Θεωρία αεροτομών Άδεια Χρήσης Το παρόν εκπαιδευτικό
Έλικες Θεωρία γραμμής άνωσης
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΑΕΡΟΔΥΝΑΜΙΚΗ Διδάσκων: Δρ. Ριζιώτης Βασίλης Έλικες Θεωρία γραμμής άνωσης Άδεια Χρήσης Το
Σ.Τ.Εφ. - Τμήμα Μηχανολογίας Τ.Ε.Ι. ΚΡΗΤΗΣ. Μάθημα: ΑΙΟΛΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΠΤΕΡΥΓΩΣΕΩΝ
Σ.Τ.Εφ. - Τμήμα Μηχανολογίας Τ.Ε.Ι. ΚΡΗΤΗΣ Μάθημα: ΑΙΟΛΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΠΤΕΡΥΓΩΣΕΩΝ ΗΡΑΚΛΕΙΟ 0 Κώστας Κονταξάκης Επίκουρος καθηγητής ΤΕΙ Κρήτης ΠΕΡΙΕΧΟΜΕΝΑ I. ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΠΤΕΡΥΓΩΣΕΩΝ...
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΑΕΡΟΔΥΝΑΜΙΚΗ Διδάσκων: Δρ. Ριζιώτης Βασίλης Μόνιμη ΆκυκληΡοή Άδεια Χρήσης Το παρόν εκπαιδευτικό
Εισαγωγή στην Αστρόβιλη Άκυκλη Ροή
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΑΕΡΟΔΥΝΑΜΙΚΗ Διδάσκων: Δρ. Ριζιώτης Βασίλης Εισαγωγή στην Αστρόβιλη Άκυκλη Ροή Άδεια Χρήσης
ΑΙΟΛΙΚΑ ΣΥΣΤΗΜΑΤΑ: ΑΕΡΟΔΥΝΑΜΙΚΗ
ΑΙΟΛΙΚΑ ΣΥΣΤΗΜΑΤΑ: Δρ. Κονταξάκης Κώστας Επικ. καθηγητής ΤΕΙ Κρήτης 1 2 Ροϊκός σωλήνας δρομέα ανεμοκινητήρα 3 Για τη μελέτη του αεροδυναμικού πεδίου γύρω από το δίσκο θα εφαρμοστούν οι γνωστοί νόμοι της
Αιολική Ενέργεια & Ενέργεια του Νερού
Αιολική Ενέργεια & Ενέργεια του Νερού Ενότητα 4: Αιολικές Μηχανές Γεώργιος Λευθεριώτης, Επίκουρος Καθηγητής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Κατηγοριοποίηση αιολικών μηχανών Κινητήρια
Αιολικά πάρκα Επιδράσεις Ομόρρου
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ Διδάσκων: Δρ. Ριζιώτης Βασίλης Αιολικά πάρκα Επιδράσεις Ομόρρου Άδεια Χρήσης
Ήπιες Μορφές Ενέργειας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ήπιες Μορφές Ενέργειας Ενότητα 2: Αιολική Ενέργεια - Αιολικές Μηχανές Καββαδίας Κ.Α. Τμήμα Μηχανολογίας Άδειες Χρήσης Το παρόν
Ροή με στροβιλότητα Αστρόβιλη ροή
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΑΕΡΟΔΥΝΑΜΙΚΗ Διδάσκων: Δρ. Ριζιώτης Βασίλης Ροή με στροβιλότητα Αστρόβιλη ροή Άδεια Χρήσης
Αιολική Ενέργεια & Ενέργεια του Νερού
Αιολική Ενέργεια & Ενέργεια του Νερού Ενότητα 7: Λειτουργία α/γ για ηλεκτροπαραγωγή Γεώργιος Λευθεριώτης, Επίκουρος Καθηγητής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Συντελεστής ισχύος C
Σ.Τ.Εφ. - Τμήμα Μηχανολογίας Τ.Ε.Ι. ΚΡΗΤΗΣ. Μάθημα: ΑΙΟΛΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΠΤΕΡΥΓΩΣΕΩΝ
Σ.Τ.Εφ. - Τμήμα Μηχανολογίας Τ.Ε.Ι. ΚΡΗΤΗΣ Μάθημα: ΑΙΟΛΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΠΤΕΡΥΓΩΣΕΩΝ Κώστας Κονταξάκης Σελίδα 1 από 39 ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΠΤΕΡΥΓΩΣΕΩΝ... 3 ΘΕΩΡΙΑ ΤΟΥ ΔΙΣΚΟΥ
Κεφάλαιο 8. Αιολικές μηχανές. 8.1 Εισαγωγή. 8.2 Ανεμογεννήτριες οριζοντίου άξονα
213 Κεφάλαιο 8 Αιολικές μηχανές 8.1 Εισαγωγή Αιολικές μηχανές ονομάζονται οι μηχανές οι οποίες μπορούν να μετατρέψουν την κινητική ενέργεια του ανέμου σε κάποια άλλη μορφή ενέργειας. Οι ανεμογεννήτριες
Πρέσσες κοχλία. Κινηματική Δυνάμεις Έργο. Πρέσσες κοχλία. Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ
Πρέσσες κοχλία Κινηματική Δυνάμεις Έργο Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Πρέσσες κοχλία Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons και δημιουργήθηκε στο πλαίσιο του Έργου των Ανοικτών
Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.) Ενότητα 5: Αιολικά Σπύρος Τσιώλης Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν
Ηλεκτρικές Μηχανές ΙΙ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ηλεκτρικές Μηχανές ΙΙ Ενότητα 9: Μέθοδοι Εκκίνησης Μονοφασικών Κινητήρων Ηρακλής Βυλλιώτης Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες
Αστικά υδραυλικά έργα
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Αστικά υδραυλικά έργα Υδραυλική ανάλυση δικτύων διανομής Δημήτρης Κουτσογιάννης, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδεια Χρήσης
Ηλεκτρικές Μηχανές ΙΙ Εργαστήριο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ηλεκτρικές Μηχανές ΙΙ Εργαστήριο Ενότητα 6: Χαρακτηριστική Φόρτισης Σύγχρονης Γεννήτριας Ηρακλής Βυλλιώτης Τμήμα Ηλεκτρολόγων
Σερβοκινητήρες πρόωσης σε συστήματα CNC
Σερβοκινητήρες πρόωσης σε συστήματα CNC τύπος DC μόνιμου μαγνήτη επίδραση ανάδρασης ταχογεννήτρια Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Σερβοκινητήρες πρόωσης σε συστήματα CNC Άδεια Χρήσης Το παρόν υλικό υπόκειται
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μετάδοση Θερμότητας Ενότητα 2: Θερμική Αγωγιμότητα Κωνσταντίνος - Στέφανος Νίκας Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ. Αντοχή Υλικού
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ Αντοχή Υλικού Ερρίκος Μουρατίδης (BSc, MSc) Σεπτέμβριος 015 Άδειες Χρήσης Το παρόν εκπαιδευτικό
Πτέρυγα Θεωρία γραμμής άνωσης Αριθμητική επίλυση
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΑΕΡΟΔΥΝΑΜΙΚΗ Διδάσκων: Δρ. Ριζιώτης Βασίλης Πτέρυγα Θεωρία γραμμής άνωσης Αριθμητική επίλυση
Ηλεκτρικές Μηχανές ΙΙ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ηλεκτρικές Μηχανές ΙΙ Ενότητα 1: Βασικές Αρχές Ηλεκτρικών Μηχανών Ηρακλής Βυλλιώτης Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης
Έλεγχος Κίνησης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 1501 - Έλεγχος Κίνησης Ενότητα: Οδοντωτοί Τροχοί (Γρανάζια) - Μέρος Α Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού Άδειες Χρήσης Το
Δυναμική Ηλεκτρικών Μηχανών
Δυναμική Ηλεκτρικών Μηχανών Ενότητα 1: Εισαγωγή Βασικές Αρχές Επ. Καθηγήτρια Τζόγια Χ. Καππάτου Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΠΕ. Βισκαδούρος Γ. Ι. Φραγκιαδάκης Φ. Μαυροματάκης
ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΠΕ Βισκαδούρος Γ. Ι. Φραγκιαδάκης Φ. Μαυροματάκης Ισχύς κινητικής ενέργειας φλέβας ανέμου P αν de dt, 1 2 ρdvυ dt P όπου, S, το εμβαδόν του κύκλου της φτερωτής και ρ, η πυκνότητα του αέρα.
Αιολική Ενέργεια & Ενέργεια του Νερού
Αιολική Ενέργεια & Ενέργεια του Νερού Ενότητα 0: Υδροστρόβιλοι Γεώργιος Λευθεριώτης, Επίκουρος Καθηγητής Τμήμα Φυσικής Σκοποί ενότητας Κατηγοριοποίηση στροβίλων Τρίγωνα ταχυτήτων Εξίσωση Euler Απόδοση
Ηλεκτρισμός & Μαγνητισμός
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρισμός & Μαγνητισμός Αυτεπαγωγή Διδάσκων : Επίκ. Καθ. Ν. Νικολής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Θερμοδυναμική
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Θερμοδυναμική Ενότητα 5 : Α Θερμοδυναμικός Νόμος Δρ Γεώργιος Αλέξης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό
Μηχανουργική Τεχνολογία & Εργαστήριο I
Μηχανουργική Τεχνολογία & Εργαστήριο I Orthogonal Cutting - Ορθογωνική Kοπή Καθηγητής Χρυσολούρης Γεώργιος Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ & ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ
Αιολική Ενέργεια & Ενέργεια του Νερού
Αιολική Ενέργεια & Ενέργεια του Νερού Ενότητα 6: Σχεδίαση Πτερυγίων Γεώργιος Λευθεριώτης, Επίκουρος Καθηγητής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Ιδανικό ρευστό - εξίσωση Laplace Στοιχειώδεις
Διάλεξη #10. Διδάσκων: Φοίβος Μυλωνάς. Γραφικά με υπολογιστές. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο.
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο Γραφικά με υπολογιστές Διδάσκων: Φοίβος Μυλωνάς fmlonas@ionio.gr Διάλεξη # Δ Μετασχηματισμοί (γενικά) Γραμμικοί Μετασχηματισμοί Απλοί Συσχετισμένοι
Ηλεκτρικές Μηχανές ΙΙ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ηλεκτρικές Μηχανές ΙΙ Ενότητα 6: Επίδραση της Μεταβολής της Συχνότητας στη Χαρακτηριστική Ροπής - Στροφών Ηρακλής Βυλλιώτης Τμήμα
Αστικά υδραυλικά έργα
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Αστικά υδραυλικά έργα Καταθλιπτικοί αγωγοί και αντλιοστάσια Δημήτρης Κουτσογιάννης, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδεια Χρήσης
Εγγειοβελτιωτικά Έργα και Επιπτώσεις στο Περιβάλλον
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εγγειοβελτιωτικά Έργα και Επιπτώσεις στο Περιβάλλον Ενότητα 3 : Βασικές Υδραυλικές και Μαθηματικές Έννοιες Ευαγγελίδης Χρήστος Τμήμα Αγρονόμων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μετάδοση Θερμότητας Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας Κωνσταντίνος - Στέφανος Νίκας Τμήμα Μηχανολόγων Μηχανικών
Αστικά υδραυλικά έργα
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Αστικά υδραυλικά έργα Υδραυλική των υπονόμων Δημήτρης Κουτσογιάννης, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδεια Χρήσης Το παρόν εκπαιδευτικό
Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής
Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής Μαθηματικός Λογισμός Ενότητα: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΟΛΛΑΠΛΗ ΟΛΟΚΛΗΡΩΣΗ- ΜΕΘΟΔΟΛΟΓΙΑ ΕΠΙΛΥΣΗΣ ΑΣΚΗΣΕΩΝ Παναγιώτης Βλάμος Αδειες Χρήσης Το παρόν εκπαιδευτικό
ΦΥΣΙΚΗ ΙΙΙ. Ενότητα: Μαγνητοστατική ΜΑΪΝΤΑΣ ΞΑΝΘΟΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ
ΦΥΣΙΚΗ ΙΙΙ Ενότητα: Μαγνητοστατική ΜΑΪΝΤΑΣ ΞΑΝΘΟΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ Σελίδα 2 ΑΣΚΗΣΕΙΣ... 4 Σελίδα 3 ΑΣΚΗΣΕΙΣ Μαγνητοστατική. Σωματίδιο μάζας m φορτίου Q βρίσκεται αρχικά ακίνητο μέσα σε ομογενές μαγνητικό
Τεχνολογίες Ελέγχου στα Αιολικά Συστήματα
Τεχνολογίες Ελέγχου στα Αιολικά Συστήματα Ενότητα 2: Μηχανικό μέρος ανεμογεννητριών Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης
Εθνικό Μετσόβιο Πολυτεχνείο National Technical University of Athens. Aerodynamics & Aeroelasticity: Applications Σπύρος Βουτσινάς / Spyros Voutsinas
Εθνικό Μετσόβιο Πολυτεχνείο National Technical University of Athens Aerodynamics & Aeroelasticity: Applications Σπύρος Βουτσινάς / Spyros Voutsinas Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Γενική Φυσική Ενότητα: Ταλαντώσεις
Γενική Φυσική Ενότητα: Ταλαντώσεις Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ερωτήσεις Ταλαντώσεων... 4 1.1 Ερώτηση 1... 4 2. Ασκήσεις Ταλαντώσεων... 4 2.1 Άσκηση 1... 4 2.2 Άσκηση
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ.
Τίτλος Μαθήματος ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ Καθηγητής Δρ. Μοσχίδης Νικόλαος ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 5 η : Διδιάστατη και τριδιάστατη αγωγή θερμότητας Άδεια Χρήσης Το παρόν εκπαιδευτικό
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 12 ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ
ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΟΚΙΝΗΤΗΡΩΝ ΚΑΙ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΔΙΔΑΚΤΙΚΗ ΠΕΡΙΟΧΗ: ΕΡΓΑΣΤΗΡΙΟ ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ Υπεύθυνος: Επικ. Καθηγητής Δρ. Α. ΦΑΤΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ
Ηλεκτρικές Μηχανές ΙΙ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ηλεκτρικές Μηχανές ΙΙ Ενότητα 2: Ασύγχρονος Τριφασικός Κινητήρας Αρχή Λειτουργίας Ηρακλής Βυλλιώτης Τμήμα Ηλεκτρολόγων Μηχανικών
Αστροφυσική. Ενότητα # 5: Μαγνητικά Πεδία στην Αστροφυσική. Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αστροφυσική Ενότητα # 5: Μαγνητικά Πεδία στην Αστροφυσική Λουκάς Βλάχος Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Πτυχιακή εργασία. Μελέτη και σχεδιασμός πτερύγωσης ανεμογεννήτριας. Νουχάι Εσμεράλντ (AM: 5245) E-mail: themis_89@hotmail.gr.
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κρήτης Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Πτυχιακή εργασία Μελέτη και σχεδιασμός πτερύγωσης ανεμογεννήτριας Νουχάι Εσμεράλντ (AM: 5245) E-mail: themis_89@hotmail.gr
ΤΕΚΤΟΝΙΚΗ ΓΕΩΛΟΓΙΑ. Ενότητα 3: Τάση. Παρασκευάς Ξυπολιάς Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας
ΤΕΚΤΟΝΙΚΗ ΓΕΩΛΟΓΙΑ Ενότητα 3: Τάση Παρασκευάς Ξυπολιάς Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας Άδειες Χρήσεις Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Υπόγεια Υδραυλική και Υδρολογία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Πεπερασμένες διαφορές: Παραδείγματα και ασκήσεις Καθηγητής Κωνσταντίνος Λ. Κατσιφαράκης Αναπληρωτής Καθηγητής Νικόλαος Θεοδοσίου
Εργ.Αεροδυναμικής,ΕΜΠ. Καθ. Γ.Μπεργελές
Η Τεχνολογία των Ελικοπτέρων Τι είναι τα ελικόπτερα Κατηγορίες Ελικοπτέρων Τυπικό ελικόπτερο Υβριδικό αεροσκάφος Tilt-rotor Πως λειτουργεί μιά έλικα Ι U = ταχύτητα πτήσης η σχετική ταχύτητα του αέρα ως
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 18: Επίλυση Γενικών Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Κλασική Ηλεκτροδυναμική Ι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΜΑΓΝΗΤΟΣΤΑΤΙΚΑ ΠΕΔΙΑ ΣΤΗΝ ΥΛΗ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ Διδάσκων: Δρ. Ριζιώτης Βασίλης Αεροελαστικότητα Άδεια Χρήσης Το παρόν εκπαιδευτικό
ΥδροδυναµικέςΜηχανές
ΥδροδυναµικέςΜηχανές Τρίγωνα ταχυτήτων στροβιλοµηχανών Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κατσαπρακάκης Κυλινδρικέςσυντεταγµένες Στα σχήµατα παριστάνονται αξονικές τοµές και όψεις
Συστήματα Αυτομάτου Ελέγχου 1
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 2: Μοντελοποίηση φυσικών συστημάτων στο πεδίο του χρόνου Διαφορικές Εξισώσεις Δ. Δημογιαννόπουλος, dimogian@teipir.gr
ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ
ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 6: Εναλλασσόμενο Ρεύμα Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Α: Γραμμικά Συστήματα Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες
Ηλεκτρικές Μηχανές ΙΙ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ηλεκτρικές Μηχανές ΙΙ Ενότητα 8: Θεωρία των δυο Στρεφόμενων Πεδίων Ηρακλής Βυλλιώτης Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης
Γενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Δυναμική Ηλεκτρικών Μηχανών
Δυναμική Ηλεκτρικών Μηχανών Ενότητα : Εισαγωγή Βασικές Αρχές Επ. Καθηγήτρια Τζόγια Χ. Καππάτου Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Αιολική Ενέργεια & Ενέργεια του Νερού
Αιολική Ενέργεια & Ενέργεια του Νερού Ενότητα : Εισαγωγή στην Αεροδυναμική Γεώργιος Λευθεριώτης, Επίκουρος Καθηγητής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Εισαγωγή στις βασικές έννοιες
Ακτομηχανική και λιμενικά έργα
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διάλεξη 7 η. Περίθλαση, θραύση κυματισμών Θεοφάνης Καραμπάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ Ενότητα 3: Κοντές Γραμμές Μεταφοράς Λαμπρίδης Δημήτρης Ανδρέου Γεώργιος Τμήμα Ηλεκτρολόγων Μηχανικών
Δυναμική Ηλεκτρικών Μηχανών
Δυναμική Ηλεκτρικών Μηχανών Ενότητα 4: Μέθοδος Μικρών Μεταβολών Επ. Καθηγήτρια Τζόγια Χ. Καππάτου Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ
Ε.Μ.Π. ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΤΟΜΕΑΣ ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙΧΜΗΣ ΠΕΡΙΟΧΗ ΟΙΚΟΔΟΜΙΚΗΣ ntua ACADEMIC OPEN COURSES ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΗΣ ΟΙΚΟΔΟΜΙΚΗΣ II Β. ΤΣΟΥΡΑΣ Επίκουρος Καθηγητής Άδεια
ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Μ. Πανταζίδου, Αναπληρώτρια Καθηγήτρια ΕΜΠ Θεματική Ενότητα Υπόγεια ροή Ταχύτητα κίνησης υπόγειου νερού και ρύπου Άδειες Χρήσης Το παρόν εκπαιδευτικό
Ανάλυση βάδισης. Ενότητα 2: Χωροχρονικές παράμετροι
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Χωροχρονικές παράμετροι Εισηγητής: Πατίκας Δ. Τμήμα Επιστήμης Φυσικής Αγωγής & Αθλητισμού, Σερρών Άδειες Χρήσης Το παρόν εκπαιδευτικό
Κλασική Ηλεκτροδυναμική Ι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΜΑΓΝΗΤΟΣΤΑΤΙΚΗ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ
ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 7: Άσκηση στο Εναλλασσόμενο Ρεύμα Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Εισαγωγή στις Τηλεπικοινωνίες
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες Ενότητα : Εισαγωγή στη Διαμόρφωση Συχνότητας (FΜ) Όνομα Καθηγητή: Δρ. Ηρακλής Σίμος Τμήμα: Ηλεκτρονικών
Προηγμένος έλεγχος ηλεκτρικών μηχανών
Προηγμένος έλεγχος ηλεκτρικών μηχανών Ενότητα 4: Διπολικό Μοντέλο Ασύχρονης Μηχανής Επαμεινώνδας Μητρονίκας - Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών
Ακτομηχανική και λιμενικά έργα
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διάλεξη 4 η. Διαμόρφωση Κυματισμών στον Παράκτιο Χώρο- Ρήχωση-Διάθλαση κυματισμών Εύα Λουκογεωργάκη Άδειες Χρήσης Το παρόν εκπαιδευτικό
Παράκτια Ωκεανογραφία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διάλεξη 9 η : Παράκτια κυματογενή ρεύματα Θεοφάνης Β. Καραμπάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Κλασική Ηλεκτροδυναμική Ι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΤΕΧΝΙΚΕΣ ΥΠΟΛΟΓΙΣΜΟΥ ΗΛΕΚΤΡΙΚΟΥ ΔΥΝΑΜΙΚΟΥ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 6: ΔΙΑΜΗΚΕΙΣ ΑΕΡΟΔΥΝΑΜΙΚΕΣ ΠΑΡΑΓΩΓΟΙ ΕΥΣΤΑΘΕΙΑΣ ΚΑΙ ΕΛΕΓΧΟΥ
ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 6: ΔΙΑΜΗΚΕΙΣ ΑΕΡΟΔΥΝΑΜΙΚΕΣ ΠΑΡΑΓΩΓΟΙ ΕΥΣΤΑΘΕΙΑΣ ΚΑΙ ΕΛΕΓΧΟΥ Εισαγωγή Μοντελοποίηση αεροδυναμικών φαινομένων: Το σημαντικότερο ίσως ζήτημα στη μελέτη της δυναμικής πτήσης: Αναγνώριση
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ.
Τίτλος Μαθήματος ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ Καθηγητής Δρ. Μοσχίδης Νικόλαος ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ
Μαθηματική Ανάλυση Ι
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 6: Παράγωγοι Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες
Αστικά υδραυλικά έργα
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Αστικά υδραυλικά έργα Διαστασιολόγηση αγωγών και έλεγχος πιέσεων δικτύων διανομής Δημήτρης Κουτσογιάννης, Καθηγητής ΕΜΠ Σχολή Πολιτικών
Γενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΦΥΣΙΚΗ. Ενότητα 2: Ταχύτητα - Επιτάχυνση
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗ Ενότητα 2: Ταχύτητα - Επιτάχυνση Παπαζάχος Κωνσταντίνος Καθηγητής Γεωφυσικής, Τομέας Γεωφυσικής Τσόκας Γρηγόρης Καθηγητής Εφαρμοσμένης
ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ - ΡΟΜΠΟΤΙΚΗ
Τίτλος Μαθήματος ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ - ΡΟΜΠΟΤΙΚΗ Καθηγητής Δρ.Δ.Σαγρής ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ
Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 9: Σύστημα 2 ης τάξης: Χρονική απόκριση και χαρακτηριστικά μεγέθη (φυσικοί συντελεστές)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 9: Σύστημα 2 ης τάξης: Χρονική απόκριση και χαρακτηριστικά μεγέθη (φυσικοί συντελεστές) Δ. Δημογιαννόπουλος,
Ήπιες Μορφές Ενέργειας
Ήπιες Μορφές Ενέργειας Ενότητα 7: Εκμετάλλευση Αιολικού Δυναμικού, Αιολικές Μηχανές και Ανεμογεννήτριες Ελευθέριος Αμανατίδης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Περιεχόμενα ενότητας Εκμετάλλευση
Περιβαλλοντική Γεωτεχνική Θεματική Ενότητα 7 Μεταφορά ρύπων στο υπόγειο νερό
Περιβαλλοντική Γεωτεχνική Θεματική Ενότητα 7 Μεταφορά ρύπων στο υπόγειο νερό Λυμένες ασκήσεις Πότε θα φτάσει η ρύπανση στο κανάλι; Μ. Πανταζίδου, Αναπληρώτρια Καθηγήτρια ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδειες
4 η ΕΝΟΤΗΤΑ Λειτουργική ανάλυση χωματουργικών εργασιών (Ταχύς υπολογισμός)
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΔΟΜΙΚΕΣ ΜΗΧΑΝΕΣ & ΚΑΤΑΣΚΕΥΑΣΤΙΚΕΣ ΜΕΘΟΔΟΙ 4 η ΕΝΟΤΗΤΑ Λειτουργική ανάλυση χωματουργικών εργασιών (Ταχύς υπολογισμός) Διδάσκων: Σ. Λαμπρόπουλος Άδεια Χρήσης Το παρόν εκπαιδευτικό
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 4: Εξαναγκασμένη Θερμική Συναγωγιμότητα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μετάδοση Θερμότητας Ενότητα 4: Εξαναγκασμένη Θερμική Συναγωγιμότητα Κωνσταντίνος - Στέφανος Νίκας Τμήμα Μηχανολόγων Μηχανικών
Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Γενικά Μαθηματικά Ι. Ενότητα 6: Ακρότατα Συνάρτησης. Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Ακρότατα Συνάρτησης Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΑΝΕΜΟΓΕΝΝΗΤΡΙΩΝ
Τ.Ε,Ι ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΑΝΕΜΟΓΕΝΝΗΤΡΙΩΝ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ : ΛΙΟΓΚΑΣ ΒΑΣΙΛΗΣ ΣΠΟΥΔΑΣΤΕΣ : ΤΣΑΚΙΡΗ ΧΡΙΣΤΙΝΑ ΑΚΑΝΤΖΙΛΙΩΤΗΣ ΣΤΕΦΑΝΟΣ ΚΑΒΑΛΑ 2010 1 ΠΕΡΙΕΧΟΜΕΝΑ Περιεχόμενα
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ Μάθημα ασκήσεων 4: Κοντή γραμμή μεταφοράς Λαμπρίδης Δημήτρης Ανδρέου Γεώργιος Δούκας Δημήτριος Τμήμα
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ Τμήμα Μηχανολόγων Μηχανικών ΤΕ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ι ΚΑΘΗΓΗΤΗΣ κ. ΜΟΣΧΙΔΗΣ ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Hλεκτρομηχανικά Συστήματα Mετατροπής Ενέργειας
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανολόγων Μηχανικών Τομέας Μηχανολογικών Κατασκευών και Αυτομάτου Ελέγχου 2.3.26.3 Hλεκτρομηχανικά Συστήματα Mετατροπής Ενέργειας Εξέταση 3 ου Eξαμήνου (20 Φεβρουαρίου
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ. Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 10 η : Μεταβατική Διάχυση και Συναγωγή Μάζας
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 10 η : Μεταβατική Διάχυση και Συναγωγή Μάζας Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ
ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 9: ΔΙΟΡΘΩΣΗ ΣΥΝΤΕΛΕΣΤΗ ΙΣΧΥΟΣ Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ
Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 3 ο : Εξίσωση
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 5: Ελεύθερη ή Φυσική Θερμική Συναγωγιμότητα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μετάδοση Θερμότητας Ενότητα 5: Ελεύθερη ή Φυσική Θερμική Συναγωγιμότητα Κωνσταντίνος - Στέφανος Νίκας Τμήμα Μηχανολόγων Μηχανικών