Ανδρέας Μπενάρδος. Δρ. Μηχανικός Μεταλλείων Μεταλλουργός Ε.Μ.Π.
|
|
- Ῥεβέκκα Φιλιππίδης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανικών Μεταλλείων Μεταλλουρών Ασκήσεις Θαλάμων και Στύλων Ανδρέας Μπενάρδος Δρ. Μηχανικός Μεταλλείων Μεταλλουρός Ε.Μ.Π.
2 Σχεδιασμός Στύλων
3 P t A Τετραωνικοί Στύλοι Τετραωνικοί Στύλοι P A Τετραωνικοί Στύλοι Τετραωνικοί Στύλοι Ορθοώνιοι Στύλοι Ορθοώνιοι Στύλοι a a 0,5, >,8 olland & Gaddy >,8 olland & Gaddy > Obert & Duall > Obert & Duall Πολλές φορές (κυρίως ια άνθρακα) αντί ια λαμβάνεται η σταθερά K(Κ=σ c *D 0,5 ) : η αντοχή σε μονοαξονική θλίψη κυβικού δοκιμίου (D/=) 0, 0,778 > Obert & Duall > Obert & Duall : η αντοχή σε μονοαξονική θλίψη κυβικού δοκιμίου (D/=). Συντ. Ασφαλείας Στύλων Συντ. Ασφαλείας Στύλων ) ( Συντ. Απόληψης Συντ. Απόληψης Συντ. Απόληψης (τετρ. στύλοι) Συντ. Απόληψης (τετρ. στύλοι)
4 t t t = μέιστο άνοιμα θαλάμου () t = συντ. ασφάλειας σε εφελκυσμό με τιμές 4-8 b f b f N ccotφ N ccotφ N 5,5 (N ) tanφ N e tan 0-,0 04 0,4 tan π ( ) 4 0,0 sinφ b : φέρουσα ικανότητα δαπέδου c: συνοχή φ: ωνία εσωτερικής τριβής : πλάτος στύλου : μήκος στύλου b : το ειδικό βάρος του πετρώματος του δαπέδου Ν, Ν : συντελεστές φέρουσας ικανότητας, : συντελεστές σχήματος διατομής στύλου
5 Αριθμητικό Παράδειμα Οριζόντιο κοίτασμα σε βάθος 00 πρόκειται να εκμεταλλευτεί με την μέθοδο θαλάμων και στύλων. Επιλέεται η δημιουρία τετραωνικών στύλων 7και θαλάμων διάστασης 6 και ύψους 7. Δοκιμές σε μονοαξονική θλίψη δοκιμίων ( ήκ) έδειξαν ότι η αντοχή τους υπολοίζεται μεταξύ 5 και 0, η αντοχή του πετρώματος σε εφελκυσμό θεωρείται ίση με 3, ενώ το ειδικό βάρος του μεταλλεύματος και των περιβαλλόντων είναι ίσο με, t/ 3 ( kn/ 3 ). Θεωρήστε ότι η κατασκευή ίνεται σε στρωσιενή οροφή με μέσο πάχος στρώσης t =. Ακόμη, ο σχηματισμός του δαπέδου έχει τα εξής χαρακτηριστικά: c=0,9, φ=8 ο α. Ποιος είναι ο συντ. ασφαλείας στύλων που επιτυχάνεται; Σχολιάστε την επάρκειά του. β. Υπολοίστε τις διαστάσεις του έρου ια συντ. ασφαλείας στύλων ίσο με =,8.. Εξετάστε την ευστάθεια των θαλάμων και του πατώματος με βάση τις νέες διαστάσεις των θαλάμων και των στύλων δ. Ποιος ο συντ. απόληψης που επιτυχάνεται; Η αντοχή του στύλου να προσδιοριστεί μέσω του τύπου των edley & Grant.
6 Αριθμητικό Παράδειμα Η κατακόρυφη τάση που ασκείται είναι: t t, 00 0, 3 ascal (Pa) N/ 00 t/ Η μέση ορθή τάση που αναπτύσσεται στους στύλους είναι: A t A 6, 7 7,6 Η αντοχή του στύλου υπολοίζεται σε: Επομένως: 0,5 7 0,5 9, 5 9,, 0,75 7 0,75 7,6
7 Η αύξηση του μπορεί να ίνει με την αύξηση του πλάτους των στύλων. Μπορεί να υπολοιστεί: 0,5 0,75,8 5 0,5, 0,75 7 6,8... ή ίνεται με χρήση δοκιμών (π.χ. με χρήση sreadsheet): =9,5
8 Για τον έλεχο του θαλάμου υπολοίζεται: t t 300t / 00 3 t, t / 8 7, 6 8,6 Άρα αφού r=6 < =8,6 τότε οι θάλαμοι πληρούν τις προδιαραφές με t=8 Για τον έλεχο του δαπέδου υπολοίζεται: N N b f N ccotφ N ccotφ tan π 3,4tan 8 e tan ( ) N e tan (45 4) 5,3,66 4, 7 4,5(N ) tanφ N,5(4,7 ) 0,53 0,9,0-0,4,0-0,4 /,0 sinφ /,0 sinφ,0 0,47, 47 0,6
9 ) (45 tan ) π ( tan N tan 8 3,4 tan e e 0,9 0,53 ) (4,7,5 tanφ ) (N,5 N 4,7,66 5,3 4) (45 tan ) 4 ( tan N e e 0,6,0-0,4 /,47 0,47,0 sinφ,0 / tan cot tan t cot8 0,9,47 4,7 cot8 0,9 0,6 0,9 ) /00) 9,5 3 / ((, / cotφ c N cotφ c N b f b 6 35,,69 36,57 0,68,,,,,, ) ),, (( b b b ,6 f 5,9
10 ( ) 9,5 (9,5 6) 0,375 0,65 ή 6,5%
11 Αριθμητικό Παράδειμα Σχεδιάζεται να ίνει εκμετάλλευση ενός κοιτάσματος μικτών θειούχων με τη μέθοδο των θαλάμων και στύλων. Το κοίτασμα βρίσκεται σε βάθος 70 και τα υπερκείμενα έχουν ειδικό βάρος,7 kn/3 Η αντοχή των στύλων σε μονοαξονική θλίψη έχει προσδιοριστεί ότι είναι 00. α. Προκειμένου να επιτευχθεί απόληψη του 75% του κοιτάσματος ποια πρέπει να είναι η τιμή του συντελεστή ασφάλειας που θα χρησιμοποιηθεί ια το σχεδιασμό των στύλων; β. Ποια είναι η μέση ορθή τάση που αναπτύσσεται στο στύλο;
12 Αριθμητικό Παράδειμα Η κατακόρυφη τάση που ασκείται είναι: 3,7 kn / kpa 3,859 ascal (Pa) N/ 00 t/ Ο συντελεστής απόληψης δίνεται από τον τύπο: ( ) 00 ( ) ( 0,75 ) 3,859 6,5 Η μέση ορθή τάση που αναπτύσσεται στους στύλους είναι: 00 6,5 5,4
13 Αριθμητικό Παράδειμα Σε στρώμα ασβεστόλιθου πρόκειται να ίνει εκμετάλλευση με τη μέθοδο θαλάμων και στύλων. Το πάχος του στρώματος είναι 3,6 και το βάθος του 80. Εραστηριακές δοκιμές σε δοκίμια με λόο πλάτους προς ύψος έδειξαν ότι η αντοχή τους σε μονοαξονική θλίψη είναι 69,7. Τα υπερκείμενα έχουν ειδικό βάρος 5,0 kn/3. Αν ο συντελεστής ασφάλειας είναι,5 και θεωρώντας 85% απόληψη, ποιες είναι οι ελάχιστες διαστάσεις των στύλων ώστε να εξασφαλίζεται η σταθερότητα της οροφής; Ποιά είναι η μέση ορθή τάση που αναπτύσσεται στους στύλους;
14 80 5 kn / 3 4, 5,5 4,5 75 0,85 Η αντοχή του στύλου ια περιπτώσεις στύλων που δεν είναι από άνθρακα υπολοίζεται από τον τύπο των Obert & Dual, επομένως είναι: 0,778 0, 4,5 3,5 75 3,6 4,5 3,5 69,7 4, 8
15 Η μέση ορθή τάση που αναπτύσσεται στους στύλους είναι: 75 30,5 Ή μπορεί να υπολοιστεί απ ευθείας μέσω του τύπου: Η μέση ορθή τάση που αναπτύσσεται στους στύλους είναι: h 80 5kN / 3 4,5 30 0,85 0,5
16 Αριθμητικό Παράδειμα Υπόεια εκμετάλλευση θα πραματοποιηθεί με τη μέθοδο θαλάμων και στύλων εντός ασβεστολιθικού πετρώματος (=6,5 κν/3) με μέσο πάχος στρώσης,5. Η διάνοιξη προτείνεται να ίνει σε δύο φάσεις (ανώτερο τμήμα και βαθμίδα), ύψους 4 και 6 αντίστοιχα. Το πλάτος του θαλάμου είναι 8, ενώ οι στύλοι είναι τετραωνικής διατομής με πλάτος 8. Το μέιστο πάχος υπερκειμένων είναι 00, η μονοαξονική αντοχή δοκιμίων πετρώματος (w/h=) σε θλίψη είναι 40 και η αντοχή σε εφελκυσμό περίπου 6. α. Ικανοποιούνται οι συνθήκες ευστάθειας του ανοίματος, ια κάθε φάση; β. Αν όχι, προτείνεται κατάλληλο ανασχεδιασμό της εκμετάλλευσης. Για την εκτίμηση της αντοχής των στύλων χρησιμοποιήστε τον τύπο των Obert and Duall.
17 6,5kN / , 3 A t A 8 5,3, 8 η Φάση: 8 0,778 0, 40 0,778 0, 48, ,9,,3 ax t t 600,5,658 8,4 η Φάση: 8 0,778 0, 40 0,778 0, 38, 0 38,,,8 >
18 Μπορεί να ίνει η αύξηση των διαστάσεων των στύλων: Μπορεί να ίνει η αύξηση των διαστάσεων των στύλων: 0, 0, Έστω ότι επιλέεται πλάτος ()=9 τότε: Έστω ότι επιλέεται πλάτος ()=9 τότε: Έστω ότι επιλέεται πλάτος ()=9, τότε: Έστω ότι επιλέεται πλάτος ()=9, τότε: t A 8 A t 8, ,3 39, 0 9 0, 0, , 0,778,, 39, 8,9
19 Αριθμητικό Παράδειμα Η εκμετάλλευση ενός οριζόντιου στρώματος άνθρακα θα ίνει με τη μέθοδο των θαλάμων και στύλων. Το στρώμα έχει πάχος,8 και βρίσκεται σε βάθος 50. Τα υπερκείμενα έχουν βάρος μονάδας όκου,0 kn/3. Οι θάλαμοι θα έχουν άνοιμα 5καιοιστύλοιθαείναιτετραωνικήςδιατομήςπλάτους5. Ποια πρέπει να είναι η ελάχιστη αντοχή σε μονοαξονική θλίψη που προσδιορίζεται εραστηριακά σε κυβικά δοκίμια άνθρακα ακμής 0 c προκειμένου να εξασφαλίζεται η σταθερότητα της οροφής:
20 Η κατακόρυφη τάση που ασκείται είναι: kn / kPa 3,3 Η μέση ορθή τάση που αναπτύσσεται στους στύλους είναι: 5 3,3 5,87 5 Για το σχεδιασμό στύλων από άνθρακα εφαρμόζεται η σχέση των olland & Gaddy: K K σ c D σ c : αντοχή δοκιμίων D: μήκος ακμής δοκιμίων, 8
21 K K K K 5,8 5,87,8,8,8 K K 4,9 5,8 5,87,8 5 5 c c D K c D c σ σ σ σ K 5 5, 0, 4,9,
Σχεδιασμός Θαλάμων και Στύλων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανικών Μεταλλείων Μεταλλουρών Σχεδιασμός Θαλάμων και Στύλων Ανδρέας Μπενάρδος Δρ. Μηχανικός Μεταλλείων Μεταλλουρός Ε.Μ.Π. Μέθοδος Θαλάμων και Στύλων (Room and Pillar)
ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ. Μέθοδος θαλάμων και στύλων
ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ και A. Μπενάρδος Λέκτορας ΕΜΠ Δ. Καλιαμπάκος Καθηγητής ΕΜΠ και - Hunt Midwest (Subtroolis) και - Hunt Midwest (Subtroolis) Εφαρμογής - Η μέθοδος και (rooms and illars) ανήκει στην κατηγορία
Βασικές μέθοδοι υπόγειας εκμετάλλευσης
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανικών Μεταλλείων Μεταλλουργών Βασικές μέθοδοι υπόγειας εκμετάλλευσης Ανδρέας Μπενάρδος Δρ. Μηχανικός Μεταλλείων Μεταλλουργός Ε.Μ.Π. Τύποι Υπογείων Μετώπων Εκμετάλλευση
ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ. Μέθοδος θαλάμων και στύλων Εφαρμογές. A. Μπενάρδος Λέκτορας ΕΜΠ. Δ. Καλιαμπάκος Καθηγητής ΕΜΠ
ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ Μέθοδος και Εφαρμογές. Μπενάρδος Λέκτορας ΕΜΠ Δ. Καλιαμπάκος Καθηγητής ΕΜΠ Στύλων Παράδειγμα Ο χεδιαμός των τη μέθοδο και γίνεται με βάη τη θεωρία της υνειφέρουας ς Κάθε τύλος φέρει το
Σύγκριση μέθοδων υπόγειας εκμετάλλευσης
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανικών Μεταλλείων Μεταλλουργών Σύγκριση μέθοδων υπόγειας εκμετάλλευσης Ανδρέας Μπενάρδος Δρ. Μηχανικός Μεταλλείων Μεταλλουργός Ε.Μ.Π. Μέθοδοι Υπόγειας Εκμετάλλευσης
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 2005-06 ΔΙΑΛΕΞΗ 3 Ανάλυση της Φέρουσας Ικανότητας Επιφανειακών Θεμελιώσεων κατά τον Ευρωκώδικα 7 8.0.2005 Έλεχος επάρκειας επιφανειακών
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 2005-06 ΔΙΑΛΕΞΗ 0 Θεμελιώσεις με πασσάλους : Ανάλυση φέρουσας ικανότητας κατά τον Ευρωκώδικα 7 2.2.2005 ΘΕΜΕΛΙΩΣΕΙΣ ΜΕ ΠΑΣΣΑΛΟΥΣ.
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 005-06 ΔΙΑΛΕΞΗ Φέρουσα Ικανότητα Επιφανειακών Θεμελιώσεων 0.03.007 P Καμπύλες τάσεωνπαραμορφώσεων του εδάφους Γραμμική συμπεριφορά
Έργα ανάπτυξης προπαρασκευής υπογείων εκμεταλλεύσεων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανικών Μεταλλείων Μεταλλουργών Έργα ανάπτυξης προπαρασκευής υπογείων εκμεταλλεύσεων Ανδρέας Μπενάρδος Δρ. Μηχανικός Μεταλλείων Μεταλλουργός Ε.Μ.Π. Έργα προσπέλασης
Μέθοδοι υπόγειας εκμετάλλευσης Κενά μέτωπα
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανικών Μεταλλείων Μεταλλουργών Μέθοδοι υπόγειας εκμετάλλευσης Κενά μέτωπα Ανδρέας Μπενάρδος Δρ. Μηχανικός Μεταλλείων Μεταλλουργός Ε.Μ.Π. Μέθοδοι Υπόγειας Εκμετάλλευσης
Λιθογόμωση vs Κατακρήμνιση Η περίπτωση της ΛΑΡΚΟ
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανικών Μεταλλείων Μεταλλουργών Λιθογόμωση vs Κατακρήμνιση Η περίπτωση της ΛΑΡΚΟ Ανδρέας Μπενάρδος Δρ. Μηχανικός Μεταλλείων Μεταλλουργός Ε.Μ.Π. ΛΑΡΚΟ Η συνολική ετήσια
Σχεδιασμός Υπαίθριων Εκμεταλλεύσεων
Σχεδιασμός Υπαίθριων Εκμεταλλεύσεων Ενότητα 2: Βασική μεταλλευτική ορολογία και τύποι εκμετάλλευσης Μ. Μενεγάκη Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Υπόγειες μεταλλευτικές εκμεταλλεύσεις στην Ελλάδα
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανικών Μεταλλείων Μεταλλουργών Υπόγειες μεταλλευτικές εκμεταλλεύσεις στην Ελλάδα Ανδρέας Μπενάρδος Δρ. Μηχανικός Μεταλλείων Μεταλλουργός Ε.Μ.Π. Αρχαίες Υπόγειες Εκμεταλλεύσεις
Modified Stability-graph method
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανικών Μεταλλείων Μεταλλουργών Modified Stability-graph method Potvin (1988) Ανδρέας Μπενάρδος Δρ. Μηχανικός Μεταλλείων Μεταλλουργός Ε.Μ.Π. Modified Stability-graph
Ανάλυση σχεδιασμού εκμετάλλευσης με κατακρήμνιση οροφής με διαδοχικούς ορόφους
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανικών Μεταλλείων Μεταλλουργών Ανάλυση σχεδιασμού εκμετάλλευσης με κατακρήμνιση οροφής με διαδοχικούς ορόφους Ανδρέας Μπενάρδος Δρ. Μηχανικός Μεταλλείων Μεταλλουργός
Τελική γραπτή εξέταση διάρκειας 2,5 ωρών
τηλ: 410-74178, fax: 410-74169, www.uth.gr Τελική γραπτή εξέταση διάρκειας,5 ωρών Ονοματεπώνυμο: Αριθμός Μητρώου Φοιτητή: Μάθημα: Εδαφομηχανική Ι, 5 ο εξάμηνο. Διδάσκων: Ιωάννης-Ορέστης Σ. Γεωργόπουλος,
Στήριξη Στρωσιγενούς Πετρώματος πέριξ σήραγγας
Εργαστήριο Τεχνολογίας Διάνοιξης Σηράγγων, ΕΜΠ Στήριξη Στρωσιγενούς Πετρώματος πέριξ σήραγγας ΔΠΜΣ/ΣΚΥΕ Σήραγγα Καλυδώνας. Υπερεκσκαφή 2 Φυσικό ομοίωμα υπόγειας εκσκαφής εντός στρωσιγενούς πετρώματος Υποστήριξη
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εργαστήριο Μεταλλικών Κατασκευών
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εραστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές ΙΙ Διδάσκοντες : Ι. Βάιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ
Ανάλυση Βαθιών Εκσκαφών με τον Ευρωκώδικα 7
ΗΜΕΡΙΔΑ ΣΠΟΛΜΗΚ, ΤΜΗΜΑ ΛΕΜΕΣΟΥ Ιούνιος 2007 Ανάλυση Βαθιών Εκσκαφών με τον Ευρωκώδικα 7 (Αντιστηρίξεις με εύκαμπτα πετάσματα και προεντεταμένες ακυρώσεις) Μ. Καββαδάς, Αναπλ. Καθηητής ΕΜΠ ΣΚΟΠΟΣ ΤΗΣ ΠΑΡΟΥΣΙΑΣΗΣ
Αρχές υπόγειας εκμετάλλευσης
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανικών Μεταλλείων Μεταλλουργών Αρχές υπόγειας εκμετάλλευσης Ανδρέας Μπενάρδος Δρ. Μηχανικός Μεταλλείων Μεταλλουργός Ε.Μ.Π. Θεμελιώδεις αρχές σχεδιασμού Ο σχεδιασμός
Μάθημα : Σιδηρές Κατασκευές Ι Διδάσκοντες : Ι Βάγιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ Ι. Μαλλής Ξ. Λιγνός I. Βασιλοπούλου Α.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εραστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι Διδάσκοντες : Ι Βάιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ
ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΔΟΚΙΜΩΝ:
ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΔΟΚΙΜΩΝ: Αντοχή Εδαφών Επιστημονικός Συνεργάτης: Δρ. Αλέξανδρος Βαλσαμής, Πολιτικός Μηχανικός Εργαστηριακός Υπεύθυνος: Παναγιώτης Καλαντζάκης, Καθηγητής Εφαρμογών Εργαστηριακοί
ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους. 2. Γεωστατικές τάσεις
ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 3 η Σειρά Ασκήσεων 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους Συνοχή (c) Γωνία τριβής (φ ο ) 2. Γεωστατικές τάσεις Ολικές τάσεις Ενεργές τάσεις Πιέσεις πόρων Διδάσκοντες: Β. Χρηστάρας
Διδάσκων: Κίρτας Εμμανουήλ Χειμερινό Εξάμηνο Εξεταστική περίοδος Ιανουαρίου Διάρκεια εξέτασης: 2 ώρες Ονοματεπώνυμο φοιτητή:... ΑΕΜ:...
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Εξέταση Θεωρίας: Σχολή Τεχνολογικών Εφαρμογών ΕΔΑΦΟΜΗΧΑΝΙΚΗ Τμήμα Πολιτικών Δομικών Έργων Διδάσκων: Κίρτας Εμμανουήλ Χειμερινό Εξάμηνο 010-011 Εξεταστική περίοδος
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 9 ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ
ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΟΚΙΝΗΤΗΡΩΝ ΚΑΙ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΔΙΔΑΚΤΙΚΗ ΠΕΡΙΟΧΗ: ΕΡΓΑΣΤΗΡΙΟ ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ Υπεύθυνος: Επικ. Καθηητής Δρ. Α. ΦΑΤΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ
Τεχνική Οδηγία 5 Ανάλυση συµπαγών πλακών
CSI Hellas, εκέµβριος 2003 Τεχνική Οδηία 5 Ανάλυση συµπαών πλακών Η τεχνική οδηία 5 παρέχει βασικές πληροφορίες ια την πλακών. ανάλυση Γενικά. Το Adaptor αναλύει µόνο συµπαείς ορθοωνικές πλάκες, συνεχείς
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ ΙΟΥΝΙΟΥ 2014
ΤΕΧΝΙΚΗ ΣΧΟΛΗ ΜΑΚΑΡΙΟΣ Γ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 03-04 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ ΙΟΥΝΙΟΥ 04 Κατεύθυνση: Θεωρητική Μάθημα: Εφαρμοσμένη Μηχανική Επιστήμη Τάξη: Β' Αριθμός Μαθητών: 0 Κλάδος: Μηχανολογίας
. Υπολογίστε το συντελεστή διαπερατότητας κατά Darcy, την ταχύτητα ροής και την ταχύτητα διηθήσεως.
Μάθημα: Εδαφομηχανική Ι, 7 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Επιστημονικός Συνεργάτης Τμήματος Πολιτικών Έργων Υποδομής, Δρ Πολιτικός Μηχανικός Ε.Μ.Π. Θεματική περιοχή: Υδατική ροή
Ανάλυση ευστάθειας βράχων Εισαγωγή δεδομένων
Ριζάρειο - Πελοπίδα 5 Ανάλυση ευστάθειας βράχων Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 5.06.007 Ρυθμίσεις Πρότυπο - συντελεστές ασφάλειας Ανάλ ευστάθειας Μεθοδολογία επαλήθευσης : Συντ ασφάλειας (ASD)
ΣΧΕΔΙΑΣΜΟΣ ΥΠΟΓΕΙΩΝ ΕΚΜΕΤΑΛΛΕΥΣΕΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΣΧΕΔΙΑΣΜΟΣ ΥΠΟΓΕΙΩΝ ΕΚΜΕΤΑΛΛΕΥΣΕΩΝ ΜΕΘΟΔΟΣ ΤΩΝ ΕΝΑΛΛΑΣΟΜΕΝΩΝ ΚΟΠΩΝ ΚΑΙ ΛΙΘΟΓΟΜΩΣΕΩΝ ΣΤΟ ΜΕΤΑΛΛΕΙΟ ΜΑΥΡΩΝ ΠΕΤΡΩΝ Βέργαδου Γεωργία Ζώμας
Παράδειγμα διαστασιολόγησης και όπλισης υποστυλώματος
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙΧΜΗΣ ΠΕΡΙΟΧΗ ΔΟΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Μάθημα: Δομική Μηχανική 3 Διδάσκουσα: Μαρίνα Μωρέττη Ακαδ. Έτος 014 015 Παράδειγμα
Σιδηρές Κατασκευές ΙΙ
Σιδηρές Κατασκευές ΙΙ Άσκηση 1: Πλευρικός λυγισμός δοκού γέφυρας Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Στοιχεία Μηχανών. Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά
Στοιχεία Μηχανών Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά Ύλη μαθήματος -ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΜΗΧΑΝΙΚΗΣ ΥΛΙΚΩΝ -ΑΞΟΝΕΣ -ΚΟΧΛΙΕΣ -ΙΜΑΝΤΕΣ -ΟΔΟΝΤΩΤΟΙ ΤΡΟΧΟΙ ΒΑΘΜΟΛΟΓΙΑ ΜΑΘΗΜΑΤΟΣ: 25% πρόοδος 15% θέμα
Να πραγματοποιηθούν οι παρακάτω έλεγχοι για τον τοίχο αντιστήριξης.
Να πραγματοποιηθούν οι παρακάτω έλεγχοι για τον τοίχο αντιστήριξης. 1. Ανατροπής ολίσθησης. 2. Φέρουσας ικανότητας 3. Καθιζήσεων Να γίνουν οι απαραίτητοι έλεγχοι διατομών και να υπολογισθεί ο απαιτούμενος
Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων
Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων Έργο Ημερομηνία : 6.12.2012 Ονομασία : Έργο Στάδιο : 1 7,00 2,00 +z 12,00 ΥΥΟ Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 2005-06 ΔΙΑΛΕΞΗ 8β Θεμελιώσεις με πασσάλους : Αξονική φέρουσα ικανότητα εμπηγνυόμενων πασσάλων με στατικούς τύπους 25.12.2005
ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων (3 Α ) A. Γεωστατικές τάσεις. Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Επ. Καθηγητής
ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 3 η Σειρά Ασκήσεων (3 Α ) A. Γεωστατικές τάσεις Ολικές τάσεις Ενεργές τάσεις Πιέσεις πόρων Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Επ. Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας και
ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΜΕΘΟΔΩΝ ΥΠΟΓΕΙΟΥ ΕΚΜΕΤΑΛΛΕΥΣΕΩΣ ΣΤΙς ΘΕΣΕΙΣ ΟΛΥΜΠΙΑΔΑ, ΣΤΡΑΤΩΝΙ, ΣΚΟΥΡΙΕΣ ΤΗΣ ΧΑΛΚΙΔΙΚΗΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΜΕΤΑΛΛΕΥΤΙΚΗΣ ΜΕΘΟΔΟΙ ΥΠΟΓΕΙΟΥ ΕΚΜΕΤΑΛΛΕΥΣΕΩΣ ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΜΕΘΟΔΩΝ ΥΠΟΓΕΙΟΥ ΕΚΜΕΤΑΛΛΕΥΣΕΩΣ ΣΤΙς ΘΕΣΕΙΣ ΟΛΥΜΠΙΑΔΑ, ΣΤΡΑΤΩΝΙ,
Πολιτικοί Μηχανικοί ΕΜΠ Τεχνική Γεωλογία Διαγώνισμα 10/ ΘΕΜΑ 1 ο (4 βαθμοί)
Πολιτικοί Μηχανικοί ΕΜΠ Τεχνική Γεωλογία Διαγώνισμα 10/2006 1 ΘΕΜΑ 1 ο (4 βαθμοί) 1. Σε μια σήραγγα μεγάλου βάθους πρόκειται να εκσκαφθούν σε διάφορα τμήματά της υγιής βασάλτης και ορυκτό αλάτι. α) Στο
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,
Σιδηρές Κατασκευές ΙΙ
Σιδηρές Κατασκευές ΙΙ Άσκηση 1: Αντισεισμικός σχεδιασμός στεγάστρου με συνδέσμους δυσκαμψίας με εκκεντρότητα Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΤΑΞΗ / ΤΜΗΜΑ : Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΥ 2016
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΤΑΞΗ / ΤΜΗΜΑ : Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΥ 2016 ΘΕΜΑ 1 Ο : Α1. Σε ένα υλικό σημείο ενεργούν τέσσερις δυνάμεις. Για να ισορροπεί το σημείο θα πρέπει: α. Το άθροισμα
ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων (3 Α ) A. Γεωστατικές τάσεις. Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Αν. Καθηγητής
ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 3 η Σειρά Ασκήσεων (3 Α ) A. Γεωστατικές τάσεις Ολικές τάσεις Ενεργές τάσεις Πιέσεις πόρων Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Αν. Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας και
Εδαφομηχανική. Εισηγητής: Αλέξανδρος Βαλσαμής
Εισηγητής: Αλέξανδρος Βαλσαμής Εδαφομηχανική Μηχανική συμπεριφορά: - Σχέσεις τάσεων και παραμορφώσεων - Μονοδιάστατη Συμπίεση - Αστοχία και διατμητική αντοχή Παραμορφώσεις σε συνεχή μέσα ε vol =-dv/v=ε
Επαλήθευση πασσάλου Εισαγωγή δεδομένων
Επαλήθευση πασσάλου Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 28.0.205 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : CSN 73 20 R Πάσσαλος Συντ ασφάλειας πάσσαλου θλίψης
1 η ΑΣΚΗΣΗ ΚΟΙΤΑΣΜΑΤΟΛΟΓΙΑΣ
1 η ΑΣΚΗΣΗ ΚΟΙΤΑΣΜΑΤΟΛΟΓΙΑΣ ΣΗΜΕΙΩΣΗ 1: Ο λιγνίτης είναι παλαιότερος της μάργας ΣΗΜΕΙΩΣΗ 2: Το ΑΒΓΔ ξεκινά από επάνω αριστερά του χάρτη και δεξιόστροφα (φορά δεικτών ρολογιού). ΣΗΜΕΙΩΣΗ 3: εφ(φαινόμενης)
1. Δυνάμεις και ο κανόνας του παραλληλογράμμου
1. Δυνάμεις και ο κανόνας του παραλληλογράμμου Δύναμη είναι μία επίδραση που μπορεί να ασκείται σε ένα σώμα και έχει ως αποτέλεσμα είτε ότι αλλάζει την κινητική κατάσταση του σώματος είτε ότι προκαλεί
ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΚΑΙ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΟΙΧΕΙΩΝ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ασκήσεις προηγούμενων
Mέθοδοι Εκμετάλλευσης Μεταλλευτικών Κοιτασμάτων Μέρος 3 Κοιτασμάτων ιακοσμητικών Πετρωμάτων
Mέθοδοι Εκμετάλλευσης Μεταλλευτικών Κοιτασμάτων Μέρος 3 ον : Υπόγεια Eκμετάλλευση Κοιτασμάτων ιακοσμητικών Πετρωμάτων Γ. Εξαδάκτυλος, Καθηγητής Τμήματος Μηχανικών Ορυκτών Πόρων, http://minelab.mred.tuc.gr/
ΑΣΚΗΣΗ 5 η ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ Ι ΤΕΧΝΙΚΟΓΕΩΛΟΓΙΚΗ ΘΕΩΡΗΣΗ ΠΕΡΙΟΧΗΣ ΚΑΤΑΣΚΕΥΗΣ ΣΗΡΑΓΓΑΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ MΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝ. ΓΕΩΛΟΓΙΑΣ & ΥΔΡΟΓΕΩΛΟΓΙΑΣ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ `9, 157 80 ΖΩΓΡΑΦΟΥ, ΑΘΗΝΑ NATIONAL TECHNICAL
ΑΜΕΣΗ ΔΙΑΤΜΗΣΗ ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΔΟΚΙΜΗΣ 1. Σταθερά μηκ/τρου ορ.μετακ/σης (mm/υποδ): 0,0254 Σταθερά μηκ/τρου κατ.
ΓΕΩΤΡΗΣΗ: ΒΑΘΟΣ ΔΕΙΓΜΑΤΟΣ : ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΔΟΚΙΜΗΣ 1 Τύπος Δοκιμής : UU Χ CU CD Δοκίμιο: Αδιατάρακτο Διαμορφωμένο Χ Ρυθμός φόρτισης (mm/min): 1,7272 Σταθερά δυναμ/κου δακτυλίου (kn/υποδ.):
Μέθοδοι υπόγειας εκμετάλλευσης Κατακρημνιζόμενα Μέτωπα
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανικών Μεταλλείων Μεταλλουργών Μέθοδοι υπόγειας εκμετάλλευσης Κατακρημνιζόμενα Μέτωπα Ανδρέας Μπενάρδος Δρ. Μηχανικός Μεταλλείων Μεταλλουργός Ε.Μ.Π. Μέθοδοι Υπόγειας
ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ. Δημιουργία Υπογείων Αποθηκευτικών Χώρων στην Αττική. A. Μπενάρδος Λέκτορας ΕΜΠ. Δ. Καλιαμπάκος Καθηγητής ΕΜΠ
ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ Δημιουργία Υπογείων Αποθηκευτικών Χώρων στην Αττική A. Μπενάρδος Λέκτορας ΕΜΠ Δ. Καλιαμπάκος Καθηγητής ΕΜΠ Βασικά υπογείων Tτεχνολογία Μεταξύ άλλων Αντιστάθμιση της έλλειψης χώρου στην
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΤΑΞΗ / ΤΜΗΜΑ : Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΥ 2016
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΤΑΞΗ / ΤΜΗΜΑ : Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΥ 2016 ΘΕΜΑ 1 Ο : Α1. Σε ένα υλικό σημείο ενεργούν τέσσερις δυνάμεις. Για να ισορροπεί το σημείο θα πρέπει: α. Το άθροισμα
ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ Διδάσκων: Κωνσταντίνος Λουπασάκης,
ΑΣΚΗΣΗ 6 η ΠΡΑΚΤΙΚΗ ΣΗΜΑΣΙΑ ΤΗΣ ΣΦΑΙΡΙΚΗΣ ΠΡΟΒΟΛΗΣ ΤΩΝ ΑΣΥΝΕΧΕΙΩΝ ΤΗΣ ΒΡΑΧΟΜΑΖΑΣ ΚΑΙ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΜΕ ΤΗ ΧΡΗΣΗ ΕΙΔΙΚΩΝ ΠΡΟΓΡΑΜΜΑΤΩΝ ΤΟΥ Η/Υ ΤΩΝ
ΑΣΚΗΣΗ 6 η ΠΡΑΚΤΙΚΗ ΣΗΜΑΣΙΑ ΤΗΣ ΣΦΑΙΡΙΚΗΣ ΠΡΟΒΟΛΗΣ ΤΩΝ ΑΣΥΝΕΧΕΙΩΝ ΤΗΣ ΒΡΑΧΟΜΑΖΑΣ ΚΑΙ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΜΕ ΤΗ ΧΡΗΣΗ ΕΙΔΙΚΩΝ ΠΡΟΓΡΑΜΜΑΤΩΝ ΤΟΥ Η/Υ ΤΩΝ ΠΙΘΑΝΩΝ ΑΣΤΟΧΙΩΝ ΑΥΤΗΣ ΠΡΑΚΤΙΚΗ ΣΗΜΑΣΙΑ ΤΗΣ ΣΦΑΙΡΙΚΗΣ ΠΡΟΒΟΛΗΣ
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 25-6 ΔΙΑΛΕΞΗ 9 Θεμελιώσεις με πασσάλους Αξονική φέρουσα ικανότητα έγχυτων πασσάλων 21.12.25 2. Αξονική φέρουσα ικανότητα μεμονωμένου
ΦΕΡΟΥΣΑ ΙΚΑΝΟΤΗΤΑ ΕΔΑΦΟΥΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ Διδάσκων: Κωνσταντίνος Λουπασάκης,
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ.
Τίτλος Μαθήματος ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ Καθηγητής Δρ. Μοσχίδης Νικόλαος ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ
Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1
Σχήμα 1 Η εντατική κατάσταση στην οποία βρίσκεται μία δοκός, που υποβάλλεται σε εγκάρσια φόρτιση, λέγεται κάμψη. Αμφιέριστη δοκός Πρόβολος Κατά την καταπόνηση σε κάμψη αναπτύσσονται καμπτικές ροπές, οι
Μέρος 1: Αρχές. Μ. Καββαδάς, Αναπλ. Καθηγητής ΕΜΠ
Τ.Ε.Ε. Σ.Π.Μ.Ε. Ο.Α.Σ.Π. ΤΕΕ/Τμ. Δυτικής Ελλάδας Διημερίδα στην Πάτρα (17-18 18 Ιουνίου 2011 «Σχεδιασμός Κτηρίων Σκυροδέματος με βάση τους Ευρωκώδικες 2 7 & 8» Γεωτεχνικός Σχεδιασμός Κτηρίων κατά τον Ευρωκώδικα
ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ ΚΑΝΕΠΕ ΜΕ ΠΕΙΡΑΜΑΤΙΚΑ ΔΕΔΟΜΕΝΑ ΑΠΟ ΕΝΙΣΧΥΣΕΙΣ ΔΟΚΩΝ ΜΕ ΙΟΠ
ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ ΚΑΝΕΠΕ ΜΕ ΠΕΙΡΑΜΑΤΙΚΑ ΔΕΔΟΜΕΝΑ ΑΠΟ ΕΝΙΣΧΥΣΕΙΣ ΔΟΚΩΝ ΜΕ ΙΟΠ ΜΠΕΡΝΑΚΟΣ ΑΝΤΩΝΙΟΣ Περίληψη Στόχος της παρούσας εργασίας είναι η πρακτική εφαρμογή αναλυτικών προβλέψεων του ΚΑΝΕΠΕ
5/14/2018. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Πολιτικός Μηχανικός (Λέκτορας Π.Δ. 407/80)
Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία Δρ. Σωτήρης Δέμης Πολιτικός Μηχανικός (Λέκτορας Π.Δ. 407/80) 1 Βασική αρχή εργαστηριακής άσκησης Αξονικό φορτίο Ανάπτυξη διατμητικών τάσεων σε στοιχεία
Επιφανειακές Θεµελιώσεις Ευρωκώδικας 7. Αιµίλιος Κωµοδρόµος, Καθηγητής, Εργαστήριο Υ.Γ.Μ. Πανεπιστήµιο Θεσσαλίας Τµήµα Πολιτικών Μηχανικών
Επιφανειακές Θεµελιώσεις Ευρωκώδικας 7 Επιφανειακές Θεµελιώσεις Ευρωκώδικας 7 Υπολογισµός Φέρουσας Ικανότητας Ευρωκώδικας 7 Αστράγγιστες Συνθήκες Επιφανειακές Θεµελιώσεις Ευρωκώδικας 7 [ c b s i q] R k
ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ Υπόγεια Αποθήκευση Υδρογονανθράκων
ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ Υπόγεια Αποθήκευση Υδρογονανθράκων A. Μπενάρδος Λέκτορας ΕΜΠ Δ. Καλιαμπάκος Καθηγητής ΕΜΠ Αποθήκευση 180.000 m3 πετρελαιοειδών σε γειτνίαση με τον αστικό ιστό Σοβαρά περιβαλλοντικά προβλήματα
ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. A. Γεωστατικές τάσεις. Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Επ. Καθηγητής
ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 3 η Σειρά Ασκήσεων A. Γεωστατικές τάσεις Ολικές τάσεις Ενεργές τάσεις Πιέσεις πόρων Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Επ. Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας και Υδρογεωλογίας
1.1.1 Εσωτερικό και Εξωτερικό Γινόμενο Διανυσμάτων
3 1.1 Διανύσματα 1.1.1 Εσωτερικό και Εξωτερικό Γινόμενο Διανυσμάτων ΑΣΚΗΣΗ 1.1 Να βρεθεί η γωνία που σχηματίζουν τα διανύσματα î + ĵ + ˆk και î + ĵ ˆk. z k i j y x Τα δύο διανύσματα που προκύπτουν από
ίνεται ποιότητα χάλυβα S355. Επιλογή καμπύλης λυγισμού Καμπύλη λυγισμού S 235 S 275 S 460 S 355 S 420 Λυγισμός περί τον άξονα y y a a a b t f 40 mm
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας ομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι ιδάσκοντες :Χ. Γαντές.Βαμβάτσικος Π. Θανόπουλος Νοέμβριος 04 Άσκηση
ΑΣΚΗΣΗ 10 η ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ Ι ΑΝΑΛΥΣΗ ΕΥΣΤΑΘΕΙΑΣ EΝΤΟΝΑ ΚΑΤΑΚΕΡΜΑΤΙΣΜΕΝΟΥ ΒΡΑΧΩΔΟΥΣ ΠΡΑΝΟΥΣ EΝΑΝΤΙ ΚΥΚΛΙΚΗΣ ΑΣΤΟΧΙΑΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ MΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝ. ΓΕΩΛΟΓΙΑΣ & ΥΔΡΟΓΕΩΛΟΓΙΑΣ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9, 157 80 ΖΩΓΡΑΦΟΥ, ΑΘΗΝΑ NATIONAL TECHNICAL
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ Κ. Β. ΣΠΗΛΙΟΠΟΥΛΟΣ Καθηγητής ΕΜΠ Πορεία επίλυσης. Ευρίσκεται
6α) Ο δίσκος ισορροπεί με τη βοήθεια ενός νήματος παράλληλου στο κεκλιμένο επίπεδο. Αν το
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 2: ΡΟΠΗ ΔΥΝΑΜΗΣ 6. Ομογενής ράβδος ΑΒ μήκους και βάρους ισορροπεί οριζόντια στηριζόμενη σε κατακόρυφο τοίχο με άρθρωση και στο σημείο της Λ σε υποστήριγμα
4/11/2017. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Βασική αρχή εργαστηριακής άσκησης
Βασική αρχή εργαστηριακής άσκησης Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία Δρ. Σωτήρης Δέμης Πολιτικός Μηχανικός (Λέκτορας Π.Δ. 407/80) Αξονικό φορτίο Ανάπτυξη διατμητικών τάσεων σε στοιχεία σύνδεσης
ΕΚΤΟΞΕΥΟΜΕΝΟ Τι Είναι; ΣΚΥΡΟΔΕΜΑ. Γιατί Χρησιµοποιείται; Διαδικασίες. Εκτοξευόµενο Σκυρόδεµα Σ. Η. Δ Ρ Ι Τ Σ Ο Σ
ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ: ΠΡΟΣΕΙΣΜΙΚΕΣ ΕΝΙΣΧΥΣΕΙΣ: ΑΠΟΤΙΜΗΣΗ ΦΕΡΟΥΣΑΣ ΙΚΑΝΟΤΗΤΑΣ ΥΦΙΣΤΑΜΕΝΩΝ ΚΤΙΡΙΩΝ, ΑΝΑΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΕΠΕΜΒΑΣΕΙΣ 80034P15 ΤΕΧΝΟΛΟΓΙΕΣ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΕΠΕΜΒΑΣΕΩΝ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΚΑΝ.ΕΠΕ. Εκτοξευόµενο
Εφαρμογές του Ευρωκώδικα 7 (EN(
ΗΜΕΡΙΔΑ ΣΠΜΕ Ηράκλειο,, 4 Δεκεμβρίου 2008 Εφαρμοές του Ευρωκώδικα 7 (EN( 997-) ) σε θέματα σχεδιασμού Γεωτεχνικών Έρων Eurocoe 7 (ΕΝ 997-) ) : Geotechnical Design Part : General ules Μ. Καββαδάς, Αναπλ.
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ
7 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Α ΦΑΣΗ) ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 7 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 16 Δεκεμβρίου, 01 Απενεργοποιήστε τα κινητά σας τηλέφωνα!!! Παρακαλώ
Καθηγητής Ε.Μ.Π. ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ. 6.2 Δά Διάφορες Περιπτώσεις Προφόρτισης. 6.3 Συνδυασμός Προφόρτισης με Στραγγιστήρια. 6.4 Σταδιακή Προφόρτιση
6. ΠΡΟΦΟΡΤΙΣΗ (αργιλικών εδαφών) Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΦΕΒΡΟΥΑΡΙΟΣ 016 ΠΕΡΙΕΧΟΜΕΝΑ Ε 6.1 Επίδραση της Προφόρτισης στην ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ 6. Δά Διάφορες Περιπτώσεις Προφόρτισης 6.3 Συνδυασμός
Σιδηρές Κατασκευές Ι. Άσκηση 3: Δικτύωμα πεζογέφυρας (θλιβόμενο άνω πέλμα) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών
Σιδηρές Κατασκευές Ι Άσκηση 3: Δικτύωμα πεζογέφυρας (θλιβόμενο άνω πέλμα) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΜΗΧΑΝΙΚΗ Ι (ΣΤΑΤΙΚΗ) 10 η Σειρά ασκήσεων ενισχυτικής διδασκαλίας (A Μέρος) ΥΔΡΟΣΤΑΤΙΚΗ (ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΕΠΙΠΕΔΕΣ ΒΥΘΙΣΜΕΝΕΣ ΕΠΙΦΑΝΕΙΕΣ)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΡΜΟΣΜΕΝΩΝ ΜΘΗΜΤΙΚΩΝ ΚΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ TΟΜΕΣ ΜΗΧΝΙΚΗΣ, ΕΡΓΣΤΗΡΙΟ ΝΤΟΧΗΣ ΚΙ ΥΛΙKΩΝ Ηρώων Πολυτεχνείου 5, Κτίριο Θεοχάρη Πολυτεχνειούπολη Ζωγράφου, 157 73 Ζωγράφου Δρ
ΚΥΚΛΟΙ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ) Διαλέξεις Μ4, ΤΕΙ Χαλκίδας Επικ. Καθηγ. Δρ. Μηχ. Α. Φατσής
ΚΥΚΛΟΙ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ) Διαλέξεις Μ4, ΤΕΙ Χαλκίδας Επικ. Καθη. Δρ. Μηχ. Α. Φατσής Ιδανικός πρότυπος κύκλος OO Υποθέσεις ια ιδανικό πρότυπο κύκλο Otto Το εραζόμενο μέσο είναι ιδανικό (ή τέλειο) αέριο
1. Αστοχία εδαφών στην φύση & στο εργαστήριο 2. Ορισμός αστοχίας [τ max ή (τ/σ ) max?] 3. Κριτήριο αστοχίας Μohr 4. Κριτήριο αστοχίας Mohr Coulomb
ΚΕΦΑΛΑΙΟ VΙ: ΑΣΤΟΧΙΑ & ΙΑΤΜΗΤΙΚΗ ΑΝΤΟΧΗ Ε ΑΦΩΝ 1. Αστοχία εδαφών στην φύση & στο εργαστήριο 2. Ορισμός αστοχίας [τ max ή (τ/σ ) max?] 3. Κριτήριο αστοχίας Μohr 4. Κριτήριο αστοχίας Mohr Coulomb Παράμετροι
ΠΕΡΙΒΑΛΛΩΝ ΧΩΡΟΣ ΤΕΧΝΙΚΟΥ ΕΡΓΟΥ. Ν. Σαμπατακάκης Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών
ΠΕΡΙΒΑΛΛΩΝ ΧΩΡΟΣ ΤΕΧΝΙΚΟΥ ΕΡΓΟΥ II ΠΕΡΙΒΑΛΛΩΝ ΧΩΡΟΣ ΤΕΧΝΙΚΟΥ ΕΡΓΟΥ ΜΕΛΕΤΗ ΚΑΤΑΣΚΕΥΗ ΤΕΧΝΙΚΟΥ ΕΡΓΟΥ βασική απαίτηση η επαρκής γνώση των επιμέρους στοιχείων - πληροφοριών σχετικά με: Φύση τεχνικά χαρακτηριστικά
8.1.7 Σχεδιασμός και μη-γραμμική ανάλυση
Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης
ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ Μεγάλοι Υπόγειοι Θάλαμοι (Caverns)
ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ Μεγάλοι (Caverns) A. Μπενάρδος Λέκτορας ΕΜΠ Δ. Καλιαμπάκος Καθηγητής ΕΜΠ Υπόγειοι Θάλαμοι Διαστάσεις εκσκαφής: Πλάτος:12 m Ύψος: 20 m Μήκος: 40 m Κατασκευή υπογείων θαλάμων (caverns) για
ΛΥΣΕΙΣ άλυτων ΑΣΚΗΣΕΩΝ στην Αντοχή των Υλικών
ΛΥΣΕΙΣ άλυτων ΑΣΚΗΣΕΩΝ στην Αντοχή των Υλικών Ασκήσεις για λύση Η ράβδος του σχήματος είναι ομοιόμορφα μεταβαλλόμενης κυκλικής 1 διατομής εφελκύεται αξονικά με δύναμη Ρ. Αν D d είναι οι διάμετροι των ακραίων
ΕΝΟΤΗΤΑ 4: Η ΤΡΙΒΗ ΣΤΑ ΡΕΥΣΤΑ ΘΕΜΑΤΑ ΠΡΟΣ ΕΠΙΛΥΣΗ ΘΕΜΑ Β. Ένα πραγματικό ρευστό ρέει σε οριζόντιο σωλήνα σταθερής κυλινδρικής διατομής.
ΚΕΦΑΛΑΙΟ 3 Ο : ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ ΕΝΟΤΗΤΑ 4: Η ΤΡΙΒΗ ΣΤΑ ΡΕΥΣΤΑ ΘΕΜΑΤΑ ΠΡΟΣ ΕΠΙΛΥΣΗ ΘΕΜΑ Β Ερώτηση 1. Ένα πραγματικό ρευστό ρέει σε οριζόντιο σωλήνα σταθερής κυλινδρικής διατομής. Η μέση ταχύτητα του ρευστού
ΣΤΑΤΙΚΗ 1 ΔΥΝΑΜΕΙΣ. Παράδειγμα 1.1
ΣΤΤΙΚΗ 1 ΥΝΜΕΙΣ Στατική είναι ο κλάδος της μηχανικής που μελετά την ισορροπία των σωμάτων. Κατά την μελέτη δεχόμαστε ότι τα σώματα δεν παραμορφώνονται από τις δυνάμεις που ασκούνται σ αυτά. Οι παραμορφώσεις
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχ. Μεταλλείων Μεταλλουργών Μέθοδοι Υπόγειας Εκμετάλλευσης Ελληνικές Εκμεταλλεύσεις
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχ. Μεταλλείων Μεταλλουργών Μέθοδοι Υπόγειας Εκμετάλλευσης Ελληνικές Εκμεταλλεύσεις Α. Μπενάρδος, Επίκ. Καθηγητής Ε.Μ.Π. Αθήνα 2014 Πίνακας Περιεχομένων 1. Γενικά Εισαγωγή
Σιδηρές Κατασκευές Ι. Άσκηση 6: Διαστασιολόγηση τεγίδας στεγάστρου. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών
Σιδηρές Κατασκευές Ι Άσκηση 6: Διαστασιολόγηση τεγίδας στεγάστρου Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. 1. Υπολογισµός Διατµητικής Αντοχής Εδάφους. 2. Γεωστατικές τάσεις
ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 3 η Σειρά Ασκήσεων 1. Υπολογισµός Διατµητικής Αντοχής Εδάφους Συνοχή (c) Γωνία τριβής (φ ο ) 2. Γεωστατικές τάσεις Ολικές τάσεις Ενεργές τάσεις Πιέσεις πόρων Διδάσκοντες: Β. Χρηστάρας
Ξύλινες Kατασκευές και Σεισμοί
Ξύλινες Kατασκευές και Σεισμοί Aρης B. Aβδελάς Αναπληρωτής Kαθηγητής Eργ.. MεταλλικώνM Kατασκευών Tμήμα Πολιτικών Mηχανικών A.Π.Θ. Aντικείμενο Να δοθούν οδηγίες για το σχεδιασμό ξύλινων περιοχές κατασκευών
Θέματα (& Λύσεις) Εξετάσεων Φεβρουαρίου 2014:
ΔΙΔΑΣΚΩΝ: ΚΧ ΓΙΑΝΝΑΚΟΓΛΟΥ, Καθηητής ΕΜΠ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΦΕΒΡΟΥΑΡΙΟΣ 04 Θέματα (& Λύσεις) Εξετάσεων Φεβρουαρίου 04: ΘΕΜΑ (6 μονάδες) Συμπιέζουμε αέρα (τέλειο αέριο) από τις συνθήκες (Τ t, t ) στις
Τί αλλάζει (και τί δεν αλλάζει) με την εισαγωγή του ΕΝ Γιατί απαιτήθηκαν οι αλλαγές ποιές οι συνέπειές έ τους
Τεχνικό Επιμελητήριο Ελλάδος (ΤΕΕ) Εκπαιδευτικό υλικό ια τον Σχεδιασμό Κατασκευών με τους Ευρωκώδικες : Εφαρμοές και Εθνικά Προσαρτήματα Εφαρμοές του Ευρωκώδικα 7 (EN 1997-1) 1) σε θέματα σχεδιασμού Γεωτεχνικών
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 005-06 ΔΙΑΛΕΞΗ 13 Θεμελιώσεις με πασσάλους : Εγκάρσια φόρτιση πασσάλων 1.05.005 1. Κατηγορίες πασσάλων. Αξονική φέρουσα ικανότητα
Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων
Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων Μελέτη Περιγραφή Μελετητής Ημερομηνία Ρυθμίσεις : : : Pile Group - Exaple 3 Ing. Jiri Vanecek 28.10.2015 (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα
Αξιολόγηση του θρυμματισμού μιας ανατίναξης μέσω πλήρως καθορισμένων μικρών χρόνων καθυστέρησης έναυσης
Αξιολόγηση του θρυμματισμού μιας ανατίναξης μέσω πλήρως καθορισμένων μικρών χρόνων καθυστέρησης έναυσης Η χρήση ηλεκτρονικών πυροκροτητών παρέχει πολύ μεγάλο εύρος και ακρίβεια στο χρόνο καθυστέρησης,
Μηχανικές ιδιότητες συνθέτων υλικών: κάμψη. Άλκης Παϊπέτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών
Μηχανικές ιδιότητες συνθέτων υλικών: κάμψη Άλκης Παϊπέτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών Δοκιμή κάμψης: συνοπτική θεωρία Όταν μια δοκός υπόκειται σε καμπτική ροπή οι αξονικές γραμμές κάπτονται σε
ΑΣΚΗΣΕΙΣ ΚΑΘΙΖΗΣΕΩΝ ΕΠΙΦΑΝΕΙΑΚΩΝ ΘΕΜΕΛΙΩΣΕΩΝ
Πανεπιστήμιο Δυτικής Αττικής Τμήμα Πολιτικών Μηχανικών ΜΑΘΗΜΑ: ΘΕΜΕΛΙΩΣΕΙΣ 6 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Α. Βαλσαμής ΑΣΚΗΣΕΙΣ ΚΑΘΙΖΗΣΕΩΝ ΕΠΙΦΑΝΕΙΑΚΩΝ ΘΕΜΕΛΙΩΣΕΩΝ ΑΣΚΗΣΗ 1 Να υπολογιστούν οι μακροχρόνιες καθιζήσεις
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ Αντικείμενο της Άσκησης Η ανάλυση ευστάθειας βραχώδους πρανούς,
Διάτρηση, Ανατίναξη και Εισαγωγή στα Υπόγεια Έργα Σχεδιασμός επιφανειακών ανατινάξεων
Διάτρηση, Ανατίναξη και Εισαγωγή στα Υπόγεια Έργα Σχεδιασμός επιφανειακών ανατινάξεων Δρ Παντελής Λιόλιος Σχολή Μηχανικών Ορυκτών Πόρων Πολυτεχνείο Κρήτης http://minelabmredtucgr Τελευταία ενημέρωση: 30
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2017 ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ
ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2016-2017 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2017 ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Επιτρεπόμενη διάρκεια γραπτού 2,5ώρες (150 λεπτά). Μάθημα: ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΕΦΑΡΜΟΣΜΕΝΗΣ