Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1"

Transcript

1 Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni odvodi višjih redov Lokalna linearizacija in totalni diferencial fukcije Verižno pravilo Jacobijeva matrika in posplošitev verižnega pravila Lokalni ekstremi funkcij več spremenljivk Globalni ekstremi funkcij več spremenljivk Vezani ekstremi V prostoru n-teric R n = {x = (x 1, x 2,..., x n ); x i R, i = 1,..., n} definiramo skalarni produkt in razdaljo < (x 1,..., x n ), (y 1,..., y n ) > := d(x, y) = x y = < x y, x y > = n x i y i i=1 n (x i y i ) 2. i=1

2 Naj bo a R n in ε > 0. Množico imenujemo ε-okolica točke a. K ε (a) = {x R n ; d(x, a) < ε} Če je n = 1, je K ε (a) = (a ε, a + ε). Če je n = 2, je K ε (a 1, a 2 ) odprt krog s središčem v (a 1, a 2 ) in polmerom ε. Če je n = 3, je K ε (a 1, a 2, a 3 ) odprta krogla s središčem v (a 1, a 2, a 3 ) in polmerom ε. Točka a je notranja točka množice A R n, če obstaja okolica K ε (a), ki je vsa vsebovana v A. Množico vseh notranjih točk menujemo notranjost množice A. Točka a je zunanja točka množice A R n, če obstaja okolica K ε (a), ki je vsa vsebovana v R n \A. Točka a je robna točka množice A R n, če vsaka okolica K ε (a) seka A in R n \A. Množico vseh robnih točk imenujemo rob množice A. Množica A R n je odprta, če je vsaka njena točka notranja točka. Množica A R n je zaprta, če vsebuje vse svoje robne točke. Množica A R n je omejena, če obstaja tak R > 0, da je A K R (0).

3 Zaporedje točk (T k ) k N R n konvergira k točki T 0 če je lim k T k T 0 = 0. lim T k = T 0, k Trditev Zaporedje točk (T k (x k, y k )) k N R 2 konvergira k točki T 0 (x 0, y 0 ), natanko tedaj ko lim k x k = x 0 in lim k y k = y 0. Predpis f, ki vsaki točki x = (x 1, x 2,..., x n ) D R n priredi natanko določeno realno število f (x), imenujemo funkcija n spremenljivk. Če imamo podan samo predpis f (x) = f (x 1, x 2,..., x n ), imenujemo množico vseh točk v R n za katere lahko izračunamo vrednost naravno definicijsko območje funkcije f in ga označimo z D(f ). Graf funkcije f : D(f ) R n R je množica G(f ) = {(x 1, x 2,..., x n, f (x 1, x 2,..., x n )); (x 1, x 2,..., x n ) D(f )} Množico točk za katero je vrednost funkcije konstantna, f (x) = C, imenujemo nivojnica ali nivojska krivulja.

4 zhx,yl= zhx,yl=x2 +y2 4 - x2 - y zhx,yl= zhx,yl=x2 -y2 x2 + y Limita in zveznost funkcije vec spremenljivk S tevilo λ je limita funkcije f : D Rn R v toc ki a = (a1,..., an ), c e za vsak ε > 0 obstaja tak δ > 0, da velja: c e je 0 < kx ak < δ, potem je f (x) λ < ε. Oznaka: λ = lim f (x) x a Funkcija f : D Rn R je v toc ki a = (a1,..., an ) D zvezna, c e obstaja limita limx a f (x) in c e je limx a = f (a). Funkcija f je zvezna na obmoc ju 4 D, c e je zvezna v vsaki njegovi toc ki.

5 Prav tako kot za funkcije ene spremenjivke tudi za funkcije več spremenljivk velja, da je vsota, razlika, produkt, kvocient in kompozitum zveznih funkcij tudi zvezna funkcija. V nadaljevanju se bomo zaradi lažjega označevanja v večini definicij omejili na funkcije dveh spremenljivk, ki ju bomo označevali z x in y. Vse definicije in izreke se da enostavno posplošiti za funkcije več spremenljivk. Parcialni odvodi funkcije več spremenljivk Naj bo f definirana na neki okolici točke (a, b) R 2. Funkcija f je v točki (a, b) parcialno odvedljiva po spremenljivki x, če obstaja limita lim h 0 f (a + h, b) f (a, b). h Limito imenujemo parcialni odvod funkcije f v točki (a, b) po x in jo označimo z f x (a, b) ali f x(a, b). Torej f x (a, b) f f (a + h, b) f (a, b) x(a, b) := lim. h 0 h

6 Naj bo f definirana na neki okolici točke (a, b) R 2. Funkcija f je v točki (a, b) parcialno odvedljiva po spremenljivki y, če obstaja limita lim k 0 f (a, b + k) f (a, b). k Limito imenujemo parcialni odvod funkcije f v točki (a, b) po y in jo označimo z f (a, b) ali f y (a, b). Torej f (a, b) f f (a, b + k) f (a, b) y (a, b) := lim. k 0 k Funkcijo parcialno odvajamo po eni od spremenljivk tako, da obravnavamo druge spremenljivke kot bi bile konstante. Gradient in odvod funkcije več spremenljivk v dani smeri Če je f : D R n R parcialno odvedljiva po vseh spremenljivkah, imenujemo vektor (grad f )(x) f := ( f x 1 (x), f x 2 (x),..., f x n (x)) gradient funkcije f v točki x = (x 1,..., x n ) D. Naj bo f : D R n R, x = (x 1,..., x n ) D, s = (s 1,..., s n ) in s = 1. Če obstaja limita f (x + ts) f (x) ( s f )(x) := lim, t 0 t jo imenujemo odvod funkcije f v smeri s.

7 Trditev Naj bo f : D R n R zvezno parcialno odvedljiva po vseh spremenljivkah. Potem velja ( s f )(x) = < (grad f )(x), s >. Posledica ( s f )(x) je največji takrat, ko je s = (grad f )(x) (grad f )(x). Torej je grad f vektor, ki kaže v smeri najhitrejšega naraščanja funkcije f. Parcialni odvodi višjih redov Na odprti množici D R 2 definira preslikava (x, y) f x (x, y) funkcijo dveh spremenjivk, ki jo imenujemo parcialni odvod funkcije f po spremenljivki x. Prav tako definira preslikava (x, y) f (x, y) funkcijo dveh spremenjivk, ki jo imenujemo parcialni odvod funkcije f po spremenljivki y. Če obstajajo, lahko torej definiramo parcialne odvode drugega reda: 2 f x 2 := ( ) f 2 f x x x := ( ) f x 2 f 2 := ( f ) 2 f x := x ( ) f

8 Trditev Če za funkcijo f : D R 2 R, kjer je D odprta množica, obstajata mešana odvoda 2 f x, 2 f x in sta zvezni funkciji, potem sta enaka 2 f (x, y) = 2 x f (x, y). x Obstajajo primeri, ko oba mešana odvoda obstajata, a nista enaka. Analogno definiramo tudi odvode višjih redov. Lokalna linearizacija in totalni diferencial fukcije Izrek Naj za funkcijo f : D R 2 R, kjer je D odprta množica, obstajata parcialna odvoda f f x in, ki sta zvezna v točki (x, y). Potem obstajata taki funkciji ε 1 (h, k) in ε 2 (h, k), ki sta zvezni v točki (0, 0), da je ε 1 (0, 0) = ε 2 (0, 0) = 0, in velja enakost f (x+h, y+k) = f (x, y)+ f f (x, y) h+ x (x, y) k+ε 1(h, k) h+ε 2 (h, k) k za vsako točko (h, k), ki je dovolj blizu točke (0, 0). Zgornjo enakost imenujemo lokalna linearizacija funkcije f okrog točke (x, y). Izraz df = f f (x, y) h + (x, y) k x imenujemo totalni diferencial funkcije f v točki (x, y) pri prirastku (h, k).

9 Izrek (Posplošitev izreka o lokalni linearizaciji za funkcije več spremenljivk) Naj za funkcijo f : D R n R, kjer je D odprta množica, f obstajajo parcialni odvodi x i, ki so zvezni v točki x = (x 1,..., x n ). Potem obstajajo take funkcije ε i (h), h = (h 1,..., h n ), ki so zvezne v točki (0,..., 0), da je ε i (0) = 0, in velja enakost f (x + h) = f (x) + n i=1 f x i (x) h i + n ε i (h) h i i=1 za vsako točko h, ki je dovolj blizu točke 0 = (0,..., 0). Zgornjo enakost imenujemo lokalna linearizacija funkcije f okrog točke x. Verižno pravilo Izrek (Verižno pravilo za funkcijo dveh spremenljivk) Naj za funkcijo f : D R 2 R, kjer je D odprta množica, obstajata oba parcialna odvoda f f x in in naj bosta zvezni funkciji. Naj bosta funkciji x = u(t) in y = v(t) odvedljivi na intervalu (α, β) ter (u(t), v(t)) D za vsak t (α, β). Potem je funkcija g(t) = f (u(t), v(t)) odvedljiva na (α, β) in velja g (t) dg f (t) = dt x (u(t), v(t)) u (t) + f (u(t), v(t)) v (t)

10 Izrek (Posplošitev verižnega pravila za funkcije več spremenljivk) Naj za funkcijo f : D R n R, kjer je D odprta množica, f obstajajo vsi parcialni odvodi x i in naj bodo zvezne funkcije. Naj bodo funkcije x 1 = u 1 (t),..., x n = u n (t) odvedljive na intervalu (α, β) in naj bo (u 1 (t), u 2 (t),..., u n (t)) D za vsak t (α, β). Potem je funkcija g(t) = f (u 1 (t),..., u n (t)) odvedljiva na (α, β) in velja g (t) dg dt (t) = n i=1 f x i (u 1 (t),..., u n (t)) u i(t) Jacobijeva matrika in posplošitev verižnega pravila Naj bo D odprta podmnožica R n in f j : D R n R, j = 1,..., m, funkcije n realnih spremenljivk. Potem imenujemo funkcijo f = (f 1,..., f m ) : D R n R m vektorska funkcija. Vektorsko funkcijo f = (f 1,..., f j ) lahko lineariziramo okrog točke x, če lahko okrog točke x lineariziramo vsako funkcijo f j, j = 1,..., m. To pomeni, da funkcije f j zadoščajo pogojem iz izreka o lokalni linearizaciji.

11 Matriko dimenzije m n (Jac f)(x) = f 1 x 1 (x) f 2 x 1 (x). f m x 1 (x) f 1 x 2 (x) f 2 x 2 (x).... f m x 2 (x) f 1 x n (x) f 2 x n (x).... f m x n (x) imenujemo Jacobijeva matrika funkcije f=(f 1,..., f m ) v točki x. Trditev (Posplošitev verižnega pravila za vektorske funkcije) Naj bo f : A R n R m, g : B R m R k in f(a) B. Če lahko funkcijo f lokalno lineariziramo okrog točke a in funkcijo g okrog točke b = f (a), potem lahko funkcijo g f lokalno lineariziramo okrog točke a in (Jac (g f))(a) = (Jac g)(f(a)) (Jac f)(a). Naj bo f = (u, v) : D R 2 R 2, u = u(x, y) in v = v(x, y). Potem je Jacobijeva matrika funcije f enaka (Jac f)(x, y) = u u x (x, y) v v x (x, y) (x, y) (x, y)

12 Lokalni ekstremi funkcij več spremenljivk Naj bo D odprta podmnožica R n in f : D R n R. Funkcija f ima v točki a D lokalni maksimum ( lokalni minimum), če obstaja taka okolica K ε (a) točke a, da za vsak x K ε (a) velja f (x) f (a) (f (x) f (a)). Točko a D za katero velja (grad f )(a) = 0 imenujemo kritična ali stacionarna točka funkcije f. Trditev Naj bo D odprta podmnožica R n in f : D R n R. Če ima funkcija f ima v točli a D lokalni ekstrem in če je f parcialno odvedljiva po vseh svojih spremenljivkah, je a kritična točka funkcije f. Če je (grad f )(a) = 0, v točki a ni nujno lokalni ekstrem: f (x, y) = y 2 x 2 ima v a = (0, 0) sedlo.

13 Globalni ekstremi funkcij več spremenljivk Naj bo zaprta omejena podmnožica R n in f : R n R. Funkcija f ima v točli a D globalni maksimum ( globalni minimum), če velja f (x) f (a) (f (x) f (a)) za vsak x. Trditev Naj bo zaprta omejena podmnožica R n in f : R n R zvezna na. Potem funkcija f na doseže svoj globalni maksimum in svoj globalni minimum. Če je f tudi parcialno odvedljiva v notranjosti, potem ekstremne vrednosti doseže bodisi v notranjih stacionarne točke bodisi v robnih točkah območja. Vezani ekstremi Trditev (Metoda Lagrangeovih množiteljev) Naj bo D odprta podmnožica R n in funkcije f, g 1,... g m : D R naj bodo na D zvezno parcialno odvedljive po vseh spremenljivkah. Naj bo a D taka točka, da so vektorji (grad g k )(a), k = 1,... m, linearno neodvisni. Če obstaja taka okolica K ε (a), ε > 0, da je ali f (a) = max{f (x); x K ε (a), g 1 (x) =... = g m (x) = 0} f (a) = min{f (x); x K ε (a), g 1 (x) =... = g m (x) = 0}, potem obstajajo taki skalarji (Lagrangeovi množitelji) λ 1,... λ m, da je m grad(f + λ k g k )(a) = 0. k=1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Osnove matematične analize 2016/17

Osnove matematične analize 2016/17 Osnove matematične analize 216/17 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Kaj je funkcija? Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Funkcije več spremenljivk

Funkcije več spremenljivk DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

Funkcije dveh in več spremenljivk

Funkcije dveh in več spremenljivk Poglavje 3 Funkcije dveh in več spremenljivk 3.1 Osnovni pojmi Definicija 3.1.1. Funkcija dveh spremenljivk je preslikava, ki vsaki točki (x, y) ravninske množice D priredi realno število z = f(x, y),

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim

Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim Študij AHITEKTURE IN URBANIZMA, šol l 06/7 Vaje iz MATEMATIKE 8 Odvod funkcije f( Definicija: Naj bo f definirana na neki okolici točke 0 Če obstaja lim 0 +h f( 0 h 0 h, pravimo, da je funkcija f odvedljiva

Διαβάστε περισσότερα

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO MATEMATIKA III

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO MATEMATIKA III UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 215 ii Kazalo Diferencialni račun vektorskih funkcij 1 1.1 Skalarne funkcije...........................

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA. Naj bo vektorsko polje R : R 3 R 3 dano s predpisom R(x, y, z) = (2x 2 + z 2, xy + 2yz, z). Izračunaj pretok polja R skozi površino torusa

Διαβάστε περισσότερα

Izpeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega

Izpeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega Izeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega 1. Najosnovnejše o konveksnih funkcijah Definicija. Naj bo X vektorski rostor in D X konveksna množica. Funkcija ϕ: D R je konveksna,

Διαβάστε περισσότερα

Del 5. Vektorske funkcije in funkcije več spremenljivk

Del 5. Vektorske funkcije in funkcije več spremenljivk Del 5 Vektorske funkcije in funkcije več spremenljivk POGLAVJE 1 Krivulje v R n 1. Risanje vektorskih funkcij in vektorskih zaporedij Funkcija iz R v R n je podana z dvema podatkoma: z definicijskim območjem,

Διαβάστε περισσότερα

II. LIMITA IN ZVEZNOST FUNKCIJ

II. LIMITA IN ZVEZNOST FUNKCIJ II. LIMITA IN ZVEZNOST FUNKCIJ. Preslikave med množicami Funkcija ali preslikava med dvema množicama A in B je predpis f, ki vsakemu elementu x množice A priredi natanko določen element y množice B. Važno

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta Matematika 1 Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 21. april 2008 102 Poglavje 4 Odvod 4.1 Definicija odvoda Naj bo funkcija f definirana na intervalu (a, b) in x 0 točka s tega intervala. Vzemimo

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

vezani ekstremi funkcij

vezani ekstremi funkcij 11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Realne funkcije. Elementarne funkcije. Polinomi in racionalne funkcije. Eksponentna funkcija a x : R R + FKKT Matematika 1

Realne funkcije. Elementarne funkcije. Polinomi in racionalne funkcije. Eksponentna funkcija a x : R R + FKKT Matematika 1 Realne funkcije Funkcija f denirana simetri nem intervalu D = ( a, a) ali D = [ a, a] (i) je soda, e velja f(x) = f( x), x D; (ii) je liha, e velja f(x) = f( x), x D. Naj bo f denirana D f in x 1, x 2

Διαβάστε περισσότερα

INŽENIRSKA MATEMATIKA I

INŽENIRSKA MATEMATIKA I INŽENIRSKA MATEMATIKA I REŠENE NALOGE za izredne študente VSŠ Tehnično upravljanje nepremičnin Marjeta Škapin Rugelj Fakulteta za gradbeništvo in geodezijo Kazalo Števila in preslikave 5 Vektorji 6 Analitična

Διαβάστε περισσότερα

Matematika. BF Lesarstvo. Zapiski ob predavanjih v šolskem letu 2010/2011

Matematika. BF Lesarstvo. Zapiski ob predavanjih v šolskem letu 2010/2011 Matematika BF Lesarstvo Matjaž Željko Zapiski ob predavanjih v šolskem letu 00/0 Izpis: 9 avgust 0 Kazalo Števila 5 Naravna števila 5 Cela števila 6 3 Racionalna števila 6 4 Realna števila 7 5 Urejenost

Διαβάστε περισσότερα

VAJE IZ MATEMATIKE 2 za smer Praktična matematika. Martin Raič

VAJE IZ MATEMATIKE 2 za smer Praktična matematika. Martin Raič VAJE IZ MATEMATIKE za smer Praktična matematika Martin Raič Datum zadnje spremembe: 3. maj 8 Kazalo. Ponovitev elementarnih integralov 3. Metrični prostori 5 3. Fourierove vrste 4. Funkcije več spremenljivk

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

VAJE IZ MATEMATIKE 2 za smer Praktična matematika. Martin Raič

VAJE IZ MATEMATIKE 2 za smer Praktična matematika. Martin Raič VAJE IZ MATEMATIKE za smer Praktična matematika Martin Raič Datum zadnje spremembe: 3. januar 7 Kazalo. Ponovitev elementarnih integralov 3. Metrični prostori 5 3. Fourierove vrste 4. Funkcije več spremenljivk

Διαβάστε περισσότερα

Univerza v Mariboru. Fakulteta za logistiko MATEMATIKA. Univerzitetni učbenik

Univerza v Mariboru. Fakulteta za logistiko MATEMATIKA. Univerzitetni učbenik Univerza v Mariboru Fakulteta za logistiko MATEMATIKA Univerzitetni učbenik AJDA FOŠNER IN MAJA FOŠNER Junij, 2008 Kazalo 1 Množice 5 11 Matematična logika 5 12 Množice 10 2 Preslikave 18 21 Realne funkcije

Διαβάστε περισσότερα

Algebraične strukture

Algebraične strukture Poglavje V Algebraične strukture V tem poglavju bomo spoznali osnovne algebraične strukture na dani množici. Te so podane z eno ali dvema binarnima operacijama. Binarna operacija paru elementov iz množice

Διαβάστε περισσότερα

Osnovne lastnosti odvoda

Osnovne lastnosti odvoda Del 2 Odvodi POGLAVJE 4 Osnovne lastnosti odvoda. Definicija odvoda Odvod funkcije f v točki x je definiran z f f(x + ) f(x) (x) =. 0 Ta definicija je smiselna samo v primeru, ko x D(f), ita na desni

Διαβάστε περισσότερα

Poliedri Ines Pogačar 27. oktober 2009

Poliedri Ines Pogačar 27. oktober 2009 Poliedri Ines Pogačar 27. oktober 2009 Pri linearnem programiranju imamo opravka s končnim sistemom neenakosti in končno spremenljivkami, torej je množica dopustnih rešitev presek končno mnogo polprostorov.

Διαβάστε περισσότερα

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant.

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant. Poglavje IV Determinanta matrike V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant 1 Definicija Preden definiramo determinanto,

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1 Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije

Διαβάστε περισσότερα

Uporabna matematika za naravoslovce

Uporabna matematika za naravoslovce Uporabna matematika za naravoslovce Zapiski predavanj Študijski programi: Aplikativna kineziologija, Biodiverziteta Študijsko leto 203/4 doc.dr. Barbara Boldin Fakulteta za matematiko, naravoslovje in

Διαβάστε περισσότερα

Matematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija.

Matematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija. 1 / 46 Univerza v Ljubljani, FE Potenčna Korenska Melita Hajdinjak Matematika I (VS) Kotne 013/14 / 46 Potenčna Potenčna Funkcijo oblike f() = n, kjer je n Z, imenujemo potenčna. Število n imenujemo eksponent.

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Linearne preslikave. Poglavje VII. 1 Definicija linearne preslikave in osnovne lastnosti

Linearne preslikave. Poglavje VII. 1 Definicija linearne preslikave in osnovne lastnosti Poglavje VII Linearne preslikave V tem poglavju bomo vektorske prostore označevali z U,V,W,... Vsi vektorski prostori bodo končnorazsežni. Zaradi enostavnosti bomo privzeli, da je pripadajoči obseg realnih

Διαβάστε περισσότερα

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. 1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

Univerza na Primorskem Pedagoška fakulteta Koper. Geometrija. Istvan Kovacs in Klavdija Kutnar

Univerza na Primorskem Pedagoška fakulteta Koper. Geometrija. Istvan Kovacs in Klavdija Kutnar Univerza na Primorskem Pedagoška fakulteta Koper Geometrija Istvan Kovacs in Klavdija Kutnar Koper, 2007 PREDGOVOR Pričujoče študijsko gradivo je povzeto po naslednjih knigah Richard S. Millman, George

Διαβάστε περισσότερα

Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D R priredi neko število f (x) R.

Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D R priredi neko število f (x) R. II. FUNKCIJE 1. Osnovni pojmi 2. Sestavljanje funkcij 3. Pregled elementarnih funkcij 4. Zveznost Kaj je funkcija? Definicija Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D R priredi

Διαβάστε περισσότερα

Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA. Polona Oblak

Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA. Polona Oblak Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA Polona Oblak Ljubljana, 04 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 5(075.8)(0.034.) OBLAK,

Διαβάστε περισσότερα

22. Kdaj sta dva vektorja vzporedna? FGG geodezija UNI Matematika I, 2005/ Kdaj so vektorji a 1, a 2,..., a n linearno neodvisni?

22. Kdaj sta dva vektorja vzporedna? FGG geodezija UNI Matematika I, 2005/ Kdaj so vektorji a 1, a 2,..., a n linearno neodvisni? FGG geodezija UNI Matematika I, 2005/06 1. Definicija enakosti množic (funkcij, kompleksnih števil, urejenih n teric)? 2. Definicija kartezičnega produkta množic A in B. Definicija množice R n. 3. Popolna

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

Spoznajmo sedaj definicijo in nekaj osnovnih primerov zaporedij števil.

Spoznajmo sedaj definicijo in nekaj osnovnih primerov zaporedij števil. Zaporedja števil V matematiki in fiziki pogosto operiramo s približnimi vrednostmi neke količine. Pri numeričnemu računanju lahko npr. število π aproksimiramo s števili, ki imajo samo končno mnogo neničelnih

Διαβάστε περισσότερα

Riemannove ploskve in analitična geometrija. Franc Forstnerič

Riemannove ploskve in analitična geometrija. Franc Forstnerič Riemannove ploskve in analitična geometrija Franc Forstnerič 11. februar 2018 Kazalo I Uvod v Riemannove ploskve 1 I.1 Motivacija.................................... 1 I.2 Definicija Riemannove ploskve

Διαβάστε περισσότερα

Matematika vaja. Matematika FE, Ljubljana, Slovenija Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija

Matematika vaja. Matematika FE, Ljubljana, Slovenija Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija Matematika 1 3. vaja B. Jurčič Zlobec 1 1 Univerza v Ljubljani, Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija Matematika FE, Ljubljana, Slovenija 2011 Določi stekališča zaporedja a

Διαβάστε περισσότερα

VAJE IZ MATEMATIKE 2 za smer Praktična matematika. Martin Raič

VAJE IZ MATEMATIKE 2 za smer Praktična matematika. Martin Raič VAJE IZ MATEMATIKE za smer Praktična matematika Martin Raič Datum zadnje spremembe:. maj 4 Kazalo. Ponovitev elementarnih integralov. Metrični prostori 4 3. Fourierove vrste 9 4. Funkcije več spremenljivk

Διαβάστε περισσότερα

AFINA IN PROJEKTIVNA GEOMETRIJA

AFINA IN PROJEKTIVNA GEOMETRIJA Aleš Vavpetič AFINA IN PROJEKTIVNA GEOMETRIJA Ljubljana 2011 ii naslov: AFINA IN PROJEKTIVNA GEOMETRIJA avtorske pravice: Aleš Vavpetič izdaja: prva izdaja založnik: samozaložba Aleš Vavpetič, Ljubljana

Διαβάστε περισσότερα

Matematika 1. Jaka Cimprič

Matematika 1. Jaka Cimprič Matematika 1 Jaka Cimprič Predgovor Pričujoči učbenik je namenjen študentom tistih univerzitetnih programov, ki vključujejo samo eno leto matematike. Nastala je na podlagi izkušenj, ki jih imam s poučevanjem

Διαβάστε περισσότερα

Vektorski prostori s skalarnim produktom

Vektorski prostori s skalarnim produktom Poglavje IX Vektorski prostori s skalarnim produktom Skalarni produkt dveh vektorjev v R n smo spoznali v prvem poglavju. Sedaj bomo pojem skalarnega produkta razširili na poljuben vektorski prostor V

Διαβάστε περισσότερα

3.1 Reševanje nelinearnih sistemov

3.1 Reševanje nelinearnih sistemov 3.1 Reševanje nelinearnih sistemov Rešujemo sistem nelinearnih enačb f 1 (x 1, x 2,..., x n ) = 0 f 2 (x 1, x 2,..., x n ) = 0. f n (x 1, x 2,..., x n ) = 0. Pišemo F (x) = 0, kjer je x R n in F : R n

Διαβάστε περισσότερα

Kateri logični shemi imajo matematični izreki? Matematični izreki imajo logično zgradbo implikacije(a=>b) ali zgradbo ekvivalence(a b)

Kateri logični shemi imajo matematični izreki? Matematični izreki imajo logično zgradbo implikacije(a=>b) ali zgradbo ekvivalence(a b) Matematika za inženirje 1 Vprašanja iz uvodnega poglavja Zapišite,kdaj je pravilna katera od logičnih operacij: disjunkcija, konjunkcija, implikacija in ekvivalenca. -Disjunkcija je pravilna (vsaj ena

Διαβάστε περισσότερα

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva

Διαβάστε περισσότερα

Lastne vrednosti in lastni vektorji

Lastne vrednosti in lastni vektorji Poglavje VIII Lastne vrednosti in lastni vektorji V tem poglavju bomo privzeli, da so skalarji v vektorskih prostorih, koeficienti v matrikah itd., kompleksna števila. Algebraične operacije seštevanja,

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22. junij Navodila

FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22. junij Navodila FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22 junij 212 Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Veljale bodo samo rešitve na papirju, kjer

Διαβάστε περισσότερα

Izpit sestavlja 4-5 vprašanj. Vsako ima več podvprašanj.

Izpit sestavlja 4-5 vprašanj. Vsako ima več podvprašanj. PRIMERI IZPITNIH VPRAŠANJ IZ MATEMATIKE JAKA CIMPRIČ, OKTOBER 2004 Izpit sestavlja 4-5 vprašanj. Vsako ima več podvprašanj. 1. Kombinatorika 1.1. Množice in relacije. (1) (Množice) (a) Kako si množice

Διαβάστε περισσότερα

Računski del izpita pri predmetu MATEMATIKA I

Računski del izpita pri predmetu MATEMATIKA I Kemijska tehnologija Visokošolski strokovni program Računski del izpita pri predmetu MATEMATIKA I 29. 8. 2013 Čas reševanja je 75 minut. Navodila: Pripravi osebni dokument. Ugasni in odstrani mobilni telefon.

Διαβάστε περισσότερα

Matematika. BF Lesarstvo. Zapiski ob predavanjih v šolskem letu 2009/2010

Matematika. BF Lesarstvo. Zapiski ob predavanjih v šolskem letu 2009/2010 Matematika BF Lesarstvo Matjaž Željko Zapiski ob predavanjih v šolskem letu 009/00 Izpis: 9 januar 00 KAZALO Kazalo Števila 5 Naravna števila 5 Cela števila 6 3 Racionalna števila 6 4 Realna števila 7

Διαβάστε περισσότερα

Univerza v Mariboru. Uporaba matematičnih metod v logistiki 1 Priročnik

Univerza v Mariboru. Uporaba matematičnih metod v logistiki 1 Priročnik Univerza v Mariboru Fakulteta za logistiko Uporaba matematičnih metod v logistiki 1 Priročnik BOJANA ZALAR Celje 2009 Izdala: Fakulteta za logistiko Univerze v Mariboru Naslov: Uporaba matematičnih metod

Διαβάστε περισσότερα

PRIMER UPORABE FUNKCIJ 2. FUNKCIJE ENE SPREMENLJIVKE DEFINICIJA IN LASTNOSTI FUNKCIJE. Upogibni moment. M(X )=F A x qx2 2

PRIMER UPORABE FUNKCIJ 2. FUNKCIJE ENE SPREMENLJIVKE DEFINICIJA IN LASTNOSTI FUNKCIJE. Upogibni moment. M(X )=F A x qx2 2 3 4 PRIMER UPORABE FUNKCIJ Upogibni moment 2. FUNKCIJE ENE SPREMENLJIVKE T (x) =F A qx M(X )=F A x qx2 2 1 2 DEFINICIJA IN LASTNOSTI FUNKCIJE Naj bosta A in B neprazni množici. Enolična funkcija f : A

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

REˇSITVE. Naloga a. b. c. d Skupaj. FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost 2. kolokvij 23.

REˇSITVE. Naloga a. b. c. d Skupaj. FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost 2. kolokvij 23. Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost. kolokvij 3. januar 08 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Nalog je 6,

Διαβάστε περισσότερα

1 Fibonaccijeva stevila

1 Fibonaccijeva stevila 1 Fibonaccijeva stevila Fibonaccijevo število F n, kjer je n N, lahko definiramo kot število načinov zapisa števila n kot vsoto sumandov, enakih 1 ali Na primer, število 4 lahko zapišemo v obliki naslednjih

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

Matematika. Funkcije in enačbe

Matematika. Funkcije in enačbe Matematika Funkcije in enačbe (1) Nariši grafe naslednjih funkcij: (a) f() = 1, (b) f() = 3, (c) f() = 3. Rešitev: (a) Linearna funkcija f() = 1 ima začetno vrednost f(0) = 1 in ničlo = 1/. Definirana

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih.

cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih. TRIGONOMETRIJA (A) Merske enote KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA stopinja [ ] radian [rad] 80 80 0. Izrazi kot v radianih. 0 90 5 0 0 70. Izrazi kot v stopinjah. 5 8 5 (B) Definicija kotnih funkcij

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

D f, Z f. Lastnosti. Linearna funkcija. Definicija Linearna funkcija f : je definirana s predpisom f(x) = kx+n; k,

D f, Z f. Lastnosti. Linearna funkcija. Definicija Linearna funkcija f : je definirana s predpisom f(x) = kx+n; k, Linearna funkcija Linearna funkcija f : je definirana s predpisom f(x) = kx+n; k, n ᄀ. k smerni koeficient n začetna vrednost D f, Z f Definicijsko območje linearne funkcije so vsa realna števila. Zaloga

Διαβάστε περισσότερα

Obvestila. Matematično programiranje z aplikacijami. Pregled predmeta Matematično programiranje z aplikacijami. Vaje: Nadaljujemo z začinjeno pizzo.

Obvestila. Matematično programiranje z aplikacijami. Pregled predmeta Matematično programiranje z aplikacijami. Vaje: Nadaljujemo z začinjeno pizzo. Obvestila. z aplikacijami Drago Bokal Oddelek za matematiko in računalništvo Fakulteta za naravoslovje in matematiko Univerza v Mariboru 21. februar 2012 http://um.fnm.uni-mb.si/ Prosojnice: MPA NN Naslov

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti Poglavje XI Kvadratne forme V zadnjem poglavju si bomo ogledali še eno vrsto preslikav, ki jih tudi lahko podamo z matrikami. To so tako imenovane kvadratne forme, ki niso več linearne preslikave. Kvadratne

Διαβάστε περισσότερα

Dodatna poglavja iz linearne algebre za 1. letnik finančne matematike na FMF. Primož Moravec

Dodatna poglavja iz linearne algebre za 1. letnik finančne matematike na FMF. Primož Moravec Dodatna poglavja iz linearne algebre za 1 letnik finančne matematike na FMF Primož Moravec 13 september 2017 1 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 51264(0758)

Διαβάστε περισσότερα

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta Matematika Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 6. november 200 Poglavje 2 Zaporedja in številske vrste 2. Zaporedja 2.. Uvod Definicija 2... Zaporedje (a n ) = a, a 2,..., a n,... je predpis,

Διαβάστε περισσότερα

Osnove kompleksne analize MARKO SLAPAR

Osnove kompleksne analize MARKO SLAPAR Osnove kompleksne analize MARKO SLAPAR Univerza v Ljubljani Pedagoška fakulteta Marko Slapar Osnove kompleksne analize Ljubljana, Avgust 22 Naslov: Osnove kompleksne analize Avtor: Marko Slapar Recenzenta:

Διαβάστε περισσότερα

Množico vseh funkcijskih vrednosti, ki jih pri tem dobimo, imenujemo zaloga vrednosti funkcije f. Oznaka: Z f

Množico vseh funkcijskih vrednosti, ki jih pri tem dobimo, imenujemo zaloga vrednosti funkcije f. Oznaka: Z f Funkcije Funkcija f : A B (funkcija iz množice A v množico B) je predpis (pravilo, postopek, preslikava, formula,..), ki danemu podatku x A priredi funkcijsko vrednost f (x) B. Množica A je množica vseh

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Odvode odvisnih spremenljivk po neodvisni spremenljivki bomo označevali s piko: Sistem navadnih diferencialnih enačb prvega reda ima obliko:

Odvode odvisnih spremenljivk po neodvisni spremenljivki bomo označevali s piko: Sistem navadnih diferencialnih enačb prvega reda ima obliko: 4 Sisemi diferencialnih enačb V prakičnih primerih večkra naleimo na več diferencialnih enačb, ki opisujejo določen pojav in so medsebojno povezane edaj govorimo o sisemih diferencialnih enačb V eh enačbah

Διαβάστε περισσότερα

Verjetnost 2. Oktober Verjetnost 2 Šesto poglavje. Obratna pot do markovskih verig. Od diskretnega časa proti zveznemu. Stabilnost in eksplozije

Verjetnost 2. Oktober Verjetnost 2 Šesto poglavje. Obratna pot do markovskih verig. Od diskretnega časa proti zveznemu. Stabilnost in eksplozije Oktober 2010 Vsebina 1 2 3 Osnovne sestavine obratne poti Imejmo markovsko o z diskretnim časom Y s števno množico stanj S, z začetno porazdelitvijo π 0 in prehodno matriko Q, ki ima lastnost, da so vsi

Διαβάστε περισσότερα

VAJE IZ MATEMATIKE za študente farmacije. Martin Raič s sodelavci

VAJE IZ MATEMATIKE za študente farmacije. Martin Raič s sodelavci VAJE IZ MATEMATIKE za študente farmacije Martin Raič s sodelavci Datum zadnje spremembe: 28. oktober 205 Kazalo. Naravna števila 3 2. Realna števila 4 3. Preslikave 5 4. Zaporedja 6 5. Vrste 0 6. Zveznost

Διαβάστε περισσότερα

Analiza I. (študijsko gradivo) Matija Cencelj

Analiza I. (študijsko gradivo) Matija Cencelj Analiza I (študijsko gradivo) Matija Cencelj 2. maj 2007 2 Kazalo 1 Uvod 5 1.1 Izjave............................... 5 1.2 Množice.............................. 7 1.3 Relacije..............................

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Reševanje sistema linearnih

Reševanje sistema linearnih Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje

Διαβάστε περισσότερα

Navadne diferencialne enačbe

Navadne diferencialne enačbe Navadne diferencialne enačbe (študijsko gradivo) Matija Cencelj 1. maja 2003 2 Kazalo 1 Uvod 5 1.1 Preprosti primeri......................... 8 2 Diferencialne enačbe prvega reda 11 2.1 Ločljivi spremenljivki.......................

Διαβάστε περισσότερα

Matrike. Poglavje II. Matrika je pravokotna tabela realnih števil. Na primer: , , , 0 1

Matrike. Poglavje II. Matrika je pravokotna tabela realnih števil. Na primer: , , , 0 1 Poglavje II Matrike Matrika je pravokotna tabela realnih števil Na primer: [ ] 1 1 1, 2 3 1 1 0 1 3 2 1, 0 1 4 [ ] 2 7, Matrika je sestavljena iz vrstic in stolpcev Vrstici matrike [ ] 1 1 1 2 3 1 [ ]

Διαβάστε περισσότερα

Dragi polinom, kje so tvoje ničle?

Dragi polinom, kje so tvoje ničle? 1 Dragi polinom, kje so tvoje ničle? Vito Vitrih FAMNIT - Izlet v matematično vesolje 17. december 2010 Polinomi: 2 Polinom stopnje n je funkcija p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, a i R.

Διαβάστε περισσότερα

ZBIRKA REŠENIH NALOG IZ MATEMATIKE I

ZBIRKA REŠENIH NALOG IZ MATEMATIKE I Univerza v Ljubljani Fakulteta za elektrotehniko Andrej Perne ZBIRKA REŠENIH NALOG IZ MATEMATIKE I Skripta za vaje iz Matematike I (UNI + VSP) Ljubljana, množice Osnovne definicije: Množica A je podmnožica

Διαβάστε περισσότερα

10. poglavje. Kode za overjanje

10. poglavje. Kode za overjanje 10. poglavje Kode za overjanje (angl. Authentication Codes) Uvod Računanje verjetnosti prevare Kombinatorične ocene pravokotne škatje (ang. orthogonal arrays, OA) konstrukcije in ocene za OA Karakterizaciji

Διαβάστε περισσότερα