Modelarea deciziei financiare şi monetare

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Modelarea deciziei financiare şi monetare"

Transcript

1 ACADEMIA DE STUDII ECONOMICE DIN BUCUREŞTI FACULTATEA DE FINANȚE, ASIGURĂRI, BĂNCI ŞI BURSE DE VALORI Modelarea deciziei financiare şi monetare Modele macroeconomice pe termen scurt Alexandru Leonte Departamentul de Monedă şi Bănci

2 Structura capitolului 1. Produsul intern brut - noţiuni introductive 2. Modelul IS-LM 3. Modelul Mundell-Fleming

3 1. Produsul intern brut noţiuni introductive Există foarte multe variabile ce caracterizează o economie, atât în ansamblul ei cât şi asociate fiecărui sector Exemple: produsul intern brut, consumul privat, balanţa comercială, rata inflaţiei, rata şomajului, valoarea adăugată brută din industrie (agricultură, comerţ), producţia industrială, numărul de comenzi noi în industria prelucrătoare etc. etc. etc. etc. În cele ce urmează, vom discuta câte ceva despre produsul intern brut De citit: Mankiw, cap. 23

4 Definiţie şi mod de calcul Produsul intern brut PIB (Gross Domestic Product GDP): totalitatea valorii bunurilor şi serviciilor finale produse într-o ţară (sau într-o regiune) într-o perioadă de timp (trimestru, semestru, an) Exemplu: PIB-ul României în anul 2014 (în preţurile anului 2014): ,2 milioane lei În termeni reali, acesta a crescut cu 2,9% faţă de anul anterior. (comunicat apărut pe 6 martie 2015) În legătură cu PIB, institutele de statistică publică estimări-semnal, valori provizorii, valori semidefinitive şi valori definitive. În acest moment (30 martie 2015) există date definitive pentru PIB-ul din anul Raportul dintre valoarea PIB şi populaţie (PIB pe cap de locuitor) este una dintre cele mai utilizate măsuri ale bunăstării pentru o ţară

5 3000 mld. eur. Statele membre ale UE* eur PIB (2014) PIB per capita (2014), axa din dr DE UK FR IT ES NE SE PL BE OS DK FI IE GR PT CZ RO HU SK HR BG SI LT LV EE CY MT *) Luxemburg nu are date disponibile pentru Sursa: Eurostat 0

6 Observaţie: De obicei, comparaţiile între state care au monede diferite se realizează utilizându-se un curs de schimb calculat în funcţie de preţurile coşurilor de consum din cele două ţări (cursul la paritatea puterii de cumpărare). Un motiv este că fluctuaţiile cursului pieţei poate introduce distorsiuni în comparaţie. De exemplu, să presupunem că un investitor străin este atras de randamentele ridicate din România şi investeşte pe termen scurt aici. El vinde EUR şi cumpără RON, astfel, RON se va aprecia în raport cu EUR, ceea ce va determina o majorare a PIB-ului românesc exprimat în EUR, fără ca acest lucru să însemne o creştere a bunăstării din România relativ la cea din zona euro. Veţi afla mai multe despre teoria parităţii puterii de cumpărare în anul 3, la disciplina Relaţii monetare financiare internaţionale.

7 Metode de fundamentare a PIB Metoda de producţie (după resurse) PIB VAB INP valoare adăugată brută Impozite nete pe produs Metoda cheltuielilor (după utilizări) PIB CF FBC EN consum final efectiv formare brută de capital export net În acelaşi timp, PIB reprezintă venitul economiei la nivel agregat

8 Componente PIB românesc (resurse): ponderi şi contribuţii la creştere Sursa: INSSE

9 Componente PIB românesc (utilizări): ponderi şi contribuţii la creştere Sursa: INSSE

10 Noţiuni de echilibru macroeconomic Vom scrie formarea PIB prin metoda cheltuielilor într-o formă uşor modificată Y Y _ AD C I G EX IM PIB consum privat investiţii consum guvernamental NX cerere agregată export net (balanţă comercială) Suntem interesaţi de ceea ce se întâmplă cu bunurile şi serviciile produse la nivel macroeconomic. Ele sunt rezultatul procesului de producţie din firme, instituţii publice etc., şi depind de cantitatea de factori de producţie utilizată (L,K) şi de nivelul tehnologic (A). Totuşi, pe termen scurt, vom avea în vedere doar destinaţia acestor bunuri şi servicii, prin urmare, avem o abordare din perspectiva cererii agregate. Vom nota absorbţia internă A C I G

11 Definim soldul contului curent ca fiind diferenţa dintre venituri şi absorbţie CA Y Atunci A CA NX EX IM În realitate, contul curent diferă de exportul net pentru că se iau în considerare şi alte categorii de venituri (venituri externe nete şi transferuri externe nete), totuşi vom presupune în continuare că PIB-ul este singura categorie de venit Definim economisirea agregată ca fiind diferenţa dintre venit şi ce se consumă S Y C G Adunând şi scăzând în membrul drept pe T care este valoarea taxelor şi impozitelor colectate de autoritatea fiscală (Guvern), putem realiza distincţia între economisirea privată şi cea publică S Y C T T G S _ prv S _ pub

12 Economisirea publică mai poartă denumirea de balanţă bugetară. Variabila opusă este deficitul bugetar D G T Astfel, Y C G I NX Y C T I T G S _ prv S _ pub Relaţia ne arată legătura dintre economisire, investiţii şi echilibrul extern la nivel agregat NX

13 3. Modelul Mundell-Fleming Exemplu: O ţară este caracterizată de următoarele valori are agregatelor macro (exprimate în miliarde de euro): Y 100 C 70 G 15 I EX IM Dacă ne uităm la producţie vs. absorbţie internă: în această ţară se produce în valoare de 100 şi se absoarbe intern în valoare de =110. Care va fi sursa fondurilor pentru diferenţa de 10? sau Dacă ne uităm la economisire vs. investiţii: în această ţară se economiseşte în valoare de =15 şi se investeşte în valoare de 25. Care va fi sursa fondurilor pentru diferenţa de 10?

14 Răspuns: exteriorul (persoane fizice şi juridice nerezidente) Prin ce mecanism finanţează exteriorul economia autohtonă? Răspuns: interacţiunile exteriorului cu economia autohtonă sunt foarte diverse Vom introduce noţiuni noi cum ar fi: balanţa de plăţi, contul financiar şi de capital, cursul de schimb (nominal şi real), regimul cursului de schimb, regimul contului de capital etc.

15 Componentele modelului Mundell-Fleming Model pe termen scurt pentru o economie mică deschisă Relaţia cu mediul extern este modelată explicit (spre deosebire de ISLM, unde exporturile şi importurile aveau preponderent caracter exogen) Prin urmare, modelul Mundell-Fleming (MF) ia în considerare 3 relaţii: Echilibrul pe piaţa bunurilor şi serviciilor (IS) Echilibrul pe piaţa cererii şi ofertei de monedă (LM) Echilibrul extern (BP) Cele mai importante variabile din model vor fi, ca şi până acum, PIB (Y), rata dobânzii (r), însă apare una în plus, respectiv cursul de schimb. În cele ce urmează, vom avea câte o scurtă discuţie referitoare la regimul cursului de schimb şi respectiv la noţiunea de echilibru extern

16 Cursul de schimb Cursul de schimb nominal: reprezintă preţul unei monede exprimat în altă monedă Exemplu: 4,4125 RON / 1 EUR, sau echivalent 1 EUR = 4,4125 RON EUR: monedă de bază (base currency) RON: monedă cotantă (quote currency) O economie poate opta pentru un regim de curs de schimb fix sau un regim flotant (în realitate, există numeroase variante, veţi discuta mai multe la cursul de Relaţii Monetare Financiare Internaţionale) Exemplu: în Bulgaria, cursul oficial de schimb este 1,95 BGN / 1 EUR În România se practică un regim de flotare controlată a cursului de schimb.

17 Curs de schimb real: reprezintă o măsură a competitivităţii prin preţ/cost Pe baza acestuia se compară preţul produselor exprimate în monede diferite, sau, la nivel agregat, nivelurile preţurilor din două economii cu monede diferite Q S cursul real P f P cursul nominal nivelurile preţurilor din economia străină / locală În practică: La nivel agregat, pentru calcului cursului real se pot utiliza IPC, IPPI, deflatorul PIB, deflatorul exporturilor, ULC Unit Labor Cost (Costul unitar cu forţa de muncă) Se poate calcula un curs real de schimb efectiv (REER Real Effective Exchange Rate), pe baza căruia economia locală este comparată cu partenerii străini

18 Cursul de schimb real reprezintă un raport şi nu are unitate de măsură O creştere a cursului de schimb real (o apreciere reală) semnalează faptul că bunurile din economia locală devin mai scumpe în raport cu cele din economia străină (sau este mai scump să fie produse dacă se foloseşte ULC) Elasticitatea / senzitivitatea exporturilor faţă de cursul real de schimb ar trebui să fie pozitivă Elasticitatea / senzitivitatea importurilor faţă de cursul real de schimb ar trebui să fie negativă Exemplu: În modelul Mundell-Fleming putem să avem următoarele relaţii: EX IM EX IM 0 0 a q EX my 0 a s bq, b 0 P f P, a 0

19 Echilibrul extern Balanţa de plăţi (BP) reprezintă instrumentul care sintetizează toate tranzacţiile economiei autohtone cu exteriorul O astfel de tranzacţie aduce modificări pe partea de credit şi/sau debit a balanţei, astfel încât, mereu, soldul creditor să fie egal cu soldul debitor Contul curent este una dintre componentele balanţei de plăţi, alături de contul de capital şi de contul financiar Tranzacţiile care se referă la bunuri, servicii, venituri sau transferuri sunt contabilizate cu ajutorul contului curent Tranzacţiile care se referă la active financiare se contabilizează cu ajutorul contului financiar şi de capital (noi le luăm împreună, pentru simplificare)

20 Orice tranzacţie cu exteriorul modifică contul curent şi/sau contul financiar şi de capital, astfel încât relaţia de echilibru extern să fie mereu valabilă: CACF 0 soldul contului curent soldul contului financiar şi de capital În practică, relaţia se menţine valabilă cu ajutorul unui cont de erori şi omisiuni Principalele componente ale contului curent sunt balanţa comercială, veniturile nete şi transferurile nete. În cadrul modelului ISLM, pentru simplificare, am discutat doar despre balanţa comercială (exportul net) Cele mai importante componente ale contului de capital şi financiar sunt activele de rezervă (modificarea lor) şi investiţiile străine (directe, de portofoliu precum şi cele de la categoria alte investiţii)

21 Având în vedere că investiţiile străine depind randamentele oferite de economia locală vs. exterior, vom modela contul de capital şi financiar astfel: CF CF 0 r r f componentă autonomă diferenţialul de dobândă între economia locală şi exterior δ : senzitivitatea contului de capital şi financiar în raport cu diferenţialul de rată a dobânzii În practică, investitorii sunt atenţi la multe alte lucruri, cum ar fi de exemplu la prima de risc Dimensiunea contului de capital şi financiar este influenţată de uşurinţa cu care nerezidenţii pot veni cu capitaluri în economia locală. Ne vom referi la acest aspect cu ajutorul noţiunii de grad de liberalizare a contului de capital

22 În economiile emergente, fluxurile de capital străin, cu precădere cele direcţionate către investiţii de portofoliu, au potenţial destabilizator (aprecierea monedei locale tradusă în pierderi de competitivitate, bule speculative pe piaţa de capital sau cea imobiliară etc.), mai ales dacă banca centrală nu dispune de o rezervă valutară suficient de mare Prin urmare, uneori se pot impune restricţii asupra fluxurilor de capital În absenţa (totală) a unor astfel de restricţii, vom spune că în economia respectivă contul financiar şi de capital este (complet) liberalizat Cu cât gradul de liberalizare este mai mare, cu atât diferenţialul de rată a dobânzii va fi mai important în decizia de alocare a investiţiilor (δ va creşte) Dacăliberalizarea este completă, în virtutea unui raţionament de absenţă a oportunităţilor spaţiale de arbitraj, rata dobânzii din economia locală va ajunge la nivelul celei de pe pieţele internaţionale r r f r r f CF 0 0

23 Implicaţiile regimului contului de capital şi respectiv de curs asupra specificaţiei Mundell-Fleming În discuţia anterioară, am văzut că putem întâlni 2 situaţii de regim de curs de schimb şi respectiv 2 situaţii de regim al contului de capital. Prin urmare, atunci când rezolvăm o aplicaţie Mundell-Fleming, ne putem situa într-una din următoarele 4 situaţii (care este specificată în enunţ): Situaţia 1: Regim de curs flexibil, cont de capital restricţionat Variabile endogene: PIB, rata dobânzii, cursul de schimb Ecuaţiile modelului: IS, LM, BP (CA + CF = 0) Situaţia 2: Regim de curs flexibil, cont de capital perfect liberalizat Variabile endogene: PIB, cursul de schimb Rata dobânzii: variabilă exogenă (r=rf) Ecuaţiile modelului: IS, LM

24 Situaţia 3: Regim de curs fix, cont de capital restricţionat Variabile endogene: PIB, rata dobânzii Ecuaţiile modelului: IS, LM, BP Situaţia 4: Regim de curs fix, cont de capital perfect liberalizat Variabile endogene: PIB, oferta reală de monedă Rata dobânzii, cursul de schimb: variabile exogene Ecuaţiile modelului: IS, LM În ultima situaţie observăm că oferta reală de monedă a devenit variabilă endogenă. Astfel, acest instrument nu mai poate fi utilizat de către autoritatea monetară pentru realizarea obiectivelor macroeconomice (creşterea PIB, creşterea consumului intern, scăderea ratei dobânzii etc.)

25 Ultimul caz descris anterior este cunoscut sub numele de trinitatea imposibilă Mai precis, fiind date următoarele 3 atribute Cont de capital liberalizat Curs de schimb fix Politică monetară independentă...o economie nu le poate deţine simultan pe toate 3, fiind nevoită să aleagă 2 dintre ele România are la ora actuală pe primul şi pe al treilea, în timp ce regimul de curs este flotare controlată. Odată cu adoptarea euro (probabil în anul 2019), România va avea un curs fix, însă îşi va pierde independenţa politicii monetare

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

CAPITOLUL 2 FLUCTUAŢIILE AGREGATELOR MACROECONOMICE ŞI CAUZELE ACESTORA

CAPITOLUL 2 FLUCTUAŢIILE AGREGATELOR MACROECONOMICE ŞI CAUZELE ACESTORA Fluctuaţiile agregatelor macroeconomice şi cauzele acestora CAPITOLUL 2 FLUCTUAŢIILE AGREGATELOR MACROECONOMICE ŞI CAUZELE ACESTORA 2.2. Static şi dinamic Creşterea economică reprezintă dezvoltarea capacităţii

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

Μπορώ να κάνω ανάληψη στην [χώρα] χωρίς να πληρώσω προμήθεια; Informează dacă există comisioane bancare la retragere numerar într-o anumită țară

Μπορώ να κάνω ανάληψη στην [χώρα] χωρίς να πληρώσω προμήθεια; Informează dacă există comisioane bancare la retragere numerar într-o anumită țară - General Μπορώ να κάνω ανάληψη στην [χώρα] χωρίς να πληρώσω προμήθεια; Μπορώ να κάνω ανάληψη στην [χώρα] χωρίς να πληρώσω προμήθεια; Informează dacă există comisioane bancare la retragere numerar într-o

Διαβάστε περισσότερα

(2), ,. 1).

(2), ,. 1). 178/1 L I ( ) ( ) 2019/1111 25 2019,, ( ), 81 3,,, ( 1 ), ( 2 ),, : (1) 15 2014 ( ). 2201/2003. ( 3 ) ( ). 2201/2003,..,,. (2),..,,, 25 1980, («1980»),.,,. ( 1 ) 18 2018 ( C 458 19.12.2018,. 499) 14 2019

Διαβάστε περισσότερα

Γενικό ποσοστό συμμετοχής στην αγορά εργασίας πληθυσμού χρονών - σύνολο

Γενικό ποσοστό συμμετοχής στην αγορά εργασίας πληθυσμού χρονών - σύνολο πληθυσμού 15-64 χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το γενικό ποσοστό συμμετοχής στην αγορά εργασίας πληθυσμού 15-64 χρονών υπολογίζεται με τη διαίρεση του αριθμού του οικονομικά ενεργού

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Γενικό ποσοστό απασχόλησης ισοδύναμου πλήρως απασχολούμενου πληθυσμού - σύνολο

Γενικό ποσοστό απασχόλησης ισοδύναμου πλήρως απασχολούμενου πληθυσμού - σύνολο απασχολούμενου πληθυσμού - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το γενικό ποσοστό απασχόλησης ισοδύναμου πλήρως απασχολούμενου πληθυσμού υπολογίζεται με τη διαίρεση του αριθμού του ισοδύναμου πλήρως

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

Γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού χρονών - σύνολο

Γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού χρονών - σύνολο 15-64 χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Ο γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού 15-64 χρονών υπολογίζεται με τη διαίρεση της ετήσιας αύξησης του οικονομικά ενεργού πληθυσμού

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

Ποσοστό απασχόλησης στον τριτογενή τομέα του πληθυσμού χρονών - σύνολο

Ποσοστό απασχόλησης στον τριτογενή τομέα του πληθυσμού χρονών - σύνολο Ποσοστό απασχόλησης στον τριτογενή τομέα του πληθυσμού 15-64 χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το ποσοστό απασχόλησης στον τριτογενή τομέα του πληθυσμού 15-64 χρονών υπολογίζεται με

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Ποσοστό μακροχρόνιας ανεργίας (διάρκεια 12+ μήνες) οικονομικά ενεργού πληθυσμού 15+ χρονών - σύνολο

Ποσοστό μακροχρόνιας ανεργίας (διάρκεια 12+ μήνες) οικονομικά ενεργού πληθυσμού 15+ χρονών - σύνολο οικονομικά ενεργού πληθυσμού 15+ χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το ποσοστό μακροχρόνιας ανεργίας (διάρκεια 12+ μήνες) οικονομικά ενεργού πληθυσμού 15+ χρονών υπολογίζεται με τη διαίρεση

Διαβάστε περισσότερα

Μερίδιο εργοδοτουμένων με μερική ή / και προσωρινή απασχόληση στον εργοδοτούμενο πληθυσμό 15+ χρονών - σύνολο

Μερίδιο εργοδοτουμένων με μερική ή / και προσωρινή απασχόληση στον εργοδοτούμενο πληθυσμό 15+ χρονών - σύνολο Μερίδιο εργοδοτουμένων με μερική ή / και προσωρινή απασχόληση στον εργοδοτούμενο πληθυσμό 15+ χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το μερίδιο εργοδοτουμένων με μερική ή/και προσωρινή απασχόληση

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

Kap. 6. Produktionskosten-theorie. Irina Ban. Kap. 6. Die Produktionskostentheorie

Kap. 6. Produktionskosten-theorie. Irina Ban. Kap. 6. Die Produktionskostentheorie Kap. 6. Produktionskosten-theorie Irina Ban Pearson Studium 2014 2014 Kap. 6. Die Produktionskostentheorie Bibliografie: Cocioc, P. (coord.) (2015), Microeconomie, Ed. Risoprint, Cluj-Napoca, cap. 7. Pindyck,

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

Θα ήθελα να ανοίξω ένα τραπεζικό λογαριασμό. Θα ήθελα να κλείσω τον τραπεζικό μου λογαριασμό. ίντερνετ;

Θα ήθελα να ανοίξω ένα τραπεζικό λογαριασμό. Θα ήθελα να κλείσω τον τραπεζικό μου λογαριασμό. ίντερνετ; - Γενικά Pot retrage numerar în [țara] fără a plăti comisioane? Μπορώ να κάνω ανάληψη στην [χώρα] χωρίς να πληρώσω προμήθεια; Πληροφόρηση σχετικά με το αν πρέπει να πληρώσετε ποσοστά προμήθειας όταν κάνετε

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

V O. = v I v stabilizator

V O. = v I v stabilizator Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15 MĂSURI RELE Cursul 13 15 Măsuri reale Fie (,, µ) un spaţiu cu măsură completă şi f : R o funcţie -măsurabilă. Cum am văzut în Teorema 11.29, dacă f are integrală pe, atunci funcţia de mulţime ν : R, ν()

Διαβάστε περισσότερα

CAPITOLUL 3 MECANISMUL PIEŢEI

CAPITOLUL 3 MECANISMUL PIEŢEI CAPITOLUL 3 MECANISMUL PIEŢEI Introducere Piaţa este un mecanism de alocare a resurselor. Pe o piaţă liberă consumatorii, producătorii şi proprietarii factorilor de producţie interacţionează, fiecare dintre

Διαβάστε περισσότερα

10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea

Διαβάστε περισσότερα

Curs 2 DIODE. CIRCUITE DR

Curs 2 DIODE. CIRCUITE DR Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu

Διαβάστε περισσότερα

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB 1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

Modul de calcul al prețului polițelor RCA

Modul de calcul al prețului polițelor RCA Modul de calcul al prețului polițelor RCA Componentele primei comerciale pentru o poliță RCA sunt: Prima pură Cheltuieli specifice poliței Alte cheltuieli Marja de profit Denumită și primă de risc Cheltuieli

Διαβάστε περισσότερα

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective: TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi

Διαβάστε περισσότερα

Dinamica inflatiei si a somajului

Dinamica inflatiei si a somajului Dinamica inflatiei si a somajului 1 Introducere Ce este inflatia? Inflatia este un dezechilibru care afecteaza, in proportii diferite, toate economiile nationale, si care poate fi sesizat prin doua tendinte

Διαβάστε περισσότερα

Conturile de activitate ale subiectilor economici

Conturile de activitate ale subiectilor economici SCN-Sistemul Conturilor Nationale Conturile de activitate ale subiectilor economici lectia 6 CSIE + Fin. Curs- pag. 78-91 al.isaic-maniu www.amaniu.ase.ro Sistemul European de Conturi - SEC SEC-ul înregistrează

Διαβάστε περισσότερα

Εμπορική αλληλογραφία Ηλεκτρονική Αλληλογραφία

Εμπορική αλληλογραφία Ηλεκτρονική Αλληλογραφία - Εισαγωγή Stimate Domnule Preşedinte, Stimate Domnule Preşedinte, Εξαιρετικά επίσημη επιστολή, ο παραλήπτης έχει ένα ειδικό τίτλο ο οποίος πρέπει να χρησιμοποιηθεί αντί του ονόματος του Stimate Domnule,

Διαβάστε περισσότερα

I X A B e ic rm te e m te is S

I X A B e ic rm te e m te is S Sisteme termice BAXI Modele: De ce? Deoarece reprezinta o solutie completa care usureaza realizarea instalatiei si ofera garantia utilizarii unor echipamente de top. Adaptabilitate la nevoile clientilor

Διαβάστε περισσότερα

4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice

4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice 4. Măsurarea tensiunilor şi a curenţilor electrici oltmetre electronice analogice oltmetre de curent continuu Ampl.c.c. x FTJ Protectie Atenuator calibrat Atenuatorul calibrat divizor rezistiv R in const.

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

Α. Η ΜΕΛΙΣΣΟΚΟΜΙΑ ΣΤΗΝ ΕΛΛΑΔΑ

Α. Η ΜΕΛΙΣΣΟΚΟΜΙΑ ΣΤΗΝ ΕΛΛΑΔΑ ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΗΡΟΤΡΟΦΙΑΣ ΚΑΙ ΜΕΛΙΣΣΟΚΟΜΙΑΣ Πασχάλης Χαριζάνης Α. Η ΜΕΛΙΣΣΟΚΟΜΙΑ ΣΤΗΝ ΕΛΛΑΔΑ 1. Κερί Σύμφωνα με την Εθνική Στατιστική Υπηρεσία της Ελλάδος η παραγωγή κεριού για

Διαβάστε περισσότερα

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, vidiu Gabriel Avădănei, Florin Mihai Tufescu, Capitolul 6 Amplificatoare operaţionale 58. Să se calculeze coeficientul de amplificare în tensiune pentru amplficatorul inversor din fig.58, pentru care se

Διαβάστε περισσότερα

Συμβούλιο της Ευρωπαϊκής Ένωσης Βρυξέλλες, 7 Μαρτίου 2017 (OR. en)

Συμβούλιο της Ευρωπαϊκής Ένωσης Βρυξέλλες, 7 Μαρτίου 2017 (OR. en) Συμβούλιο της Ευρωπαϊκής Ένωσης Βρυξέλλες, 7 Μαρτίου 2017 (OR. en) 7057/17 ADD 1 TRANS 97 ΔΙΑΒΙΒΑΣΤΙΚΟ ΣΗΜΕΙΩΜΑ Αποστολέας: Ημερομηνία Παραλαβής: Αποδέκτης: Για τον Γενικό Γραμματέα της Ευρωπαϊκής Επιτροπής,

Διαβάστε περισσότερα

ΠΑΓΚΟΣΜΙΑ ΗΜΕΡΑ ΑΣΟΠΟΝΙΑΣ. ασοπονία και αγορά προϊόντων ξύλου

ΠΑΓΚΟΣΜΙΑ ΗΜΕΡΑ ΑΣΟΠΟΝΙΑΣ. ασοπονία και αγορά προϊόντων ξύλου LOGO ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΟΥ ΜΑΡΚΕΤΙΝΓΚ ΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΠΑΓΚΟΣΜΙΑ ΗΜΕΡΑ ΑΣΟΠΟΝΙΑΣ ασοπονία και αγορά προϊόντων ξύλου ρ. ΠΑΠΑ ΟΠΟΥΛΟΣ ΙΩΑΝΝΗΣ Αναπληρωτής Καθηγητής ΤΕΙ Λάρισας E-mail: papad@teilar.gr

Διαβάστε περισσότερα

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1

Διαβάστε περισσότερα

Criptosisteme cu cheie publică III

Criptosisteme cu cheie publică III Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.

Διαβάστε περισσότερα

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

ΕΥΡΩΒΑΡΟΜΕΤΡΟ 72 ΚΟΙΝΗ ΓΝΩΜΗ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ

ΕΥΡΩΒΑΡΟΜΕΤΡΟ 72 ΚΟΙΝΗ ΓΝΩΜΗ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ Standard Eurobarometer European Commission ΕΥΡΩΒΑΡΟΜΕΤΡΟ 72 ΚΟΙΝΗ ΓΝΩΜΗ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ ΦΘΙΝΟΠΩΡΟ 2009 Standard Eurobarometer 72 / Φθινόπωρο 2009 TNS Opinion & Social ΕΘΝΙΚΗ ΑΝΑΛΥΣΗ GREECE Η έρευνα

Διαβάστε περισσότερα

Examen AG. Student:... Grupa:... ianuarie 2011

Examen AG. Student:... Grupa:... ianuarie 2011 Problema 1. Pentru ce valori ale lui n,m N (n,m 1) graful K n,m este eulerian? Problema 2. Să se construiască o funcţie care să recunoască un graf P 3 -free. La intrare aceasta va primi un graf G = ({1,...,n},E)

Διαβάστε περισσότερα

Curs 6 Relatii de cointegrare

Curs 6 Relatii de cointegrare Curs 6 Relatii de cointegrare Intuitie: Doua serii de timp sunt in relatie de cointegrare daca nu sunt neaparat corelate, dar o combinatie liniara a lor este de medie si varianta constante: mai devreme

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1 FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

Esalonul Redus pe Linii (ERL). Subspatii.

Esalonul Redus pe Linii (ERL). Subspatii. Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste

Διαβάστε περισσότερα

Lucrarea Nr. 5 Circuite simple cu diode (Aplicaţii)

Lucrarea Nr. 5 Circuite simple cu diode (Aplicaţii) ucrarea Nr. 5 Circuite simple cu diode (Aplicaţii) A.Scopul lucrării - Verificarea experimentală a rezultatelor obţinute prin analiza circuitelor cu diode modelate liniar pe porţiuni ;.Scurt breviar teoretic

Διαβάστε περισσότερα

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie) Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului

Διαβάστε περισσότερα

1. PROPRIETĂȚILE FLUIDELOR

1. PROPRIETĂȚILE FLUIDELOR 1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea

Διαβάστε περισσότερα

Examen AG. Student:... Grupa: ianuarie 2016

Examen AG. Student:... Grupa: ianuarie 2016 16-17 ianuarie 2016 Problema 1. Se consideră graful G = pk n (p, n N, p 2, n 3). Unul din vârfurile lui G se uneşte cu câte un vârf din fiecare graf complet care nu-l conţine, obţinându-se un graf conex

Διαβάστε περισσότερα

CIRCUITE INTEGRATE MONOLITICE DE MICROUNDE. MMIC Monolithic Microwave Integrated Circuit

CIRCUITE INTEGRATE MONOLITICE DE MICROUNDE. MMIC Monolithic Microwave Integrated Circuit CIRCUITE INTEGRATE MONOLITICE DE MICROUNDE MMIC Monolithic Microwave Integrated Circuit CUPRINS 1. Avantajele si limitarile MMIC 2. Modelarea dispozitivelor active 3. Calculul timpului de viata al MMIC

Διαβάστε περισσότερα

5.1. Noţiuni introductive

5.1. Noţiuni introductive ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul

Διαβάστε περισσότερα

1.3 Baza a unui spaţiu vectorial. Dimensiune

1.3 Baza a unui spaţiu vectorial. Dimensiune .3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este

Διαβάστε περισσότερα

Ecuatii trigonometrice

Ecuatii trigonometrice Ecuatii trigonometrice Ecuatiile ce contin necunoscute sub semnul functiilor trigonometrice se numesc ecuatii trigonometrice. Cele mai simple ecuatii trigonometrice sunt ecuatiile de tipul sin x = a, cos

Διαβάστε περισσότερα

页面

页面 订单 - 配售 Εξετάζουμε την αγορά...luăm în considerare posibi 正式, 试探性 Είμαστε στην ευχάριστη Suntem θέση να încântați δώσουμε την să plasăm παραγγελία μας στην εταιρεία comandă σας pentru... για... Θα θέλαμε

Διαβάστε περισσότερα

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

SIGURANŢE CILINDRICE

SIGURANŢE CILINDRICE SIGURANŢE CILINDRICE SIGURANŢE CILINDRICE CH Curent nominal Caracteristici de declanşare 1-100A gg, am Aplicaţie: Siguranţele cilindrice reprezintă cea mai sigură protecţie a circuitelor electrice de control

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

Principiul Inductiei Matematice.

Principiul Inductiei Matematice. Principiul Inductiei Matematice. Principiul inductiei matematice constituie un mijloc important de demonstratie in matematica a propozitiilor (afirmatiilor) ce depind de argument natural. Metoda inductiei

Διαβάστε περισσότερα

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument: Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,

Διαβάστε περισσότερα

CAPITOLUL 3 MODELE PRIVIND STABILIREA PREŢULUI PRODUSELOR/SERVICIILOR FIRMEI. 3.1 Obiectivele deciziei de preţ

CAPITOLUL 3 MODELE PRIVIND STABILIREA PREŢULUI PRODUSELOR/SERVICIILOR FIRMEI. 3.1 Obiectivele deciziei de preţ CAPITOLUL 3 MODELE PRIVIND STABILIREA PREŢULUI PRODUSELOR/SERVICIILOR FIRMEI În analiza modelelor prezentate în acest capitol vom utiliza categoria de preţ ca pe o variabilă a cărei valoare va fi stabilită

Διαβάστε περισσότερα

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R În cele ce urmează, vom studia unele proprietăţi ale mulţimilor din R. Astfel, vom caracteriza locul" unui punct în cadrul unei mulţimi (în limba

Διαβάστε περισσότερα

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3 SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest

Διαβάστε περισσότερα

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1 Aparate de măsurat Măsurări electronice Rezumatul cursului 2 MEE - prof. dr. ing. Ioan D. Oltean 1 1. Aparate cu instrument magnetoelectric 2. Ampermetre şi voltmetre 3. Ohmetre cu instrument magnetoelectric

Διαβάστε περισσότερα