Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
|
|
- Ουρίας Δημητρακόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής
2 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE
3 Αντίστροφος Μετασχηματισμός Laplace Στην αρχή αυτού του κεφαλαίου είδαμε ότι ο ML μιας αιτιατής συνάρτησης x(t) ταυτίζεται με το μετασχηματισμό Fourier της συνάρτησης x(t)e -σt όπου σ =Re(s). Δηλαδή είναι: ή { } ( σ ) σ () ( σ ) x t e = L X + jω = X + jω e dω π t jωt σt jωt x() t = e X ( σ + jω) e dω π όπου ισχύει Re(s) = σ > σ 0. Υποθέτοντας ότι το σ είναι σταθερά και στη συνέχεια αλλάζοντας τη μεταβλητή ολοκλήρωσης και τροποποιώντας ανάλογα τα όρια ολοκλήρωσης, έχουμε τελικά: π j σ + j st () = X ( s) e ds, σ > σ 0 x t σ j (3.6) Η σχέση αυτή δίνει τον αντίστροφο ML, τον οποίον στο εξής θα συμβολίζουμε ως: = x t L { }.
4 Υπολογισμός του Αντιστρόφου Μετασχηματισμού Laplace π j σ + j st () = X ( s) e ds, σ > σ 0 x t σ j (3.6) Είναι προφανές ότι ένας τρόπος υπολογισμού της συνάρτησης x(t), εάν γνωρίζουμε το ML αυτής, είναι μέσω του υπολογισμού του ολοκληρώματος της σχέσης (3.6). Αυτός ο απευθείας υπολογισμός του αντίστροφου ML απαιτεί εφαρμογή τεχνικών επικαμπύλιας ολοκλήρωσης μιγαδικών συναρτήσεων όπως, π.χ., της γνωστής μεθόδου των ολοκληρωτικών υπολοίπων (residues). Ωστόσο, γενικά, η απευθείας ολοκλήρωση της X(s) μπορεί ν αποδειχθεί επίπονη διαδικασία και για το λόγο αυτόν συνήθως ακολουθούνται έμμεσοι τρόποι εύρεσης του αντίστροφου ML. Έτσι, εάν η μορφή της συνάρτησης X(s) είναι απλή και μπορεί εύκολα να εκφραστεί ως άθροισμα επιμέρους στοιχειωδών όρων, τότε, με χρήση του Πίνακα 3. και των ιδιοτήτων του ML, μπορούμε εύκολα να υπολογίσουμε τον Παρακάτω θα συστηματικοποιήσουμε τη διαδικασία ανάλυσης του ML σε αθροίσματα απλούστερων συναρτήσεων. L x t { } =.
5 Υπολογισμός του Αντιστρόφου Μετασχηματισμού Laplace Ανάπτυξη ρητής συνάρτησης σε απλά κλάσματα Υποθέτουμε κατ αρχήν ότι ο ML έχει τη μορφή ρητής συνάρτησης, δηλαδή μπορεί να εκφραστεί ως λόγος δύο πολυωνύμων του s: όπου a i, b j m b s bs m + b s bs+ b = = n a s s + a s + + as+ a είναι πραγματικοί αριθμοί. m m 0 n n... 0 Σε μορφή σαν την παραπάνω καταλήγουμε στη συντριπτική πλειοψηφία των προβλημάτων που αντιμετωπίζουμε στη θεωρία γραμμικών συστημάτων. Για παράδειγμα, μπορεί ν αποδειχτεί ότι κάθε γραμμικό χρονικά αμετάβλητο (ΓΧΑ) σύστημα που είναι πρακτικά υλοποιήσιμο έχει κρουστική απόκριση με ML μια ρητή συνάρτηση. (3.7)
6 Υπολογισμός του Αντιστρόφου Μετασχηματισμού Laplace Ανάπτυξη ρητής συνάρτησης σε απλά κλάσματα m b s bs m + b s bs+ b = = n a s s + a s + + as+ a m m 0 n n... 0 (3.7) όπου a i, b j είναι πραγματικοί αριθμοί. Μάλιστα, επειδή ακριβώς μας ενδιαφέρουν στην πράξη περισσότερο τα ΓΧΑ συστήματα με πραγματική κρουστική απόκριση, γι αυτό και περιορίσαμε παραπάνω τους συντελεστές στο σύνολο των πραγματικών. a i, b j Επιπλέον, για πραγματοποιήσιμα συστήματα είναι m n. Με άλλα λόγια, ο ML δεν περιέχει όρους της μορφής s, s, κλπ. Σύμφωνα με τον Πίνακα 3., αυτό σημαίνει ότι η κρουστική απόκριση του συστήματος δεν περιέχει κρουστικές συναρτήσεις.
7 Υπολογισμός του Αντιστρόφου Μετασχηματισμού Laplace Αρχικά, λοιπόν, θα υποθέσουμε ότι ο βαθμός του αριθμητή είναι μικρότερος του βαθμού του παρονομαστή, δηλαδή m < n. Αργότερα θα εξετάσουμε και την περίπτωση m n. n = ( ) a s s λ. Έστω ότι λ, λ,,λ n είναιοιρίζεςτουα(s), δηλαδή ισχύει i= ανάλογα με τη φύση των ριζών αυτών, διακρίνουμε τις εξής περιπτώσεις: Τότε, α) Ρίζες διακριτές και πραγματικές Ισχύει, δηλαδή, λ i Є R και λ i λ j για i j. Τότε η X(s) μπορεί να εκφραστεί σαν άθροισμα μερικών (ή απλών) κλασμάτων: c cn = s λ s λ Οι σταθερές c i, i=,,n, υπολογίζονται από τον τύπο: ( λ ) c = lim s, i =,..., n i s λ i i Στη συνέχεια, ο αντίστροφος ML υπολογίζεται με χρήση του Πίνακα 3. και των ιδιοτήτων του ML και εύκολα καταλήγουμε στο ότι: () { } ( λ ) t λn... t n x t = L = ce + + c e u t n i
8 Υπολογισμός του Αντιστρόφου Μετασχηματισμού Laplace β) Ύπαρξη πολλαπλών πραγματικών ριζών Έστω ότι στο πολυώνυμο α(s) μια ρίζα, ας πούμε η λ, εμφανίζεται με πολλαπλότητα r ενώ οι υπόλοιπες ρίζες είναι απλές. Τότε: r = ( λ ) ( λ ) a s s s n i= r+ και η συνάρτηση X(s) αναλύεται στις ακόλουθες απλές ρητές συναρτήσεις: i c c c c cn = s λ s λ s λ r r+ r ( s λ) ( s λ) r+ n Πολλαπλασιάζοντας και τα δύο μέλη της παραπάνω εξίσωσης με (s - λ ) r, είναι εύκολο να δείξει κανείς ότι οι συντελεστές c i, i =,,r, που αντιστοιχούν στην πολλαπλή ρίζα, υπολογίζονται από τον τύπο: r i d r ci = lim ( s λ ) X ( s), i =,..., r s λ r i r i! ds ( ) Οι υπόλοιποι συντελεστές c i, i = r+,,n υπολογίζονται όπως στην περίπτωση (α).
9 Υπολογισμός του Αντιστρόφου Μετασχηματισμού Laplace Έχοντας υπολογίσει όλα τα c i, i =,,,n, μπορούμε, στη συνέχεια, χρησιμοποιώντας τις ιδιότητες του ML και τον Πίνακα 3. να καταλήξουμε στην παρακάτω έκφραση για τον αντίστροφο ML. { } () = x t L r t ce cte cr e! λt λt λt = [ λ r t nt c e + λ c e u t ] r+ n ( r ) () Έτσι, πόλοι με πολλαπλότητα μεγαλύτερη του αντιστοιχούν σε εκθετικές αποκρίσεις πολλαπλασιασμένες με δυνάμεις του t. Ανάλογα με τα παραπάνω ισχύουν αν περισσότερες της μιας ρίζας του α(s) είναι πολλαπλές.
10 Υπολογισμός του Αντιστρόφου Μετασχηματισμού Laplace γ) Ύπαρξη μιγαδικών ριζών Έστω ότι το πολυώνυμο α(s) έχει ένα ζεύγος συζυγών μιγαδικών ριζών, τις λ = σ + jω και λ = λ * = σ jω. Η συνάρτηση X(s) γράφεται ως: c c cn = s λ s λ s λ * Όλοι οι συντελεστές c i, i =,,,n, δηλαδή τόσο αυτοί που αντιστοιχούν στις μιγαδικές ρίζες όσο και αυτοί που αντιστοιχούν στις πραγματικές ρίζες, υπολογίζονται από τον τύπο: c = lim ( s λ ) X ( s) i s λ i Οι συντελεστές c και c θα είναι μιγαδικοί και θα ισχύει c = c *. Ο αντίστροφος ML θα δίνεται από την έκφραση: i x() t = L X ( s) = ce * + c e + n ce u t i= 3 n * λ { } () t λ t λit i Σε περίπτωση που το ζεύγος των συζυγών ριζών εμφανίζεται με πολλαπλότητα r, εφαρμόζεται ο τύπος της περίπτωσης (β). Όπως θα δούμε και στο Παράδειγμα 3.5, η εμφάνιση συζυγών μιγαδικών ριζών στο ML μιας συνάρτησης αντιστοιχεί σε ύπαρξη ημιτονοειδών όρων στη συνάρτηση αυτή.
11 Υπολογισμός του Αντιστρόφου Μετασχηματισμού Laplace Γενίκευση για deg [b(s)] deg [α(s)], δηλαδή m n Εάν ο βαθμός του πολυωνύμου του αριθμητή της ρητής συνάρτησης X(s) (βλ.3.7) είναι μεγαλύτερος από ή ίσος με το βαθμό του παρονομαστή, δηλαδή εάν m n, τότε ακολουθούμε την εξής διαδικασία για την εύρεση του αντιστρόφου ML. Εκτελούμε πρώτα τη διαίρεση b( s) κι έχουμε: a( s) b( s) g ( s) X ( s) = =Π ( s) + a s a s όπου το Π(s) είναι βαθμού m-n και το g(s) βαθμού n- το πολύ. Συγκεκριμένα, το Π(s) είναι της μορφής: m n m n Π s = s + π s π s+ π b ( m n 0) Ο L { X ( s) } θα δίνεται από τη σχέση: m g s L { } L { ( s) } L = Π + a s g s Όσον αφορά στον όρο L, επειδή ο βαθμός του g(s) είναι μικρότερος από το βαθμό του a( s) α(s), θ ακολουθήσουμε τη διαδικασία που προηγουμένως περιγράψαμε στις περιπτώσεις (α), (β) και (γ). Ο όρος L { Π ( s) } θ αποτελείται από άθροισμα κρουστικών συναρτήσεων. Αυτό γίνεται n n αντιληπτό αν θυμηθούμε ότι L s = δ t (Πίνακας 3.). { }
12 Παραδείγματα Παράδειγμα 3.4 : Να υπολογιστεί ο αντίστροφος ML της συνάρτησης s X ( s) = 3 s+ s+ Λύση: Το πολυώνυμο του παρονομαστή έχει μια τριπλή πραγματική ρίζα, τη λ = -, καθώς και μια απλή πραγματική ρίζα, τη λ = -. Ακολουθώντας τη μεθοδολογία του προηγουμένου εδαφίου, αναλύουμε τη X(s) σε μερικά κλάσματα, δηλαδή: c c c3 c4 X ( s) = s+ s+ ( s+ ) ( s+ ) Στη συνέχεια υπολογίζουμε τις σταθερές c, c, c 3, c 4 : d 3 d s s s c = lim s+ = lim = ( 3 )! ds ds s + d c = lim s+ = s 3 s s ( 3 )! ds 3 3 c = lim s+ = c4 = lim s+ =
13 Παραδείγματα Άρα: = + + s+ + ( s+ ) ( s+ ) 3 s Ο L { X ( s) } ισούται με το άθροισμα των αντίστροφων μετασχηματισμών Laplace των μερικών κλασμάτων, οι οποίοι βρίσκονται εύκολα με χρήση του Πίνακα 3. και των ιδιοτήτων του ML. Τελικά ο ζητούμενος αντίστροφος ML είναι: e at u() t s + a e at n n! t u() t ( s + a) n+ () { } ( t t t t ) x t = L = e + te t e + e u t
14 Παραδείγματα Παράδειγμα 3.5: Να υπολογιστεί ο αντίστροφος ML της συνάρτησης = s + 5 ( + 8s+ 5) s s Λύση: στην περίπτωση αυτή, στον παρονομαστή εμφανίζεται ένα απλό ζεύγος μιγαδικών ριζών. ΗσυνάρτησηX(s) αναλύεται ως εξής: c c c s s+ 4+ j3 s+ 4 j3 3 = + + όπου οι σταθερές c, c, c 3 είναι: c s 0 s 4 j3 s 4+ j3 = lim s = 5 c = lim s+ 4 + j3 = c3 = lim s+ 4 j3 = j3 8 + j4 + j3 8 j4 Παρατηρούμε ότι, όπως άλλωστε ήταν αναμενόμενο, ισχύει c 3 = c *.
15 Παραδείγματα Αντικαθιστώντας στο ανάπτυγμα της X(s) σε μερικά κλάσματα τις παραπάνω τιμές των σταθερών c i παίρνουμε: j3 + j3 X ( s) = + + 5s 8+ j4 s + 4+ j3 8 j4 s + 4 j3 Ο αντίστροφος ML της X(s) είναι: j3 ( 4+ j3) t + j3 ( 4 j3) t x() t = L { X ( s) } = + e + e u t 5s 8+ j4 8 j4 () Κάνοντας τις πράξεις στην παραπάνω παράσταση και χρησιμοποιώντας τις σχέσεις του Euler : jϕ jϕ jϕ jϕ e e e + e sin ϕ =, cos ϕ =, j καταλήγουμε στην έκφραση: x t e t t u t 5 3 () 4 t = + cos3 + sin3 ()
16 Συνέλιξη στον χρόνο και Μετασχηματισμός Laplace Συνέλιξη στο χρόνο Έστω X (s) και X (s) οι ML των συναρτήσεων x (t) και x (t), αντίστοιχα, όπου x (t) = 0 και x (t) = 0 για t < 0. Υποθέτουμε επίσης ότι οι X (s) και X (s) υπάρχουν για Re(s) > σ και Re(s) > σ, αντίστοιχα. Τότε ισχύει ότι ο ML τηςσυνέλιξηςστοχρόνο, t, ισούταιμετογινόμενοτων αντίστοιχων συναρτήσεων στη μιγαδική συχνότητα, s. Δηλαδή: { } =, Re > max {, } L x t x t s σ σ
17 Συνέλιξη στην Μιγαδική Συχνότητα Συνέλιξη στη μιγαδική συχνότητα Σχετικό με το προηγούμενο θεώρημα είναι και το ακόλουθο, το οποίο παραθέτουμε χωρίς απόδειξη: ΟμετασχηματισμόςLaplace του γινομένου δύο συναρτήσεων x (t) και x (t) μπορεί να εκφραστεί ως ολοκλήρωμα στο μιγαδικό επίπεδο και συγκεκριμένα ως η συνέλιξη των αντιστοίχων ML X (s) και X (s) των χρονικών συναρτήσεων. Δηλαδή, αν X τότε: s = L x t, Re s > σ i, i =,, { } L x t x t X s π j { () ()} = c+ j όπου = X z z dz c j με Re ( s), c Re( s) > σ + σ σ < < σ
18 Παράδειγμα Παράδειγμα 3.6 : Να υπολογιστεί ο αντίστροφος ML της συνάρτησης = ( + ) s s a Λύση: Από τον Πίνακα 3. έχουμε ότι: L s = () tu t και at L = e u() t s+ a Άρα t = ( ) ( a ) = τ ( ), > 0 s s+ a aτ L e u τ t τ u t τ dτ e t τ dτ t 0 0 Υπολογίζουμε το τελευταίο ολοκλήρωμα και καταλήγουμε στην: at e t L u t = + s s+ a a a a ()
19 Μετασχηματισμός Laplace Ημιπεριοδικών Συναρτήσεων Μια ημιπεριοδική συνάρτηση ορίζεται ως: () x t x( t+ T), t 0 = 0, t < 0 και είναι στην ουσία μια κοινή περιοδική συνάρτηση με περίοδο Τ η οποία όμως επεκτείνεταιπεριοδικάμόνοκατάτοθετικόημιάξονα. Έστω x 0 () t x t, 0 t T = 0, t < 0, t > T { } το τμήμα της x(t) στηβασικήτηςπερίοδοκαι L x0 t = X0 s για Re ( s) > σ 0. Προφανώς σ διότι η x 0 (t) είναι πεπερασμένης διάρκειας άρα ο ML της συγκλίνει 0 = για κάθε Re ( s ) >.
20 Μετασχηματισμός Laplace Ημιπεριοδικών Συναρτήσεων Η x(t) γράφεται τώρα ως: x t = x t kt = x t + x t T + x t T +... () () k = Παίρνοντας το ML και των δύο πλευρών έχουμε: e e ( st st = ) Άρα: ( s) X =, Re( st) > 0 0 st e Βέβαια, επειδή Τ > 0, η συνθήκη Re(sT) > 0 είναι ισοδύναμη με τη Re(s) > 0. Παρατηρούμε ότι η περιοδικότητα στο χρόνο δεν εισάγει κρουστικές συναρτήσεις στο ML, όπως συνέβαινε στην περίπτωση του MF. Αυτό οφείλεται και πάλι στην παρουσία του όρου e -σt o οποίος διευκολύνει τη σύγκλιση του ML ενός περιοδικού σήματος.
21 Μετασχηματισμός Laplace Στοιχειωδών Συναρτήσεων
22 Πίνακας Ιδιοτήτων και Μετασχηματισμοί Laplace ΙΔΙΟΤΗΤΑ ΓΡΑΜΜΙΚΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟ ΣΕΠΙe at ΠΟΛΛΑΠΛΑΣΙΑΣΜΟ ΣΕΠΙ-t ΜΕΤΑΤΟΠΙΣΗ ΣΤΟ ΧΡΟΝΟ ΚΑΤΑ C ΑΛΛΑΓΗ ΚΛΙΜΑΚΑΣ ΠΑΡΑΓΩΓΙΣΗ Ως ΠΡΟΣ ΤΟ ΧΡΟΝΟ ΟΛΟΚΛΗΡΩΣΗ ΠΡΟΣ ΤΟ ΧΡΟΝΟ ΣΥΝΕΛΙΞΗ ΠΕΡΙΟΔΙΚΟ ΣΗΜΑ ΘΕΩΡΗΜΑ ΑΡΧΙΚΗΣ ΤΙΜΗΣ ΘΕΩΡΙΜΑ ΤΕΛΙΚΗΣ ΤΙΜΗΣ ΣΧΕΣΗ L{ ax( t) } = ax ( s) () () { + } = + L x t y t Y s at { } = ( ) L e x t a { } = ' L t x t cs { ( )} = L xt c e { } L x at s = X a a L x t = s x () () ( 0 ) t { ( τ) τ } L x d = { } = L xt yt Y s 0 { ()} L x t s ( s) XT = e st () = lim lim x t s t s + lim x t t + = lim s X ( s) s 0 e e e ΣΗΜΑ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE u() t s ( t) δ () u t at s + a v tu t v cos at u t bt bt sin at u t cos( at) u( t) sin ( at) u( t) v! v =,,... s + s s + a a s + a s+ b s + b + a a s + b + a tcos( at) u( t ) ( s + a ) tsin ( at) u( t) sin cos te te bt bt ( at) u ( t) ( at) u ( t) cos( at) u ( t) sin ( at) u ( t) s a as ( s + a ) s + a ( + 4a ) s s a s s ( + 4a ) s + b a s+ b + a a( s+ b) ( s+ b) + a
23 Άσκηση Ζητείται ο Μετασχηματισμός Laplace του x(t) = sin(t-π/4)u(t) Λύση: Στο σήμα sin(t-π/4) u(t), παρατηρούμε ότι στο συντελεστή του u(t) ο χρόνος π εμφανίζεται στη μορφή της ποσότητας t. 4 Μετασχηματίζουμε το συντελεστή αυτό ώστε να εξαρτάται από το χρόνο t, όπως και στη u(t). Είναι : π π π sin t = sin tcos costsin = sin t cost 4 4 4
24 Άσκηση (συνέχεια) Ζητείται ο Μετασχηματισμός Laplace του x(t)=sin(t-π/4)u(t) π = 4 Άρα είναι: sin t u() t sin t u() t cost u() t π L sin t u() t = L{ sin t u() t } L{ cost u() t } 4 π s L sin t u() t = 4 s + s + π L sin t u() t = αφού, όπως είναι γνωστό έχουμε: ( s) s 4 + a s L{ sin ( at) u( t) } =, L{ cos( at) u( t) } = s + a s + a
25 Άσκηση Ζητείται ο αντίστροφος Μετασχηματισμός Laplace της F(s)=5/(s +3s+) Λύση: 5 c c Fs () = = + s + 3s+ s+ s+ 5 c = ( s+ ) F( s) s= = = 5 s + s= 5 c = ( s+ ) F( s) s= = = 5 s + F s 5 5 = + s+ s+ s= Άρα: ( 5 t t L F s = e 5e ) u( t)
26 Άσκηση 3 Λύση: Ζητείται ο αντίστροφος Μετασχηματισμός Laplace της F(s)=(s+3)/(s 3 +s +s) s+ 3 s+ 3 b c c Fs () = = = + + ss ( + s+ ) s ( s+ ) s s+ ( s+ ) b s + 3 = sf() s = = 3 ( s + ) s= 0 s= 0 d d s+ 3 c = [( s+ ) F( s)] s= = [ ] = ( )! ds ds s s() (s+ 3)() = = 3 s s= d s + 3 c = [( s+ ) F( s)] s= = ( s+ ) Fs s= = = ( )! ds s s= 3 3 Fs () = + + ft () = 3 3e te ut s s+ ( s+ ) r i d r ci = lim ( s λ ) X ( s), i=,..., r s λ r i r i! ds ( ) t t () s=
27 Άσκηση 4 Να υπολογιστεί ο αντίστροφος ML της συνάρτησης 5s 5s+ 7 ( s+ )( s ) 3 ( s) =, Re > Λύση: Αναπτύσσουμε τη X(s) σε μερικά κλάσματα: 5s 5s+ 7 A C C = = ( s+ )( s ) s+ s ( s ) ( s ) Στη συνέχεια, ακολουθώντας τη γνωστή διαδικασία, θα υπολογίσουμε τις σταθερές A, C, C και C 3. ( ) s A= lim s+ = 3 d 3 C = lim 3 ( s ) X ( s) = s 3! ds ( ) 3 d 3 C = lim 3 ( s ) X ( s) = s 3! ds ( ) 3 C3 = lim ( s ) X ( s) = s 3 3! ( ) r i d r ci = lim ( s λ ) X ( s), i =,..., r s λ r i r i! ds C
28 Άσκηση 4 (συνέχεια) Άρα = + + s+ s s s 3 και τελικά t x t e e te e u t t t t t () = + + ()
29 Άσκηση 5 Να υπολογιστεί ο αντίστροφος ML της συνάρτησης =, Re( s) > 0 s s ( + ) Λύση: Η X(s) μπορεί να εκφραστεί ως γινόμενο των X (s) και X (s) όπου X ( s) = και X ( s) = s. s + Οι αντίστροφοι ML των X (s) και X (s) είναι L = u() t και αντίστοιχα. s L = sin () t u() t, Χρησιμοποιώντας τώρα το θεώρημα της συνέλιξης, δηλαδή s + έχουμε ότι: { } = { } { } L L L, L { } = L L s s + = u() t sin () t u() t 0 sin = u τ t τ u t τ dτ ( t τ) t = sin dτ Ολοκληρώνοντας παίρνουμε τελικά: L = s( s + ) ( cost) u( t)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην
Διαβάστε περισσότεραΣήματα και Συστήματα
Σήματα και Συστήματα Διάλεξη 12: Ιδιότητες του Μετασχηματισμού aplace Ο αντίστροφος Μετασχηματισμός aplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού aplace 1. Ιδιότητες
Διαβάστε περισσότεραΤεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Μετασχηματισμός Laplace 1. Ο μετασχηματισμός
Διαβάστε περισσότεραΣήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace 1. Επίλυση Γραμμικών
Διαβάστε περισσότεραΤεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Φυσική Σημασία του Μετασχηματισμού Fourier Ο μετασχηματισμός Fourier
Διαβάστε περισσότεραΣήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη : Μετασχηματισμός Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Μετασχηματισμός Laplace. Μαθηματικός ορισμός μετασχηματισμού Laplace 2. Η περιοχή σύγκλισης του μετασχηματισμού
Διαβάστε περισσότεραΣήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier 1. Μετασχηματισμός Fourier
Διαβάστε περισσότεραΤεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Μετασχηματισμός Fourier Στο κεφάλαιο αυτό θα εισάγουμε και θα μελετήσουμε
Διαβάστε περισσότεραΠροηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών
Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών Το εκπαιδευτικό υλικό που ακολουθεί αναπτύχθηκε στα πλαίσια του έργου «Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών», του Μέτρου «Εισαγωγή
Διαβάστε περισσότερα7 ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ z
7 ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ο μετασχηματισμός είναι ο αντίστοιχος Laplace για σήματα διακριτού χρόνου και αποτελεί γενίκευση του μετασχηματισμού Fourier διακριτού χρόνου. Σκοπός του Κεφαλαίου είναι να ορίσει
Διαβάστε περισσότερα6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE
6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE Σκοπός του κεφαλαίου είναι να ορίσει τον αμφίπλευρο μετασχηματισμό aplace ή απλώς μετασχηματισμό aplace (Μ) και το μονόπλευρο μετασχηματισμό aplace (ΜΜ), να περιγράψει
Διαβάστε περισσότερα() min. xt δεν έχει μετασχηματισμό LAPLACE () () () Αν Λ= το σήμα ( ) Αν Λ, έστω σ. Το σύνολο μιγαδικών αριθμών. s Q το ολοκλήρωμα (1) υπάρχει.
Έστω xt : Ο (αμφίπλευρος) μετασχηματισμός LAPLACE ορίζεται : X: L { xt} : X xt e dt = = μιγαδική συνάρτηση της μιγαδικής μεταβλητής = σ+ j Ο (μονόπλευρος) μετασχηματισμός LAPLACE ορίζεται : L { xt } :
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : Μετασχηματισμός LAPLACE (Laplace Tranform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΚλασσική Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Αντίστροφος μετασχηματισμός Laplace Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΤεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Μετασχηματισμός Laplace Στοιχειωδών Συναρτήσεων Πίνακας Ιδιοτήτων
Διαβάστε περισσότεραΔηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής
D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί
Διαβάστε περισσότεραΌταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:
6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: ορίσουµε το Μετασχηµατισµό Laplace (ML) και το Μονόπλευρο Μετασχηµατισµό Laplace (MML) και να περιγράψουµε
Διαβάστε περισσότεραΟ αντίστροφος μετασχηματισμός Laplace ορίζεται από το μιγαδικό ολοκλήρωμα : + +
Μετασχηματισμός aplace ορίζεται ως εξής : t X() [x( t)] xte () dt = = Ο αντίστροφος μετασχηματισμός aplace ορίζεται από το μιγαδικό ολοκλήρωμα : t x(t) = [ X()] = X() e dt π j c C είναι μία καμπύλη που
Διαβάστε περισσότερα4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι
Διαβάστε περισσότεραΜετασχηματισμοί Laplace
Μετασχηματισμοί Laplace Ιδιότητες μετασχηματισμών Laplace Βασικά ζεύγη μετασχηματισμών Laplace f(t) F(s) δ(t) 1 u(t) 1 / s t 1 / s 2 t n n! / s n1 e αt, α>0 1 / (s α) te αt, α>0 1 / (s α) 2 ημωt ω / (s
Διαβάστε περισσότεραHMY 220: Σήματα και Συστήματα Ι
HMY 220: Σήματα και Συστήματα Ι Βασικές Έννοιες Σήματα Κατηγορίες Σημάτων Συνεχούς/ Διακριτού Χρόνου, Αναλογικά/ Ψηφιακά Μετασχηματισμοί Σημάτων Χρόνου: Αντιστροφή, Κλιμάκωση, Μετατόπιση Πλάτους Βασικά
Διαβάστε περισσότερα. Σήματα και Συστήματα
Σήματα και Συστήματα Βασίλειος Δαλάκας & Παναγιώτης Ριζομυλιώτης Τμήμα Πληροφορικής & Τηλεματικής Χαροκόπειο Πανεπιστήμιο Σήματα και Συστήματα 1/16 Πρόβλημα 1 (βιβλίο σελίδα 146) Να υπολογιστεί ο ML της
Διαβάστε περισσότεραHMY 220: Σήματα και Συστήματα Ι
HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #9 Ιδιοτιμές και ιδιοσυναρτήσεις συστημάτων Απόκριση ΓΧΑ συστημάτων σε μιγαδικά εκθετικά σήματα Συνάρτηση μεταφοράς Ανάλυση Σημάτων/Συστημάτων με βασικά σήματα Συχνά
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 8: Μετασχηματισμός Ζ Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Z Μετασχηματισμός Ζ (Ζ-Transform) Χρήσιμα Ζεύγη ΖT και Περιοχές Σύγκλισης (ROC) Ιδιότητες
Διαβάστε περισσότεραHMY 220: Σήματα και Συστήματα Ι
HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #20 Πόλοι και μηδενικά Διάγραμμα πόλων και μηδενικών Ιδιότητες της περιοχής σύγκλισης Ο αντίστροφος Μετασχηματισμός Laplace Μετασχηματισμός Laplace Αμφίπλευρος μετασχηματισμός
Διαβάστε περισσότεραΣήματα και Συστήματα. Διάλεξη 7: Μετασχηματισμός Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 7: Μετασχηματισμός Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Fourier 1. Ορισμός του Μετασχηματισμού Fourier 2. Φυσική Σημασία του Μετασχηματισμού
Διαβάστε περισσότεραΣήματα και Συστήματα. Διάλεξη 8: Ιδιότητες του Μετασχηματισμού Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 8: Ιδιότητες του Μετασχηματισμού ourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού ourier 1. Ιδιότητες του Μετασχηματισμού ourier 2. Θεώρημα
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τίτλος Μαθήματος
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τίτλος Μαθήματος Ενότητα : Μετασχηματισμός LAPLACE (Laplace Tranform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΠαράδειγμα 14.2 Να βρεθεί ο μετασχηματισμός Laplace των συναρτήσεων
Κεφάλαιο 4 Μετασχηματισμός aplace 4. Μετασχηματισμός aplace της εκθετικής συνάρτησης e Είναι Άρα a a a u( a ( a ( a ( aj F( e e d e d [ e ] [ e ] ( a e (c ji, με a (4.9 a a a [ e u( ] a, με a (4.3 Η σχέση
Διαβάστε περισσότεραΣήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Στοιχειώδη Σήματα Συνεχούς Χρόνου 1. Μοναδιαία Βηματική Συνάρτηση 2. Κρουστική Συνάρτηση ή
Διαβάστε περισσότεραΚλασσική Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ο μετασχηματισμός Laplace Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραHMY 220: Σήματα και Συστήματα Ι
HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμός Laplace και ΓΧΑ Συστήματα Συνάρτηση μεταφοράς αιτιατών και ευσταθών συστημάτων Συστήματα που περιγράφονται από ΔΕ Διαγράμματα Μπλοκ Μετασχηματισμός
Διαβάστε περισσότεραx(t) = e st = e (σ+j2πf)t (7.1) h(t)e st dt (7.4) H(s) = y(t) = H{e st } = H(s)e st (7.5)
Κεφάλαιο 7 Συστήματα στο χώρο του Laplace 7. Εισαγωγή Ο μετασχ. Laplace είναι ένα πολύτιμο εργαλείο για την ανάλυση συστημάτων. Η ικανότητά του να ερμηνεύει συχνοτικά πλήθος σημάτων, σημαντικά περισσότερων
Διαβάστε περισσότεραΘέματα Εξετάσεων Ιουνίου 2003 στο μάθημα Σήματα και Συστήματα και Λύσεις
Θέματα Εξετάσεν Ιουνίου 00 στο μάθημα Σήματα και Συστήματα και Λύσεις ΘΕΜΑ. μονάδες Έστ το αιτιατό σύστημα d y t y t x t d t όπου x t η είσοδος και y t η έξοδος του συστήματος. α Να υπολογιστεί η συνάρτηση
Διαβάστε περισσότερα. (1) , lim να υπάρχουν και να είναι πεπερασμένα, δηλαδή πραγματικοί αριθμοί.
O μετασχηματισμός Laplace αποτελεί περίπτωση ολοκληρωτικού μετασχηματισμού, κατά τον οποίο κατάλληλη συνάρτηση (χρονικό σήμα) μετατρέπεται σε συνάρτηση της «συχνότητας» μέσω της σχέσης. (1) Γενικότερα
Διαβάστε περισσότεραΟ ΑΜΦΙΠΛΕΥΡΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Z
Ο ΑΜΦΙΠΛΕΥΡΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Z Ο μετασχηματισμός είναι ο αντίστοιχος Laplace για σήματα διακριτού χρόνου και αποτελεί γενίκευση του μετασχηματισμού Fourier διακριτού χρόνου. Ο μετασχηματισμός αντιστοιχεί
Διαβάστε περισσότεραΤεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών. Σήματα. και. Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Άσκηση η Να υπολογιστεί η έξοδος του συστήματος με κρουστική απόκριση h()=u()-u(-4) και είσοδο x()=u(-) u(-3)
Διαβάστε περισσότεραΕισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Διάλεξη 3 η Τα Συστήματα στις Τηλεπικοινωνίες
Διαβάστε περισσότεραΜαθηματικά μοντέλα συστημάτων
Μαθηματικά μοντέλα συστημάτων 1. Γενικά Για να κατανοήσουμε και να ελέγξουμε διάφορα πολύπλοκα συστήματα πρέπει να καταφύγουμε σε κάποιο ποσοτικό μοντέλο των συστημάτων αυτών. Έτσι, είναι απαραίτητο να
Διαβάστε περισσότεραΣυστήματα Αυτόματου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Μετασχηματισμός Ζ (Ζ Transform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΕισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης
6 Nv 6 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Ανάπτυξη σε Σειρές Furier Αθανάσιος
Διαβάστε περισσότεραΕισαγωγή στην Τεχνολογία Αυτοματισμού
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ Εισαγωγή στην Τεχνολογία Αυτοματισμού Ενότητα # 4: Αποκρίσεις χαρακτηριστικών συστημάτων με
Διαβάστε περισσότεραΤεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Ιδιότητες της Συνέλιξης Η συνέλιξη μετατοπισμένων σημάτων
Διαβάστε περισσότεραΚεφάλαιο 5 Μετασχηματισμός z και Συνάρτηση μεταφοράς
Κεφάλαιο Μετασχηματισμός και Συνάρτηση μεταφοράς Σύνοψη Στο κεφάλαιο αυτό δίνεται ο ορισμός του μετασχηματισμού και παρουσιάζονται οι ιδιότητες του μετασχηματισμού Δίνεται ο ορισμός της συνάρτησης μεταφοράς
Διαβάστε περισσότεραΤεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Σειρά Fourier Ορθοκανονικές Συναρτήσεις Στοεδάφιοαυτόθαδιερευνήσουμεεάνκαικάτωαπό
Διαβάστε περισσότερα1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...
Διαβάστε περισσότεραΔυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές
Δυναμική Μηχανών I Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις 5 3 Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com
Διαβάστε περισσότεραΠαραρτήματα. Παράρτημα 1 ο : Μιγαδικοί Αριθμοί
Παράρτημα ο : Μιγαδικοί Αριθμοί Παράρτημα ο : Μετασχηματισμός Lplce Παράρτημα 3 ο : Αντίστροφος μετασχηματισμός Lplce Παράρτημα 4 ο : Μετασχηματισμοί δομικών διαγραμμάτων Παράρτημα 5 ο : Τυποποιημένα σήματα
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΑΝΑΛΥΣΗ FOURIER (H ΣΕΙΡΑ FOURIER ΚΑΙ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER) Aναστασία Βελώνη Τμήμα Η.Υ.Σ 1 Άδειες
Διαβάστε περισσότεραΗΥ215 - Εφαρμοσμένα Μαθηματικά για Μηχανικούς
ΗΥ215 - Εφαρμοσμένα Μαθηματικά για Μηχανικούς ΔΙΑΛΕΞΗ 16 Η Μετασχηματισμός Laplace Ο Μετασχηματισμός Laplace (review) Ο Μετασχηματισμός Laplace (review) Ορισμός Μετασχ. Laplace X s = + x t e st dt (γ )
Διαβάστε περισσότεραΛύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου (Ιούνιος 2015)
Λύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου 204 5 (Ιούνιος 205) ΘΕΜΑ Ο (4,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό (λειτουργικό) διάγραμμα ενός συστήματος. α. Να προσδιοριστούν οι τιμές
Διαβάστε περισσότεραX(e jω ) = x[n]e jωn (1) x[n] = 1. T s
Αναπαράσταση Σημάτων και Συστημάτων στο Χώρο της Συχνότητας Ο Μετασχηματισμός Fourier Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes
Διαβάστε περισσότεραΔυναμική Μηχανών I. Διάλεξη 8. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ
Δυναμική Μηχανών I Διάλεξη 8 Χειμερινό Εξάμηνο 23 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Ανακοινώσεις To μάθημα MATLAB/simulink για όσους δήλωσαν συμμετοχή έως χθες θα γίνει στις 6//24: Office Hours: Δευτέρα -3 μμ,
Διαβάστε περισσότεραΔυναμική Μηχανών I. Απόκριση Γραμμικών Συστημάτων στο. Πεδίο της Συχνότητας
Δυναμική Μηχανών I Απόκριση Γραμμικών Συστημάτων στο 7 4 Πεδίο της Συχνότητας 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς
Διαβάστε περισσότεραΤεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Περίληψη Ευστάθεια Συστημάτων Απόκριση ΓΧΑ Συστημάτων σε Διεγέρσεις
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 26-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις σε Μετασχ. Laplace και Συστήµατα
Διαβάστε περισσότεραΕισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Μετασχηματισμός Furier Αθανάσιος Κανάτας
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 6: Έννοια της συνάρτησης μεταφοράς Παραδείγματα εφαρμογής σε φυσικά συστήματα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 6: Έννοια της συνάρτησης μεταφοράς Παραδείγματα εφαρμογής σε φυσικά συστήματα Δ. Δημογιαννόπουλος, dimogian@teipir.gr
Διαβάστε περισσότεραΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER. e ω. Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c
ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER x(t+kτ) = x(t) = π/ω f = / x(t) = = 8 c j t e ω c = (a-jb ) Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c. Αυτός γίνεται κατορθωτός αν
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2013 ιδάσκων : Π.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 203 ιδάσκων : Π. Τσακαλίδης Λύσεις Πέµπτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 23/05/203 Ηµεροµηνία
Διαβάστε περισσότεραΣΤΗΑ ΨΕΣ /4/2013 2:12 πµ
ΣΤΗΑ ΨΕΣ -3 4/4/3 : πµ ΑΝΤΙΚΕΙΜΕΝΟ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Ψηφιακή Επεξεργασία Σήµατος ΨΕΣ Η Επεξεργασία Σήµατος µέσω της ψηφιοποίησής του και της επεξεργασίας µε ηλεκτρονικό υπολογιστή ή ειδικά ολοκληρωµένα κυκλώµατα
Διαβάστε περισσότεραΚεφάλαιο 7. Μετασχηματισμός Laplace. 7.1 Εισαγωγή στον μετασχηματισμό Laplace
Κεφάλαιο 7 Μετασχηματισμός Laplace Σε αυτο το κεφάλαιο θα μελετήσουμε τη μέθοδο του μετασχηματισμού Laplace, η οποία αποτελεί μία από τις βασικές τεχνικές μαθηματικών προβλημάτων: μετασχηματίζει δύσκολα
Διαβάστε περισσότεραΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.
3. ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. Ορίσουµε το µετασχηµατισµό Fourier ενός µη περιοδικού
Διαβάστε περισσότερα6-Μαρτ-2009 ΗΜΥ Μετασχηματισμός z
6-Μαρτ-29 ΗΜΥ 429. Μετασχηματισμός . Μετασχηματισμός 6-Μαρτ-29 Μετασχηματισμός Μέθοδος εκπροσώπησης, ανάλυσης και σχεδιασμού συστημάτων και σημάτων διακριτού χρόνου. Ό,τι είναι η μέθοδος Lplce στο συνεχή
Διαβάστε περισσότερα7 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 7 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα: ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραHMY 220: Σήματα και Συστήματα Ι
Σύγκλιση Σειρών Fourier Ιδιότητες Σειρών Fourier Παραδείγματα HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #10 Τρεις ισοδύναμες μορφές: () = = = = Σειρές Fourier j( 2π ) t Τ.. x () t FS a jω0t xt () = ae =
Διαβάστε περισσότεραΣήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 1: Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Εισαγωγή στα Σήματα 1. Σκοποί της Θεωρίας Σημάτων 2. Κατηγορίες Σημάτων 3. Χαρακτηριστικές Παράμετροι
Διαβάστε περισσότεραHMY 220: Σήματα και Συστήματα Ι
HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #5 Ιδιότητες του Μετασχηματισμού Fourier (Συνέχεια) Παραδείγματα Ιδιότητες του Μετασχηματισμού Fourier Χρονική κλιμάκση j xt () X( j) xat ( ) X( ) a a xate ( ) τ=at
Διαβάστε περισσότεραΜετασχηµατισµός Ζ (z-tranform)
Μετασχηµατισµός Ζ (-traform) Εργαλείο ανάλυσης σηµάτων και συστηµάτων διακριτού χρόνου ιεργασία ανάλογη του Μετ/σµού Laplace Απόκριση συχνότητας Εφαρµογές επίλυση γραµµικών εξισώσεων διαφορών µε σταθερούς
Διαβάστε περισσότεραe 5t (sin 5t)u(t)e st dt e st dt e 5t e j5t e st dt s j5 j10 (s + 5 j5)(s j5)
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκων : Α. Μουχτάρης Εφαρµοσµένα Μαθηµατικά για Μηχανικούς-Λύσεις 4ης Σειράς Ασκήσεων 7/5/ Λύσεις 4ης Σειράς Ασκήσεων
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 8: Αντίστροφος μετασχηματισμός Laplace Εφαρμογή σε απόκριση συστήματος: Σύστημα 1 ης τάξης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 8: Αντίστροφος μετασχηματισμός Laplace Εφαρμογή σε απόκριση συστήματος: Σύστημα 1 ης τάξης Δ. Δημογιαννόπουλος,
Διαβάστε περισσότεραΣήματα και Συστήματα. Διάλεξη 5: Γραφική Μέθοδος Υπολογισμού του Συνελικτικού Ολοκληρώματος. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 5: Γραφική Μέθοδος Υπολογισμού του Συνελικτικού Ολοκληρώματος Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής . Γραφική Μέθοδος Υπολογισμού του Συνελικτικού Ολοκληρώματος 2 Γραφικός
Διαβάστε περισσότεραx(t) 2 = e 2 t = e 2t, t > 0
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 216-17 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις σε Σήµατα και Συστήµατα Ασκηση
Διαβάστε περισσότεραwebsite:
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 6 Μαρτίου 2017 1 Εισαγωγή Κάθε φυσικό σύστημα
Διαβάστε περισσότεραΚυκλώματα, Σήματα και Συστήματα
Κυκλώματα, Σήματα και Συστήματα Μάθημα 7 Ο Μετασχηματισμός Z Βασικές Ιδιότητες Καθηγητής Χριστόδουλος Χαμζάς Ο Μετασχηματισμός Ζ Γιατί χρειαζόμαστε τον Μετασχηματισμό Ζ; Ανάγει την επίλυση των αναδρομικών
Διαβάστε περισσότεραΕισαγωγή στην Τεχνολογία Αυτοματισμού
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ Εισαγωγή στην Τεχνολογία Αυτοματισμού Ενότητα # 4: Αποκρίσεις χαρακτηριστικών συστημάτων με
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ. z x y 2xyi. Re z x y. Θα δείξουμε ότι για τους μιγαδικούς αριθμούς z για τους οποίους ισχύει ότι. z z zz. zz zz z z 1 0 z z 1 (1)
Αριθμός Εξέτασης 7 α.α) ος τρόπος: Έστω z i. Τότε ΑΠΑΝΤΗΣΕΙΣ z i και Re z. Θα δείξουμε ότι για τους μιγαδικούς αριθμούς z για τους οποίους ισχύει ότι z z,ισχύει επίσης ότι. Είναι z z z z z z z z z z z
Διαβάστε περισσότεραΣήματα και Συστήματα. Διάλεξη 10: Γραμμικά Φίλτρα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 10: Γραμμικά Φίλτρα Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Γραμμικά Φίλτρα 1. Ιδανικά Γραμμικά Φίλτρα Ιδανικό Κατωδιαβατό Φίλτρο Ιδανικό Ανωδιαβατό Φίλτρο Ιδανικό Ζωνοδιαβατό
Διαβάστε περισσότεραΕισαγωγή στις Τηλεπικοινωνίες
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Ανάπτυξη σε Σειρές Furier Αθανάσιος Κανάτας
Διαβάστε περισσότεραΠεριεχόμενα 2 Μαθηματικές Μέθοδοι Ανάλυσης Γραμμικών Συστημάτων Αυτόματης Ρύθμισης j ω α j ω j ω
Περιεχόμενα 2 Μαθηματικές Μέθοδοι Ανάλυσης Γραμμικών Συστημάτων Αυτόματης Ρύθμισης 2. Ο μετασχηματισμός Laplace......................... 2.. Εισαγωγή............................... 2..2 Θεμελιώδεις κανόνες
Διαβάστε περισσότερα4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Υπολογίζουµε εύκολα τον αντίστροφο Μετασχηµατισµό Fourier µιας συνάρτησης χωρίς να καταφεύγουµε στην εξίσωση ανάλυσης. Υπολογίζουµε εύκολα την απόκριση
Διαβάστε περισσότεραHMY 220: Σήματα και Συστήματα Ι
HMY 22: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Αναπαράσταση περιοδικών σημάτων με μιγαδικά εκθετικά σήματα: Οι σειρές Fourier Υπολογισμός συντελεστών Fourier Ανάλυση σημάτων σε μιγαδικά εκθετικά σήματα Είδαμε
Διαβάστε περισσότεραΕξεταστική Ιανουαρίου 2007 Μάθηµα: «Σήµατα και Συστήµατα»
Εξεταστική Ιανουαρίου 27 Μάθηµα: «Σήµατα και Συστήµατα» Θέµα 1 ο (3%) Έστω δύο διακριτά σήµατα: x(n) = {1,,, -1} και h(n) = {1,, 1} µε το πρώτο δείγµα να αντιστοιχεί σε n= και για τα δύο. Υπολογίστε τα
Διαβάστε περισσότεραΕπομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2.
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΠΛΗ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑ Το φέρον σε ένα σύστημα DSB διαμόρφωσης είναι c t A t μηνύματος είναι το m( t) sin c( t) sin c ( t) ( ) cos 4 c και το σήμα. Το διαμορφωμένο σήμα διέρχεται
Διαβάστε περισσότερα20-Φεβ-2009 ΗΜΥ Διακριτός Μετασχηματισμός Fourier
ΗΜΥ 429 8. Διακριτός Μετασχηματισμός Fourier 1 Μετασχηματισμός Fourier 4 κατηγορίες: Μετασχηματισμός Fourier: σήματα απεριοδικά και συνεχούς χρόνου Σειρά Fourier: σήματα περιοδικά και συνεχούς χρόνου Μετασχηματισμός
Διαβάστε περισσότεραΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ 1. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ
ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Έστω μια συνάρτηση f ορισμένη σε ένα σύνολο Α. Ένα από τα βασικότερα προβλήματα της Μαθηματικής Ανάλυσης είναι ο προσδιορισμός μιας συνάρτησης F/ A με F = f για κάθε
Διαβάστε περισσότεραΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE
ΚΕΦΑΛΑΙΟ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΣΤΗΝ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΔΙΑΦΟΡΙΚΩΝ KAI ΟΛΟΚΛΗΡΩΤΙΚΟ-ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΜΕ ΣΤΑΘΕΡΟΥΣ ΣΥΝΤΕΛΕΣΤΕΣ O μετασχηματισμός lc-ο αντίστροφος μετασχηματισμός
Διαβάστε περισσότεραHMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. στο χώρο της συχνότητας
HMY 49: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 3: Σήματα και Συστήματα διακριτού χρόνου Διάλεξη 3: Σήματα και Συστήματα διακριτού χρόνου στο χώρο της συχνότητας Μιγαδικά εκθετικά σήματα και
Διαβάστε περισσότεραΕισαγωγή στην Τεχνολογία Αυτοματισμού
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ Εισαγωγή στην Τεχνολογία Αυτοματισμού Ενότητα # 3: Μετασχηματισμός Laplace: Συνάρτηση μεταφοράς
Διαβάστε περισσότεραΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE ΑΝΑΛΥΣΗ στο πεδίο των ΣΥΧΝΟΤΗΤΩΝ
Pierre-Simn Laplace ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE ΑΝΑΛΥΣΗ στο πεδίο των ΣΥΧΝΟΤΗΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ /4 Τι περιλαμβάνει Ορισμοί Μετασχ. Laplace απλών σημάτων Ιδιότητες Εφαρμογή στη λύση ΔΕ Μετασχηματισμένο
Διαβάστε περισσότεραy[n] ay[n 1] = x[n] + βx[n 1] (6)
Ασκήσεις με το Μετασχηματισμό Fourier Διακριτού Χρόνου Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 8 Οκτωβρίου 015 1. Εστω το
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα : Συστήματα Διακριτού Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Συστήματα Διακριτού Χρόνου Εξισώσεις Διαφορών Επίλυση Εξισώσεων Διαφορών με Γραμμικούς Συντελεστές
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 6: Απόκριση Συχνότητας Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Fourier Διακριτού Χρόνου Η έννοια της Απόκρισης Συχνότητας Ιδιότητες της Απόκρισης
Διαβάστε περισσότεραΕπεξεργασία Πολυµέσων. Δρ. Μαρία Κοζύρη Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας
Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας Ενότητα 0: Εισαγωγή στο µάθηµα 2 Διαδικαστικά Παράδοση: Παρασκευή 16:00-18:30 Διδάσκων: E-mail:
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 12: ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΔΙΑΓΡΑΜΜΑΤΑ BODE
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ : ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΔΙΑΓΡΑΜΜΑΤΑ BODE Δρ Γιώργος Μαϊστρος, Χημικός Μηχανικός
Διαβάστε περισσότεραx[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1)
Ασκήσεις με Συστήματα στο Χώρο του Ζ Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 7 Νοεμβρίου 015 1. Υπολόγισε τον μετ. Ζ και την
Διαβάστε περισσότεραy[n] 5y[n 1] + 6y[n 2] = 2x[n 1] (1) y h [n] = y h [n] = A 1 (2) n + A 2 (3) n (4) h[n] = 0, n < 0 (5) h[n] 5h[n 1] + 6h[n 2] = 2δ[n 1] (6)
Ασκήσεις σε Σήματα Συστήματα Διακριτού Χρόνου Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 9 Οκτωβρίου 015 1. Ενα αιτιατό ΓΧΑ σύστημα
Διαβάστε περισσότεραΛύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου
Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου 203 4 ΘΕΜΑ Ο (4,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό (λειτουργικό) διάγραμμα ενός συστήματος ελέγχου κλειστού βρόχου. α. Να προσδιοριστεί
Διαβάστε περισσότεραΕπίλυση Δ.Ε. με Laplace
Επίλυση Δ.Ε. με Laplace Ν. Παπαδάκης 24 Οκτωβρίου 2015 Ν. Παπαδάκης Επίλυση Δ.Ε. με Laplace 24 Οκτωβρίου 2015 1 / 78 Περιεχόμενα 1 Παρουσίαση Προβλήματος Επίλυση διαϕορικής εξίσωσης Ορισμός Άλλες μορϕή
Διαβάστε περισσότερα