PRECISE DETERMINATION OF THE IRRATIONAL PRE- FERRED INTERFACE ORIENTATION BY TEM

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "PRECISE DETERMINATION OF THE IRRATIONAL PRE- FERRED INTERFACE ORIENTATION BY TEM"

Transcript

1 46 4 Vol.46 No.4 00 È 4 Ä 4 47 µ ACTA METALLURGICA SINICA Apr. 00 pp.4 47 É Æ TEM ¹ ¼ÈÇ Ã,) Î Ï ) ) ) Ç ²¹ ²¹, ÆÝ ) Max Planck Insttute or Metals Research, Stuttgart D Ò Ç (TEM) ± ߨ¹µ Í ÓÐ ßÜ. ¼Đ ², ßÜÁ ¹µßÑ È µíè ³ß Ú, Đ ¹µ Ö (edge on) ÓÐ, Ã Í Ó Ð. ØÕ ßÜ, ßÜ ¹µ ¼ Û «Đ, à ²Đ Ô, ±± «µ. ³ ÓÐ, Ö, ±, ÓÐ Í» O46 A Ê 04 96(00) PRECISE DETERMINATION OF THE IRRATIONAL PRE- FERRED INTERFACE ORIENTATION BY TEM MENG Yang,), GU Ln ), ZHANG Wenzheng ) ) Laoratory o Advanced Materals, Department o Materals Scence and Engneerng, Tsnghua Unversty, Bejng ) Max Planck Insttute or Metals Research, Stuttgart D Correspondent: ZHANG Wenzheng, proessor, Tel: (00)677795, Fax: (00)67760, E-mal: zhangwz@tsnghua.edu.cn Supported y Natonal Natural Scence Foundaton o Chna (No ) and Specalzed Research Fund or the Doctoral Program o Hgher Educaton (No ) Manuscrpt receved , n revsed orm ABSTRACT Ths paper presents a method or precse determnaton o the orentaton o the rratonal preerred nterace y usng TEM. The nterace trace and the edge on orentatons are measured careully and separately to mnmze systematc error o the results. Ths method was developed accordng to the error analyss and the act that the accuracy o the measurement s hgher when the measurement s made drectly on an nterace trace than on ts project on an edge on orentaton, and when the angle etween the trace and the eam drecton along the an edge on orentaton s larger. Compared wth exstng methods, the present method has mnmzed the measurement errors and ts results show a etter convergence. KEY WORDS nterace orentaton, nterace trace, Kkuch pattern, edge on orentaton ³ºÕ Ù ¾ ÙÍÍ Ù ¹ Ù ¾ Å []. Ä ³º Û, Å Å Æ Î Û Ù. ÍĐ «Đ Ù ÀÙ Î ( Å Ð ) À Ð ÙŠܳº ¹. ÛÎ Ð Å Ù Ü Ô, * ±Ê Ú ÕÝÁ ÐÝ ÕÝÁ Þ ± ß : , ± Æ ß : Æ ÏÒ :, Ê, 98 É, DOI: 0.74/SP.J Ù¹ÀÙ Î Ù [,]. ÛØ, Ð «Ü ¹Ü, Ü, Ð Ð. Û Î Ð, Í ¹ Ö, º ³ÍÍÃÉ É ½, ÆÏÑÖÐ Å, ÂØ ÜÖÅ Å Å Å Þ., Ùº Î Ð Ô, Ö Ù Ü ( ¹ Ù Î Ô «Đ Ù Ú ) Ù³¾. Ê ÙÐ Ô Ü³ Õ Õ Ù [ 5]. Ü³Â Ð É²Ï Ø«Î º. Ý Ê ÙÐ Ó É

2 4 Ô µ 46 ¾ ¹, Í Ý Æº Ä É ÍĐÙÙ Ð, ½ Á, º Ò Æ. È ÑÎĐ (TEM) ɳº Õ À, Ü «Ð Ô [6 4]. Ýܳ : ½Ý [6,7]» Ý [0,] ¹ Ý [,]. ½ Ý [6 9] Ð ½ ²Ï ½, Ç Ð Æ Ò Ð É, Û¾ É¹Ð Ä Ð Ô. ½¹Ð Æ Ò º Ò Æ,» Ø Ý ½ É, Æ (±5) [6].» Ý [0,] ³ÐÐ ÃÉ Ã Å ( ) ÖÔ. Ý (trace analyss) [6,7] º, Ä Ð Ý. É ÅÐ º Õ, л, Í Ð³Ð Ãɽ,» Ý. Ý [] ³Ð ²Ï Ð Ð Æ, Á Đ. Ú, Ð Æ Ò ¼. Â,» Ä Ð Æ, Á Ð Ý. Ý ÝºÐ, Í ²ÏÆ Đ. É Ý³ÐÐ Đ. Ð Ã Ù Đ, Ð Ò Ã, ÃÄËÔ Ù Ô. Zhang ¹ Purdy [] Â Å Ô Ð º ¹ Õ ¾, ÃÔ º ³ É ÞÏÅ. Qu ¹ Zhang [4]» Ý, º Ð Đ «Ü, Ô Ð Ý, Í ½ Ú., Ø Ý ³º Ð, Ý ÖÐ º, Ö ½ Ð Ò¹ ÖÔ º ½. г²Ï Æ Đ, Ý ½ Æ. Í Ë Ô Đ ÃÉ Ò Ù, ³Ø«Þ Ó, Ø ½. Öº Ð Ô Ý ½ Á Ø«Ñ, ³ Öº Ý Ø, É Ã, Ò º ½ ÐÚ Æ. » ¹» ݺ Ð ½¾ Ð Å Æ, Ð Ý. Ì Ð Å p ¹ p, Î É θ, Ð Ý n 0 = p p () º ³ ÆÊ Ã Ò ½, Đ º ½ º Ì ÆÐ, Ì Æ Ð Ý. Ì, ÐÆ º ½ : ÌÐ p º p (δ) Ì p Ò δ, ؽ p ½, Ð Å. º Ð Ý n = p (δ) p () Ê δ Ð Ý º n n 0 Æ. ÊÕ p, p n 0, p Î É θ É 5 90 ÞÏÅ. p (δ) Ì p,» n Ì n 0 Ò p (δ). Î p (δ) Ð Å, n «n 0, Ø Î p (δ) Ì Ð Æ ÉÒ δ max, n Ì n 0 Â, Î Ò max n 0 ɺ ½. p (δ) É Î, É Æ Ê n É n 0 Ù p ÉÀ, Å» n 0 Æ Õ Ò sn max + cos ÕÓ Ó. Ó max Ù p. Ê, n ½ Õ p θ, θ ÃÉ, à ٠90, n Æ Ã Õ, n n 0 Π̽Ã, Ö ³Ã Ù, Î θ=90, n n 0 ̽ɻÅ. ØÎ θ 0, n ÞÏÑÝ É. Ë p º ½ δ Ë, ØÑ Ë Ñ.» δ, ¹ 5 Ö É ½. Î δ=5, Đ p ¹ p Î É 0, ¹µÜÖ n θ n 0 ßÐ Å Fg. The stereographc projectons o the measured nterace normal vectors n along n 0, changed wth θ ( mean the angle etween n and n 0 ) ÓÐ«È ¼ Tale Maxmum errors o the measured nterace normals (deg) θ = 5 θ = 0 θ = 5 θ = 0 θ = 45 θ = 60 θ = 75 θ = 90 δ = δ = δ =

3 4 : TEM Þ Ì Ò 4 Ð Ý º ½ É,»Ð ÆÕ¾. ƺ Õ p ¹ p º ½, Æ ÉÐ, Ù Ð Ý º ³ ½.» ÝÀ» Ý ½ Æ Ê ÙÖÐ Ý Ì. ³, ½³Ú Æ ÒÙ½ É Ø«º,» ÝÕ³Ð Ú Ï [] Ñ. É» ÝÕ, Ä Ð Ð Đ «Ü. г ÖÃ Ð Ã Ô Ø«º, Å Đ Å ¼É, θ ½ É. Ë Ö Đ ËÔ Ù, º ½ É. ËÔ Đ, É ÕÍÍ Æ ÐÉ ¹, Ð 5 Ì»Ð. Ò, Î Ð Æ Ò 0.5 mm, ÁÞ Ð Đ. Đ²Ï ½ 00 nm,» Ð Î Ì ÒÉ. ; Á  ² Æ 0.5 ½, Ö Đ» «Ü Ð º ½. Í Ð³» ¹ Æ, Ö Đ ËÔ, ½ Æ É. г» Ý [4] Õ» Đ «Ü p ¹ p Ø«Ä, ½ ²¹ÊÚ, Æ ¾ Ê. É Å TEM Êß, Ð Æ «Ê (Ð ) (Ð ). É Ã ²Ï, t Ð Æ t (Ô q) Ö Æ. à º q (=,,, ) t,»â º» ÃÔ q, Ôݾ q,»ð Ð t. ÉÄ, ³Ð, Å ßÖ.» «Ü z Ú,»,» Ö g Æ x Ú. Ð Æ t Ç «x Ú Ò α,»»ð Æ Õ t t r, Ø t É Ü (Ð cc Ü ) Õ t»â. Ø Å Ýº Õ p ¹ p «Ü ¹Ð, É 90, θ ½» Ð. Í Ý Æº Ð, Ø º Ð É p Æ. Đ «Ð, Ð Æ Ô ÆÌ Ð,» Ø Ý ½Ü³Ô Å Đ Ù. Đ Æ É Äľ ÆÐ Ô º Ò. À + ˽ г Đ Ù, Ð º Ò ¼Æ, ½Â Ý.» Ð Ð, Ç» Ý ½ Ð, ²» ½. Ã, Î ÉÒ» º ½ Ü Ú Æ, ÂØ ÓÐ Ô º Ö ½.»»Ù ÕÁ / ΠΠРӻл ÝÖÐ Ô º ¹ ½. Ð ÖÔ, Æ». Phlps CM00 TEM É 00 kv ثй º, Æ» ²ÏÐ Ô Ø«.. ±Á Ä Ð t Ð ¹,» Ý [6,7] Ð Ü. Ê a ¹ Ö t Å t t Ö q ½Éº Õ Fg. An llustraton o the nterace trace t, ts projecton t and the lne q perpendcular to t (a) ol at a none zone axs, dened y Kkuch pattern () ol at a zone axs, dened y dracton pattern

4 46 F~ lbbs\n9t ~x v\ n α X 5.4, Jt /6 Q * Æ hqn9 ~ t~ \ ~t. 7; () r ~t t 9, /ZYQ! FxF hj ~t Hu7\ ~q. K /lzs N9 ~j\lbbsn9\ t~ - t~ /Hu7\ q~ ~q, - \ L6/B q.! K ~q ev \ ~* lbbs\ ~: p ) 44 ZY, I t~ = Cr, t~r () q, C *Æ hy cc x \~9 `. OtJ ( ~t E ~z v\~* lz ~q \. * yrh$?bs\.*k& ;. Rv\ up~- jur 0, v#q Rv _ V>lB+!CBh$?, U /Q R vg\j. *lbbs. R g + X B!F\ [0 ], [ 4 ] - [ 5] ~, lbn9-u7 p~ u\ = <4&. / + X", ~ + ~X B [0 ], /GX*Æ h \ ~z v; Q!Fu \ [, /j~ g(00) \ *X ~x v. *Æ hyxf \~9 `X r, Cr, = / / 0 / / (4) r r ~tj = ~q ~qj (5) q, (, j=,,, 6= j),, ~q l Z\ B s ~ ~t, ~t, ~t, H X [.4.7 ], [.4.8 ] - [.5.9 ]. ~t 0u, ev \ Q!5 ( 0.9. QD N9R p \N9 \ q XlBBs \ ~ ~t =[.4.8 ]. r7b *!F\ Rvp~, I4FX_ p~, }R d :. R d + N 9 ~I4F\ [, u [ ] Rv, 4G j\a dq, -!} R e - q <4& u. *J!Fq.Z\- -} D, Bs\.* n0æ, j C.t %V[ Et BA [0 ], [ 4 ], [ 5] o}, E[ HE < ;%. G E HEkA[ TEM z Fg. Dracton patterns o austente (a,, c) and errte (d), Kkuch patterns o errte (e, ) and TEM mages o austente errte nteraces (g, h, ) when austente at the zone axs o [0 ] (a, d, g), [ 4 ] (, e, h) and [ 5] (c,, )

5 4\ < # : TEM zs, T<j n 45 P cc w ) gpkadr q~ [K5, Q θ u 90, 4 G lb y s \. *a u _ B δ. Tale Input and calculaton results or q~ expressed n cc k'q. * + r, v Nu \ h$?, J lattce t`` δ, / ``lbp~\.*a. ~ z ~ x α t~ q~. 5,:T L lbh$, X g +\ ~ lbm \ *, [0 ] (00) 5.4 [.09 ] [.84 ] ~ /J(G \ 4& u j. "q, Q 5 T [ 4 ] ( ) 0.4 [.9.8] [ ] \}Q -j, p lbuh$\?, QR 4a c [ 5] ( ) 7. [ ] [ ] q X Orentaton (=,, ). ;I4Fu\ <. * k 0u, 4 G QI4Fq k ( ;R e - 4& (R 4d ) j p~g\j ~ +\ xf q\i4f <4&L6lBBsQI4Fq \, h ~ p~, h'/b q. } 6, 5 T jlbh$p 'X ~t =[ ]. ~!uj 7 B.5.? *h' / Y, lbbs\.*rlb\t. &A,:=L a B 0.9, J BdB ZY\ h$ ~ \. * QI4Fx hql6lbp~. p p~ =~t, t a. 4GrlBp~.*a\ 6(;jB\X7E ~p p h$? \ p~ ~p., q \ a q : ~p XBs ~ ~t, YBlBM; p~ XlBh$?j L, p~ - ~p V \ Q K Q, r p~. *a \ 9xK X B~ +\xf ~, ax δ. 4X p~ - p~ \. q/, ~t E h$p~ p~ ev \ Q θ, C 4 g#o}ka[ TEM z,het[ ;% Fg.4 TEM mages o austente errte nteraces at varous edge on orentatons (a,, c), and the correspondng SAD Kkuch patterns o the errte n Fg.4a (d), (e) and c () kabag#o}[-),.gk5[kax} Tale The nput and calculated nterace orentatons when the nterace s edge on p ~ θ(~ p ~t ) ~ n =~ p ~t n~ =~ p t~ n~ p p ~j j =~ [.0.48 ] 58.5 (.59.0) (.47.) (.5.8) [ ] (.74.) (.46.4) ( ) [.5.65] (.90.6) ( ) (.5.94)

6 46 Ô µ 46 5 ßÜà ÜÐ ²È ÉÔ Đ Fg.5 Stereographc projectons o the calculated nterace normal drectons va knds o methods (a) and the enlargement () o local area n (a) showng the dstruton and the convergence o results rom derent methods Orentaton 60, Ô t 60, Æ Ä ½. () Ä Ð Ý n, ³» Õ. Ê n ³ Õ [.74.] Ð Ý º. Å Ö Ùà ¹, ³ à Õ, ¼ Ä Ý ²² à ; Ä ³Ã, ¼ Ä Ý ²² à ½, ³ Ù Ö ¹ Ò Ã. Ô Å¹,» + ÝÄ»Ë,»Æ Ó ½Ë ØÐ ÝÄ Ð Ô. Ì Ý [], Ö Ô p,»ð É Ô Æ t,»ð Ð Ý, Á n = p t (6) Í, ÎÐ Ô, p ¹ t Ê Ë º ½, Ù n ¼ ÆÃÉ + Ý É Ì½.» Å n ³., Ö Å¹ Ì ÝÐ ³ + Ý ³Ù½ É, ¼ Ô Ù Ù Đ. Í Å¹ ³ É Ì½, ¼ Ô ÆÌ Đ. :» Ý [4], ÝÄ Ð Ô» n j = p p j (k j) (7) Ø Ý ½ Á Đ Ì, ³»É Õ., n ³ Ø Ý ³ Ù, Ø n ¹ n Ì Â. Ô Ù Ù Đ, Ô Ì Đ., Ø Ý ³ Æ ÊÕ, Ã Ä Ý, ÐÊ 5a. ³É Õ É Å [00] [0] [] Õ Ò.  ±ÐÉ Ê 5 Õ»ÛÒ, + Ë Ð + Ý Ä ³ Õ, Ź Ä ³ Î É É.6 ; * Ë Ì Ý Ä ³Õ Å ³ Ù, 0.4 ̽, ؽ ¹ Ì ¼Â, 6. Ý ¹ Ð, Ä ³ÖÙ Ô Å; Ë» Ý Ä ³, Ä ³ º Ô ¹, Ô º ½ Ü Ä ³. ³, Ó + Ý ²². ÃØ Ý, Ú Æ Ô Ð Ù³. 4 µ Ñß TEM Ùº Î Ð Ô Ý. Öº ½ Á, Ú Æ Ö ½ Ð + Ý. Ý ÖÐ ¹ Ô º,» Î ÉÉ º ½Ö ÖÐ Ô ³ Ü. Ð º ÉÊÚ, Ò Æ, Ê º ½»Ü Ó. Ý ½Ü³ Á Đ Ù,, Ú ÙÐ Đ Ð Ô º ½. ÙÖ ÓÕ Ý, Ð Ð Ô»º Ý ¹ Õ, ³²², Ä Õ. º [] Zhang W Z, Weatherly G C. Prog Mater Sc, 005; 50: 8 [] Howe J M. Interaces n Materals: Atomc Structure,

7 4 : TEM Þ Ì Ò 47 Thermodynamcs and Knetcs o Sold vapor, Sold lqud and Sold sold Interaces. New York: John Wley & Sons, Inc., 997: 48 [] Wayman C M, Hanaee J E, Read T A. Acta Metall, 96; 9: 9 [4] Grennger A B, Troano A R. Trans AIME. 940; 40: 07 [5] Dunne D P, Bowles J S. Acta Metall, 969; 7: 0 [6] Edngton J W. Electron Dracton n the Electron Mcroscope (Monographs n Practcal Electon Mcroscopy n Materals Scence). London: Macmllan, 975: 54 [7] Hrsh P, Howe A, Ncholson R B, Pashley D W, Whelan M J. Electron Mcroscopy o Thn Crystals. Malaar, Florda: Roert E. Kreger Pulshng Company, 977: [8] Kelly P M, Jostsons A, Blake R G, Naper J G. Phys Status Sold, 975; A: 77 [9] Zhang M X, Kelly P M, Gates J D. Mater Charact, 999; 4: [0] Lu Q. J Appl Crystallogr, 994; 7: 76 [] Young C, Steele J, Lytton J. Metall Mater Trans, 97; 4B: 08 [] Zhou D, Shlet G. Metall Mater Trans, 99; A: 59 [] Zhang W Z, Purdy G R. Acta Metall Mater, 99; 4: 54 [4] Qu D, Zhang W Z. Acta Mater, 007; 55: 6754

! " # $ % & $ % & $ & # " ' $ ( $ ) * ) * +, -. / # $ $ ( $ " $ $ $ % $ $ ' ƒ " " ' %. " 0 1 2 3 4 5 6 7 8 9 : ; ; < = : ; > : 0? @ 8? 4 A 1 4 B 3 C 8? D C B? E F 4 5 8 3 G @ H I@ A 1 4 D G 8 5 1 @ J C

Διαβάστε περισσότερα

) * +, -. + / - 0 1 2 3 4 5 6 7 8 9 6 : ; < 8 = 8 9 >? @ A 4 5 6 7 8 9 6 ; = B? @ : C B B D 9 E : F 9 C 6 < G 8 B A F A > < C 6 < B H 8 9 I 8 9 E ) * +, -. + / J - 0 1 2 3 J K 3 L M N L O / 1 L 3 O 2,

Διαβάστε περισσότερα

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

Z L L L N b d g 5 *  # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1  5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3  # Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / 0 1 2 / + 3 / / 1 2 3 / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " # $ % $ ' $ % ) * % @ + * 1 A B C D E D F 9 O O D H

Διαβάστε περισσότερα

v w = v = pr w v = v cos(v,w) = v w

v w = v = pr w v = v cos(v,w) = v w Íö Ú Ò ÔÖ Ø Ô Ö ÔÖ ØÝ Ô Ð Ùö Ú ÒÝÒ ÝÖ Ð ÓØ Ó µ º ºÃÐ ØÒ Ë ÓÖÒ Þ ÔÓ ÒÐ Ø Ó ÓÑ ØÖ ½ ÁÞ Ø Ð ØÚÓ Æ Ù Å Ú º ÖÙ µº Ã Ø Ùö Ú Ò ÝÖ Ú Ø ÒÅ ØØÔ»»ÛÛÛºÑ ºÚÙºÐØ» Ø ÖÓ» ¾» л Ò Ó» ÓÑ ÙÞ º ØÑ ½ Î ØÓÖ Ð Ö ÒÅ Ö Ú ØÓÖ ÒÅ

Διαβάστε περισσότερα

Ανώτερα Μαθηματικά ΙI

Ανώτερα Μαθηματικά ΙI Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 2: Αναλυτική Γεωμετρία Αθανάσιος Μπράτσος Τμήμα Πολιτικών Μηχ.ΤΕ και Μηχ. Τοπογραφίας & Γεωπληροφορικής

Διαβάστε περισσότερα

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ ËÓÑÑ Ö Ò Ò ÖÞ Ù Ø Ñ Ø Ñ ÈÖÓ Ö ÑÑ Ë ØØ Ò ÔÙÖ µ ½ ÒÐ

Διαβάστε περισσότερα

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1 Å Ü Ò ÙÐØ Ø ÍÒ Ú ÖÞ Ø Ø Ù Ó Ö Ù Ã Ø Ö Þ Ñ Ò Ù ÐÙ Ð Ò Ö Ëº Ó Ì Ä ÈÊÇÊ ÉÍÆ Æ ÃÁÀ ËÌÊÍ ËÌÁ ÁÎÇ ÄÍÁ Á ÆÌÊÇÈËÃ Ê Ä Á κ = 1.4µ ½ ½ ÁÞ ÒØÖÓÔ Ö Ð ÃÓÖ Ø Ò ÑÓ Þ Þ ÒØÖÓÔ Ó ØÖÙ ½ Ú ÔÓÑÓ Ù Ò ÜÙ ØÓØ ÐÒ Ú Ð Õ Ò Ø Ø

Διαβάστε περισσότερα

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp Ñ 47 ± Ñ 3 Vol.47 No.3 2011 Đ 3 Ñ 284 290 ACTA METALLURGICA SINICA Mar. 2011 pp.284 290 ÚĐ Ó ± Ð ß Þ II. ¾½ 1,2) ¹ 1) 2) ¼ 1) 1)»º 1) 1) µ ÍÉ²È É µ ÉÆ, 150001 2) µ ÍÉ٠IJÈÐ Æ Ð Ò Ë, 150001 ƾ Ù ¾ Ź Ù

Διαβάστε περισσότερα

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι Άρης Παγουρτζής Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή ÔØ Ö ΕΙΣΟΔΟΣ ΔΕΔΟΜΕΝΩΝ º½ ÉÄ Ò Ø Ηβασ ικήκατηγορίατης ÉØγιαείσ οδοδεδομένωνείναιηéä Ò Øμετηνοποία οχρήσ τηςμπορείναεισ άγεισ εμιαγραμμήένααλφαριθμητικόºστοναλγόριθμο º½παρουσ ιάζεταιηδήλωσ ηγιαένακεντρικόπαράθυρομετοοποίοοχρήσ

Διαβάστε περισσότερα

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών Θεωρία Συνόλων Ενότητα: Διατακτικοί αριθμοί Γιάννης Μοσχοβάκης Τμήμα Μαθηματικών Θεωρία Συνόλων Σημειώματα Σημειώμα ιστορικού εκδόσεων έργου Το παρόν έργο αποτελεί την έκδοση 1.1. Εχουν προηγηθεί οι κάτωθι

Διαβάστε περισσότερα

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) (  ( 35 Þ 6 Ð Å Vol. 35 No. 6 2012 11 ACTA MATHEMATICAE APPLICATAE SINICA Nov., 2012 È ÄÎ Ç ÓÑ ( µ 266590) (E-mail: jgzhu980@yahoo.com.cn) Ð ( Æ (Í ), µ 266555) (E-mail: bbhao981@yahoo.com.cn) Þ» ½ α- Ð Æ Ä

Διαβάστε περισσότερα

½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾

½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾ Ã Ð Ó ËØÓ Õ ÛÒ ÐÓ ³ À ÛÑ ØÖ ØÛÒ ÇÖ Ó ÛÒÛÒ º½ ÇÖ ÑÓ ØÓÙ ÐÓÙ ³ ÌÓ ÐÓ ³ Ò ÒØÓÑÓ ÓÑÓ Ò Ñ Ñ ÒÓ ½ ÔÖÓØ Ó ÓÖ ¹ ÑÓ Ø Ò ÖÕ º ËØÓ Ñ Ð Ø ÖÓ Ñ ÖÓ ØÓÙ ÔÖ Ø ÔÓØ Ð Ñ Ø ÔÓÙ ÓÖÓ Ò ÓÖÓÙ ÙÒ Ù ÑÓ ÓÖ Ó ÛÒÛÒ Ø ØÖ ôòûò ÓÙ Ô

Διαβάστε περισσότερα

Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº

Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº ÔØ Ö ΓΡΑΦΙΚΑ ΚΑΙ ΠΟΛΥΜΕΣΑ Ηβιβλιοθήκη ÉÌμπορείναχρησ ιμοποιηθείκαιγιατηνδημιουργίαπρογραμμάτων μεαπλάγραφικά γραμμές κείμενο κύκλουςκτλµόπωςεπίσ ηςγιατηνδημιουργία γραφημάτων από δεδομέναº º½ Àκατηγορία

Διαβάστε περισσότερα

p din,j = p tot,j p stat = ρ 2 v2 j,

p din,j = p tot,j p stat = ρ 2 v2 j, ÁÑ ÔÖ Þ Ñ Öº Ò ÍÔÙØ ØÚÓ Þ Ð ÓÖ ØÓÖ Ú ¹ Å Ò ÐÙ Í Å Ò ÐÙ Ø ÓÖ ÔÖÓÙÕ Ú Ù ÒÓ Ñ ÒÞ ØÖÙ Ò Ø Ü ÚÓ ÐÙ º Ç ÒÓÚÙ Ø ÞÒ Õ Ò ÖÒÙÐ Ú Ò Õ Ò Ò Õ Ò ÓÒØ ÒÙ Ø Ø ÔÖÓ¹ Ö ÕÙÒ ØÖÙ Ò ÓØÔÓÖ º ÅÒÓ Ó Ø ÓÖ ÞÒ ÒÓ Ñ ÒÞ ØÖÙ ÑÓ Ù ÔÖÓÚ

Διαβάστε περισσότερα

ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ

ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ÔØ Ö ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Στοκεφάλαιοαυτόθαπαρουσ ιασ τούνμερικέςαπότιςδυνατότητεςπουπαρέχειη βιβλιοθήκη ÉÌσ εαρχείακαθώςκαιτρόποισ ύνδεσ ηςκαιεκτέλεσ ηςερωτημάτων σ εβάσ ειςδεδομένωνº º½ Ηκατηγορία

Διαβάστε περισσότερα

arxiv: v1 [math.dg] 3 Sep 2007

arxiv: v1 [math.dg] 3 Sep 2007 Ì Ö ØÓ Ð ÔÖÓ Ð Ñ Ò ØÛÓ Ò ÐÓ Ó Ø Å Ò ÓÛ ÔÖÓ Ð Ñ Ò Ê Ñ ÒÒ Ò Ô º Ò Ö Áº Ó Ö Ò Ó ½ arxiv:0709.0158v1 [math.dg] 3 Sep 2007 ØÖ Ø ÙØ ÓÖ Ò Ø ÓÐÙØ ÓÒ Ó Ø Ö ØÓ Ð ÔÖÓ Ð Ñ ÓÖ ÓÔ Ò Ò ÐÓ ÙÖ Ò Ê Ñ ÒÒ Ò Ô º Ì Ö ØÓ Ð ÔÖÓ

Διαβάστε περισσότερα

tan(2α) = 2tanα 1 tan 2 α

tan(2α) = 2tanα 1 tan 2 α ½º ÙÒ Ð ØØ ½º Ò Ò Å Ò Ò M 1 = {1,4,9,16,25,36,49,64,...}, M 2 = {4,6,8,9,10,12,14,15,...}. µ Ö Ò Ë M 1 ÙÒ M 2 ÙÖ Ò Ò Ö Ò Ø ÓÖÑ Ð Ù º µ Ò Ë M 1 M 2 Òº µ Ò Ë M 1 \M 2 ÙÒ M 2 \M 1 Òº µ Ï Ú Ð ÚÓÒ Ò Ò Ö Ú Ö

Διαβάστε περισσότερα

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών Θεωρία Συνόλων Ενότητα: Επιλογής επόμενα Γιάννης Μοσχοβάκης Τμήμα Μαθηματικών Θεωρία Συνόλων Σημειώματα Σημειώμα ιστορικού εκδόσεων έργου Το παρόν έργο αποτελεί την έκδοση 1.1. Εχουν προηγηθεί οι κάτωθι

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ

ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ ÔØ Ö ¾ ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ ¾º½ Δημιουργία απλού παραθύρου Γιατηνδημιουργίαπαραθύρουθαχρειασ τείοχρήσ τηςνατοποθετήσ ειμέσ ασ ε μιακυρίωςεφαρμογήέναοπτικόσ υσ τατικό Ï ØµΤοπιοαπλόοπτικόσ υσ τατικόπουμπορείναχρησ

Διαβάστε περισσότερα

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY 49 11 Vol.49 No.11 2013 È 11 Ç 1457 1461 ² ACTA METALLURGICA SINICA Nov. 2013 pp.1457 1461 Ti 45Al 8Nb ± PST ² ¾ Á ¼ Í Æ Ç È Ì Ï Ç É (À Å ³ Í Å ÑĐ, À 210094)  ± ³ÛØ ÉØ Ø À Ò Ti 45Al 8Nb (À µ, %) ºÔ٠ݺ½

Διαβάστε περισσότερα

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 11: SPLINES. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 11: SPLINES. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 11: SPLINES Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο του μαθήματος διατίθεται

Διαβάστε περισσότερα

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 10: Μέθοδος Ελάχιστων Τετραγώνων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 10: Μέθοδος Ελάχιστων Τετραγώνων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 10: Μέθοδος Ελάχιστων Τετραγώνων Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο του

Διαβάστε περισσότερα

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2 44 1 Vol.44 No.1 8 1 149 1444 ACTA METALLURGICA SINICA Dec. 8 pp.149 1444 X7 µ CO ß ¹Ü ½ ¼»º ¾ («ÓËÐ ÅËË, «ÛÓÜ»«ÛÐ, «18) ³ ± Ó ¼ÄÞ ÏÑ ÀÔ Ë Ü (SSRT) ± CO Ý X7 Æ ¾ĐÄ Ì Î ¼ (SCC) ¹ É, Ê ÄÞ CO Ó ÛÜ Ö. Ð: CO

Διαβάστε περισσότερα

Morganναδώσειμίαεναλλακτικήμέθοδο,αποδεικνύονταςπρώταότιηευθείαπουδιχοτομεί κάθεταμίαχορδήπεριέχειτοκέντροτουκύκλου. Παρ όλααυτά,καιαυτήημέθοδοςέχει

Morganναδώσειμίαεναλλακτικήμέθοδο,αποδεικνύονταςπρώταότιηευθείαπουδιχοτομεί κάθεταμίαχορδήπεριέχειτοκέντροτουκύκλου. Παρ όλααυτά,καιαυτήημέθοδοςέχει Ã Ð Ó ËØÓ Õ ÛÒ ÐÓ ³ È Ö ÐÓÙ º½ È Ö Õ Ñ Ò ØÓÙ ÐÓÙ ³ ÇÖ ÑÓ ½ ½½ ÈÖ Ø ½ ÈÛ Ö ÓÙÑ ØÓ ÒØÖÓ ØÓÙ ÐÓÙº ÈÖÓØ ¾ ½ ÉÓÖ ÐÓ Ø ÑÒ Ñ ÒÓ ÔØ Ñ ÒÓ º ÈÖÓØ ½ ½ ÔØ Ñ Ò º ÈÖÓØ ¾¼ ¾¾ ½ ÛÒ ØÑ Ñ Ø ÐÓÙ Ø ØÖ ÔÐ ÙÖ ÐÓÙº à ï Ä ÁÇ

Διαβάστε περισσότερα

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES 44 Ø Vol.44 No. 08 Õ 1238 1242 ACTA METALLURGICA SINICA Oct. 08 pp.1238 1242 ÂØÃ + ÉÛÕ Ð¹ TiO 2 ¾ÃÓ 1) Æ 2) «1) 1) 2) 1) ½ Ȼ»»Ð, 1168 2) Ó È»»Ð, 1004 ß Ú ÚÒ ÀĐ«TiO 2 ºÄÀ Æ, ³ Æ Àß ĐÛ ². ³ о Í, ٠û

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά

Εφαρμοσμένα Μαθηματικά Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Εφαρμοσμένα Μαθηματικά Ενότητα 6: Συναρτήσεις πολλών Μεταβλητών Αθανάσιος Μπράτσος Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας ΤΕ Το περιεχόμενο

Διαβάστε περισσότερα

2 SFI

2 SFI ų 2009 2 Û 9  ¼ Ü «Ë ÐÁ Û ¼ÞÝÁ «Ð¼Â ß Ú Ì ÑÓ ±¼ ¼µÕ Û (Santa Fe) «Đ Þ ¼± «ÐÐÇ ¾ ¼Ï ««¼ Ã«Ø Ú Ó Ý¼ºÏ «Å Å ¾»«¼ É ½ ÒØ ÒÚ Ç 1944 ²Ì ¼ ÉÌ (Patrick J. Hurley, 1883 1963) ¼È Ë 1984 ÞÎ ¼ Ë ÉÜ Ò «Þ Þ ÅÌÞ Ù

Διαβάστε περισσότερα

S i L L I OUT. i IN =i S. i C. i D + V V OUT

S i L L I OUT. i IN =i S. i C. i D + V V OUT Ç ÒÓÚÒ ÓÒÚ ÖØÓÖ ÈÓ Ó ÒÓÚÒ Ñ ÔÖ Ñ ÓÒÚ ÖØÓÖ Ñ ÔÓ Ö ÞÙÑ Ú Ù ØÖ ÓÒÚ ÖØÓÖ Ù ÓÓ Ø Ù ¹ ÓÓ Øº ËÚ ØÖ ÓÒÚ ÖØÓÖ Ù Ö Ø Ö Ò Ñ Ò Ñ ÐÒ Ñ ÖÓ Ñ Ð Ñ Ò Ø Þ Ø Ú Ù Ò ÓÒØÖÓÐ Ò ÔÖ ÒÙ Ó Ù Ò Ð Ñ Ò ÓÒ ÒÞ ØÓÖº Æ Ò Ó ÓÚ ØÖ ÓÒÚ ÖØÓÖ

Διαβάστε περισσότερα

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS Ý 4 Ý «Vol.4 No. Ü Ò Ý 97 972 ACTA METALLURGICA SINICA Aug. pp.97 972 Ð Ü Î Ý 2 Fe Å ÑÏÆË ß Ø Å «( Àº¾ºÎ Ç Õ Þ ß¼, 430070) Ì 2 Õ Å Å Å ² Fe ÕØÐ» ± ÅØ εØ., Fe, ÅÕ Å, Å Å Fe Õ± Å «, ² h ØÐ»ºØÔÑ Fe ; ØÐ»ºĐ

Διαβάστε περισσότερα

Κληρονομικότητα. ΙωάννηςΓºΤσ ούλος

Κληρονομικότητα. ΙωάννηςΓºΤσ ούλος Κληρονομικότητα ΙωάννηςΓºΤσούλος ¾¼½ ½ Ηκατηγορία ÈÖ ÓÒ ΗκληρονομικότητααποτελείένααπόταβασικότεραχαρακτηριστικάτουαντικειμενοστραφούςπρογραμματισμούºΤαβασικάτηςστοιχείασε είναι ½ºΤαπεδίαπουχρειάζεταιναπεράσουνστηνκατηγορίαπουκληρονομείθα

Διαβάστε περισσότερα

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY 48 8 Vol.48 No.8 2012 8 1011 1017 ACTA METALLURGICA SINICA Aug. 2012 pp.1011 1017 Hf Ä Ì ÀÚÈÏ γ ß Ó Ð 1,2) 1) 3) 1) ˲ Å ², 100083 2) ± ² Â, 100081 3) ˲² ² ², 100083 ¹ Hf ÍÆ Ð Ø ¾ γ Æ ¾Ä. Ý : Ð Ø ¾ γ

Διαβάστε περισσότερα

Θεωρία Συνόλων. Ενότητα: Τα πάντα σύνολα; Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

Θεωρία Συνόλων. Ενότητα: Τα πάντα σύνολα; Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών Θεωρία Συνόλων Ενότητα: Τα πάντα σύνολα; Γιάννης Μοσχοβάκης Τμήμα Μαθηματικών Θεωρία Συνόλων Σημειώματα Σημειώμα ιστορικού εκδόσεων έργου Το παρόν έργο αποτελεί την έκδοση 1.1. Εχουν προηγηθεί οι κάτωθι

Διαβάστε περισσότερα

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 4: Διανυσματικές Συναρτήσεις μιας Μεταβλητής. Αθανάσιος Μπράτσος

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 4: Διανυσματικές Συναρτήσεις μιας Μεταβλητής. Αθανάσιος Μπράτσος Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 4: Διανυσματικές Συναρτήσεις μιας Μεταβλητής Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο

Διαβάστε περισσότερα

ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ

ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ ¾ ÓÑ ¹ Ì Ø ÖØ»»¾ ÃÙ ÐôÑ Ø ÔÖ Ü ÛÒ ¹ ËØÓ Õ ô ÑÓÒ Ö Ñ Ø»¾¾ Ö Ñ Ø ÔÖ Ü ÔÓÙ Ø Ð Ø Ò Ò ÀºÍº Ò À ÔÖ ¾ Ù ôò

Διαβάστε περισσότερα

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ó³ Ÿ. 2006.. 3, º 2(131).. 105Ä110 Š 537.311.5; 538.945 Œ ƒ ˆ ƒ Ÿ ˆŠ ˆ ƒ Ÿ ƒ ˆ œ ƒ Œ ƒ ˆ ˆ Š ˆ 4 ². ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ³ É É Ö μ ² ³ μ É ³ Í ² Ö Ê³ μ μ ³ É μ μ μ²ö

Διαβάστε περισσότερα

Õâñéäéóìüò. Ðïéá åßíáé ç áíüãêç åéóáãùãþò ôçò Ýííïéáò ôïõ õâñéäéóìïý. Ðïéá åßíáé ôá âáóéêüôåñá åßäç õâñéäéóìïý

Õâñéäéóìüò. Ðïéá åßíáé ç áíüãêç åéóáãùãþò ôçò Ýííïéáò ôïõ õâñéäéóìïý. Ðïéá åßíáé ôá âáóéêüôåñá åßäç õâñéäéóìïý 9 Õâñéäéóìüò ÐÅÑÉÅ ÏÌÅÍÁ 9.1 ÅéóáãùãÞ 9.2 Õâñéäéóìüò & õâñéäéêü ôñï éáêü 9.3 Åßäç õâñéäéóìïý êáé õâñéäéêþí ôñï éáêþí 9.4 Õâñéäéóìüò êáé ðïëëáðëïß äåóìïß 9.5 Õâñéäéóìüò êáé ìïñéáêþ ãåùìåôñßá 9.6 ÅñùôÞóåéò

Διαβάστε περισσότερα

P ˆ.. ƒê ²μ 1,.. Œ ² ±μ 1,..Šμ Í,.. ʳ,.. μ μ 2. ˆ ˆŸ Š Š ˆ ƒ ˆŒ œ ƒ Œ ƒ ƒ Š-Š ˆ 10- Œ ˆ. ( ), Œμ ± Œμ ± 1 μ Ò É Ì μ²μ ±μ³ μ ÉÒ ±Êʳ ÒÌ μ μ

P ˆ.. ƒê ²μ 1,.. Œ ² ±μ 1,..Šμ Í,.. ʳ,.. μ μ 2. ˆ ˆŸ Š Š ˆ ƒ ˆŒ œ ƒ Œ ƒ ƒ Š-Š ˆ 10- Œ ˆ. ( ), Œμ ± Œμ ± 1 μ Ò É Ì μ²μ ±μ³ μ ÉÒ ±Êʳ ÒÌ μ μ P9-2017-78 ˆ.. ƒê ²μ 1,.. Œ ² ±μ 1,..Šμ Í,.. ʳ,.. μ μ 2 ˆ ˆŸ Š Š ˆ ƒ ˆŒ œ ƒ Œ ƒ ƒ Š-Š ˆ 10- Œ ˆ 1 μ Ò É Ì μ²μ ±μ³ μ ÉÒ ±Êʳ ÒÌ μ μ ( ), Œμ ± 2 Œμ ±μ ± μ Ê É Ò Ê É É ³. Œ.. μ³μ μ μ, Œμ ± ƒê ²μ ˆ... P9-2017-78

Διαβάστε περισσότερα

plants d perennials_flowers

plants d perennials_flowers ÈÖÓ Ð Ø Ç Ø ÌÀÇÅ Ë ÁÌ Ê Ì Ò ÍÒ Ú Ö ØĐ Ø Ï Ò Â Å Ë Âº ÄÍ Ù Ò ÐÐ ÍÒ Ú Ö ØÝ ÌÀÇÅ Ë ÄÍà ËÁ ÏÁ Ì Ò ÍÒ Ú Ö ØĐ Ø Ï Ò Ò Îº ˺ ËÍ Ê ÀÅ ÆÁ Æ ÍÒ Ú Ö ØÝ Ó Å ÖÝÐ Ò Ì ÓÙ Ø Ö Ö Ñ ÒÝ ÔÔÐ Ø ÓÒ Û Ö Ò Ó Ø ÓÖ ÒØ Ø ÑÓ Ð ÓÓ

Διαβάστε περισσότερα

Ανώτερα Μαθηματικά ΙI

Ανώτερα Μαθηματικά ΙI Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 1: Διαφορικές Εξισώσεις Μέρος Ι Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM Ó 49 µ Ó 11 Vol.49 No.11 2013 11 Æ Ó 1369 1373 ACTA METALLURGICA SINICA Nov. 2013 pp.1369 1373 Ý Er Ù Nb TiAl Đß Æ ¹ ¾º ½ ( Ź Å Å, 100124) ± ½Þ Cu ÛÀ ÊÚ Ti 46Al 8Nb È Ti 46Al 8Nb 0.1Er Ì. ¼² ÚÆÆ, «Ì XRD,

Διαβάστε περισσότερα

ΟπτικόςΠρογραμματισ μός. ΙωάννηςΓºΤσ ούλος

ΟπτικόςΠρογραμματισ μός. ΙωάννηςΓºΤσ ούλος ΟπτικόςΠρογραμματισμός ΙωάννηςΓºΤσούλος ¾¼½ ÔØÖ ½ ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ Σεαυτήτηνενότηταθαεξεταστούνμερικέςαπότιςβασικέςδομέςπάνωστις οποίεςστηρίζεταιηβιβλιοθήκη É̺Οιδομέςαυτέςπεριλαμβάνουνδυναμικούς πίνακες

Διαβάστε περισσότερα

Συνεδριο Δημιουργων ΕΛ/ΛΑΚ 2009

Συνεδριο Δημιουργων ΕΛ/ΛΑΚ 2009 ÄÓ Ñ ÒÓ ØÓ Ãô ØÓ Ë Ø Ñ Ø Ì Ñ À Συνεδριο Δημιουργων ΕΛ/ΛΑΚ 2009 ½ º Ó Ó Ð Ó Διεύθυνση Πληροφορικής ΔΕΗ Τομέας Συστημάτων Γραφείου ÚºÞÓÙ Ó ºÓѺ Ö ¹Ñ Ð Αθήνα 19 Ιουνίου 2009 Συνεδριο Δημιουργων ΕΛ/ΛΑΚ 2009

Διαβάστε περισσότερα

EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY

EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY Ù 46 Ù 10 Vol.46 No.10 010 Å 10» Ù 13 19 ß ACTA METALLURGICA SINICA Oct. 010 pp.13 19 ľ TiAl Ä ËÂ Ï Ê ( ¹Â  Š² Û ØÑ, ¹ 100191) Ï Æ Ñ ¾ 1580 É 1650 Ti 47Al Cr Nb Ì ² ÆÑ ¾ Ô. ÜÅ, Ì Á À» β À, À, ¾ β Ð

Διαβάστε περισσότερα

Ανώτερα Μαθηματικά ΙI

Ανώτερα Μαθηματικά ΙI Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 4: Συναρτήσεις Πολλών Μεταβλητών Μέρος Ι Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του

Διαβάστε περισσότερα

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ± Ó³ Ÿ. 2010.. 7, º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ ˆ Š ˆ œ Š Š Œ ˆ Œ ˆ.. Ëμ μ Î ± É ÉÊÉ ³..., Œμ ± Ò Ê²ÓÉ ÉÒ Î ² μ μ ³μ ² μ Ö É Í μ ÒÌ μí μ ² Î ÒÌ Ì - ³ Ì É ² Í Ö ²Ó μéμî ÒÌ Ô² ±É μ ÒÌ Êαμ ʲÓÉ ÉÒ ³ ³ É

Διαβάστε περισσότερα

v[m/s] U[mV] 2,2 3,8 6,2 8,1 9,7 12,0 13,8 14,2 14,6 14,9

v[m/s] U[mV] 2,2 3,8 6,2 8,1 9,7 12,0 13,8 14,2 14,6 14,9 Á ¹ È ÖÙÔ ½º ÖÞ ÚÓÞ Ö ÓÒ Ø ÒØÒÓÑ ÖÞ ÒÓÑ ÒØ ÒÞ Ø Ø v 1 = 45,0 m/s ÔÖÙ ÒÓÑ ÔÖ Ð ÞÙ Ó ÔÙØ Ñ ÒÓÖÑ ÐÒÓ Ò ÔÖ Ú ÔÖÙ Ö ÙØÓÑÓ Ð ÓÒ Ø ÒØÒÓÑ ÖÞ ÒÓÑ ÒØ ÒÞ Ø Ø v 2 = 15,0 m/s Ó Ò Ð º Í ÓÐ Ó Ö Ò ÚÓÞ Ñ ØÙ ÞÚÙ ÙÕ Ø ÒÓ

Διαβάστε περισσότερα

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, (  MR(2000) ß Â 49J20; 47H10; 91A10 À 34 À 3 Ù Ú ß Vol. 34 No. 3 2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, 2011 Á É ÔÅ Ky Fan Ë ÍÒ ÇÙÚ ( ¾±» À ¾ 100044) (Ø À Ø 550025) (Email: dingtaopeng@126.com) Ü Ö Ë»«Æ Đ ĐÄ Ï Þ Å Ky Fan Â Ï Ò¹Ë

Διαβάστε περισσότερα

Ανώτερα Μαθηματικά ΙI

Ανώτερα Μαθηματικά ΙI Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 5: Συναρτήσεις Πολλών Μεταβλητών Μέρος ΙI Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο

Διαβάστε περισσότερα

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result Õ 47 Õ 3 Vol.47 No.3 2011 3 ½ Õ 275 283 ACTA METALLURGICA SINICA Mar. 2011 pp.275 283 ± Æ µ «À I. Ý À ÈÇË 1,2) É 2) ÌÏÊ 1) Í Î 1) ÃÆÅ 1) ÂÄ 1) 1) Æ«º, Æ«150001 2) Æ«Í ÝÖ Ý Ö Ü, Æ«150001 Ê ÚÛ Ë Bridgman

Διαβάστε περισσότερα

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6 31 6 Ʋ ± Vol.31 No.6 2011 12 Journal of Chinese Society for Corrosion and Protection Dec. 2011 Te-Ni-Cr Æ 3.5%NaCl»±½ ÁÄ à ÅÀ (Â Ç ¼ Ì ÓÎ Ú Â 730050) : Ë ÖÎ Î Te-Ni-Cr ÍÚ ±± Ú Ë ÁÐÈ Ø ¹ Ö± ÑØ Ö EDS XRD

Διαβάστε περισσότερα

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É. P13-2011-120. ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ ² μ Ê ² μ Ò É Ì ± Ô± ³ É E-mail: sobolev@nrmail.jinr.ru μ μ². ƒ., ˆ μ Œ.., μ ± Î.. P13-2011-120 É μ ± ²Ö ³ Ö μ² ÒÌ Î Ö ÒÌ ±Í Ò É Ö Ô± ³ É ²Ó Ö

Διαβάστε περισσότερα

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION Õ 48 Õ 12 Vol.48 No.12 212 Û 12 Õ 151 1519 Í ACTA METALLURGICA SINICA Dec. 212 pp.151 1519 Æ È ÒÕ Þ Đ ÕÜÌÏ Ê ³ 1) µ²¹ 1) ½ 1) ¼ º 2) 1) ĐÔ CAD Ñ Á ¼, 23 2), Õ ÄÅËÏ, ÆÂ Ô Avrami Æ Ú ¾, ÀÂÏ º Ñ ¼Å ¾,  È

Διαβάστε περισσότερα

Ó³ Ÿ , º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

Ó³ Ÿ , º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ± Ó³ Ÿ. 2010.. 7, º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ Š ˆ œ Š Œ ˆ Œ.. Ëμ μ Î ± É ÉÊÉ ³..., Œμ ± ² É Î ± ³μÉ μ Ëμ ³ μ ²Ó μéμî ÒÌ Ô² ±É μ ÒÌ Êαμ, Ö ±μéμ ÒÌ Î É Î μ É ² μ μ ³, Éμ± ³, ÒÏ ÕÐ ³ ²Ó μ Î Éμ± ²Ó. Ê

Διαβάστε περισσότερα

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库 ß¼ 0384 9200852727 UDC Î ± À» An Integral Equation Problem With Shift of Several Complex Variables Û Ò ÖÞ Ô ²» Ý Õ Ø ³ÇÀ ¼ 2 0 º 4 Ñ ³ÇÙÐ 2 0 º Ñ Ä ¼ 2 0 º Ñ ÄÞ Ê Ã Ö 20 5  Š¾ º ½ É É Ç ¹ ¹Ý É ½ ÚÓÉ

Διαβάστε περισσότερα

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο. Επίδοση Υπολογιστικών Συστημάτων. Α.-Γ. Σταφυλοπάτης.

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο. Επίδοση Υπολογιστικών Συστημάτων. Α.-Γ. Σταφυλοπάτης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Πειράματα Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING 49» 2 «Vol.49 No.2 2013 Ý 2 181 186 Ï ACTA METALLURGICA SINICA Feb. 2013 pp.181 186 Åà ÎCO 2 Þ ÛÑ Á Æ ³± ( ÊÀ¹ ÀÀÀ, Ê 130022) ÒÝ Å± ¾, Ô±¼ CO 2 Â, Đ Â Ó Ù É, ¼Â Å, ű˻»Â Æ Ð É «¼ Ò º ¹ ÒÝ Â Ñ º. Õ, ÒÝ

Διαβάστε περισσότερα

Z

Z Ç ÒÙØ Þ Ó Þ Þ Ñ ÒÓ Ó Ò Óö ÈÖ ÑÓö È Ø ÖÐ Ò Ë ËÚ Ø Ò Ò Ó Ø Ò ê ¾¼½½»¾¼½¾ ÈÓ Ð Ú ÌÇÅËÃÇ Â ÊÇ º½ ÍÚÓ Î Ø Ñ ÔÓ Ð Ú Ù ÓÑÓ Ù Ú Ö Ð Þ Ó ÒÓÚÒ Ñ Ð ØÒÓ ØÑ ØÓÑ Öº ÈÓÞÒ Ú Ò Ø Ð ØÒÓ Ø ÔÓÑ Ñ ÒÓ Þ Ö ÞÙÑ Ú Ò Ñ Ò ÒÓ Ø Ò

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά

Εφαρμοσμένα Μαθηματικά Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Εφαρμοσμένα Μαθηματικά Ενότητα 3: Αντίστροφος Μετασχηματισμός Laplace Αθανάσιος Μπράτσος Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας ΤΕ Το

Διαβάστε περισσότερα

AN INVESTIGATION ON THE CREEP BEHAVIOR OF PURE Mg

AN INVESTIGATION ON THE CREEP BEHAVIOR OF PURE Mg Ù Ù 11 Vol. No.11 008 «11 Ù 135 1359 «ACTA METALLURGICA SINICA Nov. 008 pp.135 1359 Mg ²» ¼ (Đ Ý Ê ß Ï Ö Đ ÑÛ Ö, 11189) ( ß ³ ¼, 111) ¾ ß Â Mg Ø 75 00, 15 0 MPa ĐÈ Þ: Ò ĐÈ, Ú Ø ÈÈ, ÅÕ; Ó Ø ¹, È Æ, ÈÏ;

Διαβάστε περισσότερα

Δυναμικοί τύποι δεδομένων

Δυναμικοί τύποι δεδομένων Δυναμικοί τύποι δεδομένων ΙωάννηςΓºΤσούλος Δεκέμβριος ¾¼ Η ÂÚπεριέχειμιασειράαπόχρήσιμεςκατηγορίεςπουχρησιμοποιούνταιγια τηνδιαχείρισηδυναμικώνδεδομένων σταοποίαδενγνωρίζουμεεκτωνπροτέρων όχι μόνον την

Διαβάστε περισσότερα

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008. P3-2009-104.. ² ± μ ˆ ˆ Š Š ˆ œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008. ² ± μ.. ²μ μ ± μé±²μ μé ÓÕÉμ μ ±μ μ ±μ ÉÖ μé Ö μ³μðóõ É μ μ ³ ²ÒÌ Ô P3-2009-104 ÓÕÉμ

Διαβάστε περισσότερα

IF(Ingerchange Format) [7] IF C-STAR(Consortium for speech translation advanced research ) [8] IF 2 IF

IF(Ingerchange Format) [7] IF C-STAR(Consortium for speech translation advanced research ) [8] IF 2 IF 100080 e-mal:{gdxe, cqzong, xubo}@nlpr.a.ac.cn tel:(010)82614468 IF 1 1 1 IF(Ingerchange Format) [7] IF C-STAR(Consortum for speech translaton advanced research ) [8] IF 2 IF 2 IF 69835003 60175012 [6][12]

Διαβάστε περισσότερα

Τεχνικές βασισμένες στα Δίκτυα Αναμονής Εισαγωγικά Επιχειρησιακοί νόμοι

Τεχνικές βασισμένες στα Δίκτυα Αναμονής Εισαγωγικά Επιχειρησιακοί νόμοι Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Τεχνικές βασισμένες στα Δίκτυα Αναμονής Εισαγωγικά Επιχειρησιακοί

Διαβάστε περισσότερα

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING Ö 7 Ö Vol.7 No. 11 Ö Ö È ACTA METALLURGICA SINICA Jun. 11 pp. ÐÅÔ ÎÔ Ê Đ 1,) 1) 1) 1) ß ÍÊ ½ Ñ٠ؽÁ, ÔÒ 51 ) ß Í Ñ ß, ÔÒ 511 µ² Ç Æ Đ, ÅËÀ Ð Ï (PAW). Â, mm É PAW» ½ËÁ ÕË, Ë Ð¹ ²Á»¼Á Î. µ²» Ǽ, PAW È À

Διαβάστε περισσότερα

ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

ØSrÚCa Mg 12Zn 4Al 0.3MnÜ Ñ 45 µ Ñ 5 Å Vol.45 No.5 2009 Ü 5 Ñ 585 591 Ò ACTA METALLURGICA SINICA May 2009 pp.585 591 ØSrÚCa Mg 12Zn 4Al 0.3MnÜ Ú º± 1) ¼µ 1,2)» ² 1,2) 1,2) ¹³ 3) 1) ÙÓ Ä¼ Ź, Ó 211189 2) Đ ½ Ä Ð ÔÀ Ì, Ó 211189 3)

Διαβάστε περισσότερα

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ). Vol. 4 ( 214 ) No. 4 J. of Math. (PRC) 1,2, 1 (1., 472) (2., 714) :.,.,,,..,. : ; ; ; MR(21) : 9B2 : : A : 255-7797(214)4-759-7 1,,,,, [1 ].,, [4 6],, Frank-Wolfe, Frank-Wolfe [7],.,,.,,,., UE,, UE. O-D,,,,,

Διαβάστε περισσότερα

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ 13-2016-82.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ ˆ Œ ˆŸ Š Š Š ( ) ƒ ˆ ˆ ˆŒ Œ Ÿ Š Œ Š ˆŒ NA62. I. ˆ Œ ˆŸ Ÿ Œ ² μ Ê ² μ Ò É Ì ± Ô± ³ É ƒ²μ É... 13-2016-82 ² ³ Éμ μ²μ Ö μ ÒÌ μ μ²μ± Éμ ±μ É ÒÌ Ëμ

Διαβάστε περισσότερα

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ P9-2008-102.. Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ Ë ³μ... P9-2008-102 ˆ μ²ó μ Ô± μ³ Î ± ³ μ³ ²Ö μ²êî Ö Êα μ μ - ÉμÎ ± μ²êî É ÒÌ Ê ±μ ÒÌ Êαμ 48 Ö ²Ö É Ö μ μ ±²ÕÎ

Διαβάστε περισσότερα

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12), ½ ³ J. Sys. Sci. & Math. Scis. 34(12) (2014, 12), 1438 1450 µ Ñ RFID Ô À (»Ì ÖÚ, Å À ºÓ Ê Â, Å 300071; Ä Õ Ì, Å 300300) Á (Ä Õ Ì, Å 300300) ÚÍ FNN RFID Ò ĐÓ IPS, ÒÇ Ú Í RFID Đ Ó Ù, Ù ½ ² Ë «, Á Å ÈÀ ß

Διαβάστε περισσότερα

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï P15-2012-75.. Ò±,. Ï ± ˆ Œ ˆŸ ˆ, š Œ ˆ ˆŒˆ Š ƒ ˆŸ ˆ ˆ, Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ ² μ Ê ² Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï Ò±.., Ï ±. P15-2012-75 ˆ ³ Ö μ Ì μ É, μ Ñ ³ ÒÌ μ É Ì ³ Î ±μ μ μ É μ Íμ Ö ÕÐ

Διαβάστε περισσότερα

Εισαγωγή στις Φυσικές Επιστήμες (ΦΥΕ14) Περίοδος ΕΡΓΑΣΙΑ 1 η. Τότε r r b c. και ( )

Εισαγωγή στις Φυσικές Επιστήμες (ΦΥΕ14) Περίοδος ΕΡΓΑΣΙΑ 1 η. Τότε r r b c. και ( ) Εισαγωγή στις Φυσικές Επιστήμες (ΦΥΕ4) Περίοδος 8-9 ΕΡΓΑΣΙΑ η Θέμα (μονάδες ) i. Δείξτε ότι ( a b) c a ( b c ) + b( a c ). a b c+ c a b+ b c a ii. Δείξτε την ταυτότητα Jacobi : ( ) ( ) ( ) Απάντηση i.

Διαβάστε περισσότερα

ÅÊ NEAR (Near-Earth Asteroid Rendezvous) Hayabusa

ÅÊ NEAR (Near-Earth Asteroid Rendezvous) Hayabusa 54 5 Å ² Vol.54 No.5 2013 9 ACTA ASTRONOMICA SINICA Sep., 2013 ËÃ Ý Ï Õ Ç 1,2 ¾ ½ 1,2 ¼ 1,2 º»¹ 1,2 (1 ÆÆ 210008) (2 Ð ¼² 210008) ÝÙºÝÐ Å µ» Ð ºÝÐ À Ò Ì Å ½ ¼¾»Ð Ö»ÖÈÙ Ä Üº Ö Â ± J2000.0 Ú Đ» (118.02,

Διαβάστε περισσότερα

È ÖÖÝ Àº Ä Ó ½½¼ ÍÒ ÓÒ ËØÖ Ø Ë ¾ ½ ÀÓÐÑ Ú º ˺ Å ÒÒ ÔÓÐ ÅÆ Å ÒÒ ÔÓÐ ÅÆ ¼ ½¾¹ ¾ ¹¼» Ü ½¾¹ ¾ ¹½ ½¾¹ ¾ ¹ Ô Ð Ó ÑºÙÑÒº Ù Ù Ø ÓÒ È º º ź Ò º º Ò º Å Ø ÐÐÙ

È ÖÖÝ Àº Ä Ó ½½¼ ÍÒ ÓÒ ËØÖ Ø Ë ¾ ½ ÀÓÐÑ Ú º ˺ Å ÒÒ ÔÓÐ ÅÆ Å ÒÒ ÔÓÐ ÅÆ ¼ ½¾¹ ¾ ¹¼» Ü ½¾¹ ¾ ¹½ ½¾¹ ¾ ¹ Ô Ð Ó ÑºÙÑÒº Ù Ù Ø ÓÒ È º º ź Ò º º Ò º Å Ø ÐÐÙ È ÖÖÝ Àº Ä Ó ½½¼ ÍÒ ÓÒ ËØÖ Ø Ë ¾ ½ ÀÓÐÑ Ú º ˺ Å ÒÒ ÔÓÐ ÅÆ Å ÒÒ ÔÓÐ ÅÆ ¼ ½¾¹ ¾ ¹¼» Ü ½¾¹ ¾ ¹½ ½¾¹ ¾ ¹ Ô Ð Ó ÑºÙÑÒº Ù Ù Ø ÓÒ È º º ź Ò º º Ò º Å Ø ÐÐÙÖ Ð Ò Ò Ö Ò Ò Å Ø Ö Ð Ë Ò ÖÒ Å ÐÐÓÒ ÍÒ Ú Ö ØÝ ÆÓÚ Ñ

Διαβάστε περισσότερα

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < < K+P K+P PK+ K+P - _+ l Š N K - - a\ Q4 Q + hz - I 4 - _+.P k - G H... /.4 h i j j - 4 _Q &\\ \\ ` J K aa\ `- c -+ _Q K J K -. P.. F H H - H - _+ 4 K4 \\ F &&. P H.4 Q+ 4 G H J + I K/4 &&& && F : ( -+..

Διαβάστε περισσότερα

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120] Ó³ Ÿ. 2004. º 3[120] Particles and Nuclei, Letters. 2004. No. 3[120] Š 621.384.633.5/6 Š ˆ ˆ Šˆ Šˆ Š ˆ Ÿ Ÿ ˆ ˆ.. Œ ϱµ 1,.. µ 1,.. ³ µ 1,. Œ. Ò 1, ƒ.. Ê ±µ 1 Ñ Ò É ÉÊÉ Ö ÒÌ ² µ, Ê Œµ ±µ ± µ Ê É Ò É ÉÊÉ

Διαβάστε περισσότερα

ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ

ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ Ó³ Ÿ. 2015.. 12, º 1(192).. 256Ä263 ˆ ˆ ƒˆÿ, Š ƒˆÿ ˆ Ÿ Ÿ Œ ˆ ˆ ˆ Š ˆ ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ.. ƒê,.. μ Ö, ƒ.. ³μÏ ±μ 1 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μ μ Ò μμé μï Ö ³ Ê μ ³ Ê ³Ò³ μ Í μ Ò³ ² Î ³ μ ³ É μ- ÊÕÐ

Διαβάστε περισσότερα

Προσομοίωση Δημιουργία τυχαίων αριθμών

Προσομοίωση Δημιουργία τυχαίων αριθμών Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Προσομοίωση Δημιουργία τυχαίων αριθμών Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ανώτερα Μαθηματικά ΙI

Ανώτερα Μαθηματικά ΙI Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 9: Επικαμπύλια Ολοκληρώματα Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25 P6-2011-64.. Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25 Œ ²μ... P6-2011-64 ² μ Ö ²Õ³ Ö ± ³ Ö μ Í Ì μ Ò Ö μ-ë Î ± ³ ³ Éμ ³ μ²ó μ ³ ³ ± μé μ Œ -25 μ³μðóõ Ö μ-ë

Διαβάστε περισσότερα

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ Ó³ Ÿ. 2007.. 4, º 5(141).. 719Ä730 ˆ ˆ ƒˆÿ, Š ƒˆÿ ˆ Ÿ Ÿ Œ ˆ ˆ ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ Š Œ Œ ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μ ÖÉ Ö Ê²ÓÉ ÉÒ μéò μ ³ Õ ±μ Í É Í CO 2 O 2 ϲ μì

Διαβάστε περισσότερα

ˆ ˆŸ ˆ ˆŸ ˆ ˆŒ ˆˆ Ÿ Œˆ 10 B

ˆ ˆŸ ˆ ˆŸ ˆ ˆŒ ˆˆ Ÿ Œˆ 10 B Ó³ Ÿ. 2013.. 10, º 4(181).. 566Ä571 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. Š ˆŒ ˆ ˆŸ ˆ ˆŸ ˆ ˆŒ ˆˆ Ÿ Œˆ 10 B.. ˆ μ, ˆ.. μ ±μ,.. ŠÊ Ó³ μ,.. ³ μ,. ˆ. Î,.. ÖÎ±μ ²Ó μ μ Ê É μ Ê É μ ÖÉ ƒμ Ê É Ò ÊÎ Ò Í É μ ±μ Í Ä ±μ-ô É Î ± É ÉÊÉ

Διαβάστε περισσότερα

Im{z} 3π 4 π 4. Re{z}

Im{z} 3π 4 π 4. Re{z} ! #"!$%& '(!*),+- /. '( 0 213. $ 1546!.17! & 8 + 8 9:17!; < = >+ 8?A@CBEDF HG

Διαβάστε περισσότερα

Ó³ Ÿ , º 7(205) Ä1486 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ³ μ 1, ƒ. μ μë,. μ,. ŠÊ² ±μ,. Œ ² μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 7(205) Ä1486 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ³ μ 1, ƒ. μ μë,. μ,. ŠÊ² ±μ,. Œ ² μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ó³ Ÿ. 06.. 3, º 7(05).. 479Ä486 ˆ ˆŠ ˆ ˆŠ Š ˆ Š ˆŒ œ ˆ ˆ - Š Ÿ ˆ Œ Š ƒ ˆŸ. ³ μ, ƒ. μ μë,. μ,. ŠÊ² ±μ,. Œ ² μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μ ±É NICA ±²ÕÎ É Ö É ³Ê Ô² ±É μ μ μ μì² Ö Êαμ Ö ÒÌ Î É Í μ μ² μ Ô μ

Διαβάστε περισσότερα

Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ±

Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ± Ó³ Ÿ. 2009.. 6, º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ Œ ˆ ˆ Œ ˆŒ ˆ ˆ ˆ ˆ ˆ Ÿ Œ ƒ ˆ ˆŠ ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ÿ. ʲ ±μ ± ˆ É ÉÊÉ Ö μ Ë ± μ²ó ±μ ± ³ ʱ, Š ±μ, μ²óï Œ É ³ É Î ±μ ±μ³

Διαβάστε περισσότερα

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 7: Προσεγγιστική Λύση Εξισώσεων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 7: Προσεγγιστική Λύση Εξισώσεων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 7: Προσεγγιστική Λύση Εξισώσεων Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο του

Διαβάστε περισσότερα

Ανώτερα Μαθηματικά ΙI

Ανώτερα Μαθηματικά ΙI Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 2: Διαφορικές Εξισώσεις Μέρος ΙΙ Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2017.. 48.. 5.. 604Ä616 œ ˆ Š ˆ ˆ ˆ Š ˆŒ CMS LHC ˆ.. ƒμ²êé 1,.. ³ Éμ 1,2, 1 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê 2 ƒμ Ê É Ò Ê É É Ê, Ê, μ Ö É ² Ò Ê²ÓÉ ÉÒ Ô± ³ É CMS, μ²êî Ò μ μ ÒÌ - μ μ Í ±² μéò LHC

Διαβάστε περισσότερα

INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY β Ti Mo Zr(Sn) ALLOYS ON YOUNG S MODULUS AND MECHANICAL PROPERTIES

INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY β Ti Mo Zr(Sn) ALLOYS ON YOUNG S MODULUS AND MECHANICAL PROPERTIES 49 9 Vol.49 No.9 203 Ë 9 43 47 ACTA METALLURGICA SINICA Sept. 203 pp.43 47 ½ β Ti Mo Zr(Sn) ³ µå» (ű Å ¼ ¼ Ý ², ű Å ¼«, ű 6024) ¾ º º ËÞÁ β Ti Ò [MoTi 4]Zr (Ti 78.2Mo.2Zr 0.6) [SnTi 4]Mo (Ti 75.7Mo

Διαβάστε περισσότερα

{:=, :, goto, if, else} ß ß LB {beg, end, l 1, l 2,..., }.

{:=, :, goto, if, else} ß ß LB {beg, end, l 1, l 2,..., }. Ù ¼ 2 Ô ØÙ ½ ÅÜ À Û ÐÄ Ñ Ñ À ³ Û À ³À ÆÀ 21 Ñ Ó Ï Ó±Ï ¹ ÐÄ Ý± ß Ð F ß Ð G B = (F, P) Ó±Ï Ó Ð WFF B B Ê Ð T B WFF B Ã Ó Ð QFF B À Ï Ð Ó±Ï ß È WFF B Ó È T B Ê 211 º Ó ± È Ó±Ï ¹ È Ñг Ó³ Ó³ ³ Ç Ó±Ï ½ ÁÂ

Διαβάστε περισσότερα

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 8: Προσεγγιστική Λύση Γραμμικών Συστημάτων. Αθανάσιος Μπράτσος

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 8: Προσεγγιστική Λύση Γραμμικών Συστημάτων. Αθανάσιος Μπράτσος Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 8: Προσεγγιστική Λύση Γραμμικών Συστημάτων Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο

Διαβάστε περισσότερα

Ω = {ω 1,..., ω 6 }, ω = ω 1,..., ω m 1, 6, ω 1,...,, ω j {1, 2,...5}, m 1.

Ω = {ω 1,..., ω 6 }, ω = ω 1,..., ω m 1, 6, ω 1,...,, ω j {1, 2,...5}, m 1. Î Ð Ù ËØ Å Ò Ì ÑÝ Ù Ø ÓÖ Ó Ô ØÓ Î ÐÒ Ù ¾¼¼ ÌÙÖ ÒÝ ½ Ì ÑÝ ÒÅ Ö ÚÅ º º º º º º º º º º º º º º º º º º º º º º º º º ½º½º ËØ Ø Ø Ò Ô Ö Ñ ÒØ º º º º º º º º º º º º º º º º ½º¾º ÃÐ Ò ÑÓ Ð º º º º º º º º

Διαβάστε περισσότερα

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING Ö 49 Ö 11 Vol.49 No.11 013 Ò 11 Ö 1416 14 ACTA METALLURICA SINICA Nov. 013 pp.1416 14 ßÍ Ø Ç Nb TiAl Ë ÚÒ Ö Þ 1) «) 1) 1) 1) 1) Í Ä Ñ Ø ËÈ, 100083 ) Ñ Ä, 100083 Đ 900 1000 ß½  à (500 1000 cyc) Ì, Ø À

Διαβάστε περισσότερα

Ó³ Ÿ , º 3(180).. 313Ä320

Ó³ Ÿ , º 3(180).. 313Ä320 Ó³ Ÿ. 213.. 1, º 3(18).. 313Ä32 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ ˆŸ ƒ ƒ Ÿ ˆ Š ˆ Šˆ Š ŒŒ ˆ ˆ ˆ ˆ ˆ Œ ˆŠ.. μ a, Œ.. Œ Í ± μ,. ƒ. ²Ò ± a ˆ É ÉÊÉ Ö ÒÌ ² μ μ ±μ ± ³ ʱ, Œμ ± ÊÎ μ- ² μ É ²Ó ± É ÉÊÉ Ö μ Ë ± ³... ±μ ²ÓÍÒ

Διαβάστε περισσότερα

DtN ² *1) May, 2016 MATHEMATICA NUMERICA SINICA Vol.38, No.2. ˱ Helmholtz µå ű Dirichlet-to-Neumann. u = g, Γ, (1.1) r iku = o(r 1 2 ), r,

DtN ² *1) May, 2016 MATHEMATICA NUMERICA SINICA Vol.38, No.2. ˱ Helmholtz µå ű Dirichlet-to-Neumann. u = g, Γ, (1.1) r iku = o(r 1 2 ), r, 16 Ý 5 38 Ð May, 16 MATHEMATICA NUMERICA SINICA Vol.38, No. Helmholtz ± µ³ DtN ² *1) ( Ò Ì ¼, 1144) ˱ Helmholtz µå ű Dirichlet-to-Neumann (MDtN) ¹, 鱃 ¾, MDtN ÎÂÐ MDtN Å ÉÔ H 1 Ö Ð L Ö. Ü ¼Ú Ù. ÖÚ :

Διαβάστε περισσότερα

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ * 6-2008-5 Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ * ˆ ˆ ˆˆ U(VI) ˆ ˆ ˆ ˆ Š ˆ ² μ Ê ² μì ³ Ö *, μ -, μ² Ö ² μ Œ... 6-2008-5 ˆ ² μ μ Í U(VI) μî μ μ Ì ² Ð μ ±É ÒÌ μéìμ μ ˆ ² μ μ Í Ö U(VI) μî

Διαβάστε περισσότερα

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY Ø 46 Ø 4 Vol.46 No.4 2010 Đ 04 Ø 423 428 ACTA METALLURGICA SINICA Apr. 2010 pp.423 428 Ð Ô Cu 80%Pb Û Cu Å ² Ò³ ½ ¾¹º»¼ ( Ê ÞÆ Ï Æ«³ÃÛÊ, 110004) Á Cu Í Cu 80%Pb( Ð) Æ Ç µ «Ë, ¹ Cu Í Æ³ Ò. Ú, Ç È, Cu Í

Διαβάστε περισσότερα

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280 Ó³ Ÿ.. 2012.. 9, º 8.. 89Ä97 Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280 ƒ. ƒ. ƒê²ó ±Ö,.. Ê, ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,. ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ³ É É Ö Ò μ±μî ÉμÉ Ö Ê ±μ ÖÕÐ Ö É ³ ÉÒ ³μ μ μ Éμ Ö - ÒÌ ±Í ³. ƒ.. ² μ Ñ μ μ É ÉÊÉ Ö

Διαβάστε περισσότερα

P ²ÒÏ,.. μ μ Š ˆ ˆ Ÿ ˆ

P ²ÒÏ,.. μ μ Š ˆ ˆ Ÿ ˆ P13-2013-6.. ²ÒÏ,.. μ μ ƒ ˆ Šˆ Š Š ˆ -2Œ. Œ ƒ Š Š ˆ ˆ Ÿ ˆ ²ÒÏ.., μ μ.. P13-2013-6 É Î ± Ê ± ±Éμ ˆ -2Œ. ³ É Ò Ìμ μ μ ÔËË ±É ±É μ É μ É μ Ö μ ÖÉ Ö Ê²ÓÉ ÉÒ ² μ Ö Ìμ ÒÌ ÔËË ±Éμ ±É μ É - ±Éμ ˆ -2Œ, Ò μ² μ μ

Διαβάστε περισσότερα

High order interpolation function for surface contact problem

High order interpolation function for surface contact problem 3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300

Διαβάστε περισσότερα