3.1 Reševanje nelinearnih sistemov

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "3.1 Reševanje nelinearnih sistemov"

Transcript

1 3.1 Reševanje nelinearnih sistemov Rešujemo sistem nelinearnih enačb f 1 (x 1, x 2,..., x n ) = 0 f 2 (x 1, x 2,..., x n ) = 0. f n (x 1, x 2,..., x n ) = 0. Pišemo F (x) = 0, kjer je x R n in F : R n R n. Za testni sistem bomo vzeli 3x 1 cos(x 1 x 2 ) 0.6 = 0 x (x ) 2 + sin(x 3 ) = 0 e x 1 x x = 0, ki ima rešitev α = ( , , ).

2 Kako pridemo do začetnih približkov Več kot imamo enačb, težje pridemo do začetnih približkov, če ne poznamo še ozadja sistema, ki ga rešujemo. V primeru ene same enačbe f(x) = 0 lahko iz grafa določimo začetni približek. V primeru dveh enačb f 1 (x 1, x 2 ) = 0 in f 2 (x 1, x 2 ) = 0 iščemo presečišče dveh implicitno podanih krivulj. Uporabimo lahko metode za implicitno risanje krivulj in spet grafično določimo začetni približek. Če se da, lahko tudi iz ene enačbe izrazimo eno spremenljivko in jo vstavimo v drugo enačbo, da dobimo eno samo nelinearno enačbo. Če imamo več enačb, je situacija bolj zapletena. Nekaj možnosti: redukcija na manjši sistem, aproksimacija z linearnim modelom, uporaba variacijskih metod, metoda zveznega nadaljevanja.

3 3.2 Navadna oz. Jacobijeva iteracija Prva metoda je posplošitev navadne iteracije. Sistem F (x) = 0 zapišemo v ekvivalentni obliki x = G(x), kjer je G : R n R n in tvorimo zaporedje približkov: x (r+1) = G(x (r) ), r = 0, 1,.... Če v našem testnem primeru iz i-te enačbe izrazimo x i, dobimo x (r+1) 1 = 1 3 x (r+1) 2 = 1 9 x (r+1) 3 = 1 20 od koder lahko razberemo G(x). ( cos(x (r) 1 x(r) (x (r) 2 ) ) 1 )2 + sin(x (r) 3 ) ( ) e x(r) 1 x(r) ,

4 Jacobijeva iteracija in testni primer Če vzamemo začetni približek x (0) = (0.4, 0.1, 0.4), potem iz dobimo zaporedje x (r+1) 1 = 1 3 x (r+1) 2 = 1 9 x (r+1) 3 = 1 20 ( cos(x (r) 1 x(r) (x (r) 2 ) ) 1 )2 + sin(x (r) 3 ) ( ) e x(r) 1 x(r) , r 3 x (r) x (r 1) F (x (r) ) x (r) 1 x (r) 2 x (r)

5 Konvergenca navadne iteracije za sisteme nelinearnih enačb Izrek 1. Če obstaja območje Ω R n z lastnostima: a) x Ω G(x) Ω, b) x Ω ρ(jg(x)) m < 1, kjer je JG(x) Jacobijeva matrika g 1 (x) g x 1 (x) 1 xn JG(x) =.. gn(x) x 1 gn(x) xn in ρ spektralni radij (največja absolutna vrednost lastne vrednosti), potem ima G(x) = x v Ω natanko eno rešitev α, zaporedje x (r+1) = G(x (r) ), r = 0, 1,..., pa za vsak x (0) Ω konvergira k α. Red konvergence je odvisen od Jacobijeve matrike. V primeru JG(α) = 0 dobimo vsaj kvadratično konvergenco, ta pogoj pa je izpolnjen npr. pri Newtonovi metodi, ki je posplošitev tangentne metode.

6 Zadostni pogoj in ocena za napako Izrek 2. Če obstaja območje Ω R n z lastnostima: a) x Ω G(x) Ω, b) JG(x) m < 1 kar je ekvivalentno n g j (x) x m < 1, j = 1,..., n, k k=1 potem ima G(x) = x v Ω natanko eno rešitev α, zaporedje x (r+1) = G(x (r) ), r = 0, 1,..., za vsak x (0) Ω konvergira k α in velja ocena x (r) α mr 1 m x(1) x (0).

7 Testni primer Za testni primer imamo JG(x) = x 2 3 sin(x 1 x 2 ) x 1 3 sin(x 1 x 2 ) 0 x x 2 1 +sin x cos x 3 9 x 2 1 +sin x x 2 20 e x 1 x 2 x 1 20 e x 1 x 2 0. Če vzamemo Ω = [ 1, 1] [ 1, 1] [ 1, 1], potem za x Ω velja G(x) Ω. Če ocenimo absolutne vrednosti parcialnih odvodov G na Ω, dobimo G(x) m za m = Iz ocene x (8) α m8 1 m x(1) x (0) sledi x (8) α , kar je zelo slaba ocena.

8 Seidlova iteracija Če računamo komponente x (r) po vrsti, lahko izračunane komponente upoštevamo pri izračunu naslednjih: x (r+1) 1 = 1 3 x (r+1) 2 = 1 9 x (r+1) 3 = 1 20 ( cos(x (r) 1 x(r) (x (r+1) 2 ) ) 1 ) 2 + sin(x (r) 3 ) ( ) e x(r+1) 1 x (r+1) Temu postopku pravimo Seidlova iteracija. iteracija, obstajajo pa tudi protiprimeri. Ponavadi konvergira hitreje kot Jacobijeva Pri testnem primeru z x (0) = (0.4, 0.1, 0.4) dobimo zaporedje r 3 x (r) x (r 1) f(x (r) ) x (r) 1 x (r) 2 x (r)

9 3.3 Newtonova metoda Izpeljava Newtonove metode poteka preko Taylorjeve vrste. Denimo, da so vse f i dvakrat zvezno odvedljive v okolici rešitve. Tedaj lahko razvijemo: f i (x + x) = f i (x) + n k=1 f i (x) x k x k +, i = 1,..., n. Če zanemarimo kvadratne in višje člene in želimo, da bo f(x + x) = 0, dobimo linearni sistem za popravke f 1 (x) x 1. fn(x) x 1 f 1 (x) xn. fn(x) xn x 1. = x n f 1 (x)., f n (x) nato pa popravimo približke v x k + x k, k = 1,..., n.

10 Newtonova metoda Pri Newtonovi metodi tvorimo zaporedje x (r+1) = x (r) JF (x (r) ) 1 F (x (r) ), r = 0, 1,.... V praksi ne računamo inverza Jacobijeve matrike, temveč rešujemo sistem: JF (x (r) ) x (r) = F (x (r) ), x (r+1) = x (r) + x (r), r = 0, 1,.... Tako kot pri tangentni metodi imamo tudi tukaj v bližini enostavne ničle zagotovljeno kvadratično konvergenco, težava pa je v tem, da moramo za konvergenco ponavadi poznati dovolj dober začetni približek.

11 Newtonova metoda in testni primer Za testni primer velja JF (x) = 3 + x 2 sin(x 1 x 2 ) x 1 sin(x 1 x 2 ) 0 2x 1 162(x ) cos(x 3 ). x 2 e x 1 x 2 x 1 e x 1 x 2 20 Če vzamemo začetni približek x (0) = (0.4, 0.1, 0.4), potem Newtonova metoda vrne r 3 x (r) x (r 1) f(x (r) ) x (r) 1 x (r) 2 x (r)

12 Kantorovičev izrek Izrek 3. Denimo, da obstajajo taka števila a, b, c, da je h = abc < 1 2 in da velja: a) F je v x (0) odvedljiva in JF 1 (x (0) ) a, b) b = x (1) x (0), c) v okolici K (x (0), 2b) = {x : x x (0) 2b} so funkcije f i dvakrat zvezno odvedljive in velja n 2 f i (x) x j x k c, i, j = 1,..., n. n k=1 Potem ima sistem F (x) = 0 v K (x (0), 2b) natanko eno rešitev α h kateri konvergira zaporedje {x (r) } in velja ocena r 1 x (r) α (2h)2. 2 r 1

13 Zgled uporabe Kantorovičevega izreka Za naš testni primer velja f 1x1 x 1 (x) = x 2 2 cos(x 1x 2 ) f 1x1 x 2 (x) = x 1 x 2 cos(x 1 x 2 ) f 1x1 x 3 (x) = 0 f 1x2 x 2 (x) = x 2 1 cos(x 1x 2 ) f 1x2 x 3 (x) = 0 f 1x3 x 3 (x) = 0 f 2x1 x 1 (x) = 2 f 2x1 x 2 (x) = 0 f 2x1 x 3 (x) = 0 f 2x2 x 2 (x) = 162 f 2x2 x 3 (x) = 0 f 2x3 x 3 (x) = sin x 3 f 3x1 x 1 (x) = x 2 2 e x 1 x 2 f 3x1 x 2 (x) = x 1 x 2 e x 1 x 2 f 3x1 x 3 (x) = 0 f 3x2 x 2 (x) = x 2 1 e x 1 x 2 f 3x2 x 3 (x) = 0 f 3x3 x 3 (x) = 0. Vzamemo lahko c = 486. Za a dobimo Če začnemo pri x(0), izreka še ne moremo uporabiti, saj je potem h = Če pa začnemo pri x (2), dobimo h = Po izreku potem dobimo oceno x (5) α

14 Kvazi Newtonove metode Posebno pri velikih n imamo pri Newtonovi metodi veliko dela. Če je Jacobijeva matrika polna, potem moramo v vsakem koraku najprej izračunati n 2 parcialnih odvodov, potem pa še rešiti sistem z matriko n n, za kar potrebujemo O(n 3 ) operacij. Zaradi tega in pa tudi ker ne poznamo nujno parcialnih odvodov, bi radi tudi tukaj žrtvovali nekaj konvergence za računanje brez parcialnih odvodov, podobno kot pri sekantni metodi. V ta namen obstaja mnogo kvazi Newtonovih metod, ki ne uporabljajo parcialnih odvodov. Najbolj znana je Broydenova metoda. Kadar imamo velik n in je Jacobijeva matrika razpršena, potem se za reševanje linearnega sistema s to matriko ne splača uporabljati direktnih metod. Uporabljamo iterativne metode, kar pomeni, da v vsakem koraku namesto točnega popravka izračunamo le približek za popravek. Tovrstne metode so t.i. netočne Newtonove metode, primer je kombinacija Newtonove metode in metode GMRES.

15 Broydenova metoda Naj bo B r približek za JF (x (r) ). En korak kvazi Newtonove metode je a) reši B r x (r) = F (x (r) ), b) x (r+1) = x (r) + x (r), c) določi B r+1 za naslednji korak. Pri Broydenovi metodi za B r+1 vzamemo najbližjo matriko B r, ki zadošča t.i. sekantnemu pogoju B r+1 (x (r+1) x (r) ) = F (x (r+1) ) F (x (r) ). Rešitev je B r+1 = B r + F (x(r) )( x (r) ) T ( x (r) ) T x (r). Na začetku za B 0 vzamemo čim boljšo aproksimacijo za JF (x (0) ), v najslabšem primeru pa kar I. Število operacij lahko zmanjšamo, če namesto direktnega posodabljanja B r posodobimo faktorizacijo, ki jo uporabljamo za reševanje sistema v točki a).

16 3.4 Variacijske metode Iščemo ekstrem funkcije F : R n R n, kjer je F dvakrat zvezno odvedljiva na vse spremenljivke. Potreben pogoj za ekstrem je gradf (x) = 0 oziroma F (x) x k = 0 za k = 1,..., n. Če je x stacionarna točka, potem o vrsti in obstoju ekstrema odloča Hessejeva matrika drugih odvodov 2 F (x) x HF (x) = 2 2 F (x) x 1 1 xn... 2 F (x) x 1 xn 2 F (x) Iskanje ekstrema funkcij več spremenljivk lahko tako prevedemo na reševanje sistema nelinearnih enačb. Gre pa tudi obratno. x 2 n

17 Prevedba reševanja nelinearnega sistema na iskanje minimuma Iščemo rešitev sistema F (x) = 0, kjer je F : R n R n. Funkcija G(x) = n f 2 i (x) i=1 ima globalni minimum ravno v točkah, kjer je F (x) = 0, zato lahko ničlo F poiščemo tako, da poiščemo globalni minimum G.

18 Metode za iskanje minimuma gladke funkcije n spremenljivk Splošni nastavek je, da se iterativno monotono približujemo minimumu. Naj bo x (r) tekoči približek. Izberemo vektor (smer) v r R n in v tej smeri poiščemo naslednji približek tako da bo G(x (r+1) ) < G(x (r) ). x (r+1) = x (r) + λ r v r, Pogledati moramo: kako izberemo smer v r, kako določimo λ.

19 Izbira smeri Za izbiro smeri imamo med drugim naslednje možnosti: a) splošna metoda spusta: izberemo poljubno smer v r, le da ni pravokotna na gradg(x (r) ), saj v tej smeri ne moremo vedno dobiti manjše vrednosti. b) metoda najhitrejšega spusta oz. gradientna metoda: za smer izberemo negativni gradient v r = gradg(x (r) ). Pri tem pristopu moramo poznati parcialne odvode funkcije G. c) metoda koordinatnega spusta: za smeri po vrsti ciklično izbiramo koordinatne smeri e 1, e 2,..., e n.

20 Določanje premika Pri določanju λ r imamo opravka s funkcijo ene spremenljivke g r (λ): = G(x (r) + λv r ). Iščemo tak λ r, da bo g r (λ r ) < g r (0). Nekaj metod je: a) metoda največjega spusta: poiščemo λ r, kjer funkcija g r doseže svoj minimum. Za to rešimo nelinearno enačbo g r (λ r) = 0 ali pa uporabimo kakšno metodo za računanje minimuma funkcije ene spremenljivke, npr. metodo zlatega reza. b) metoda tangentnega spusta: za λ r vzamemo presečišče tangente na y = g r (λ) v točki λ = 0 z osjo x, oziroma λ r = g r (0)/g r (0). Če je g(λ r) g(0), potem λ r toliko časa razpolavljamo, dokler ne dobimo manjše vrednosti.

21 c) metoda paraboličnega spusta: najprej s tangentno metodo določimo α, potem pa skozi točke (0, g r (0)), (α/2, g(α/2)), (α, g(α)) potegnemo parabolo in za λ r vzamemo točko, kjer parabola doseže minimum. d) metoda diskretnega spusta: Izberemo h r. Če je g(h r ) < g(0), potem se premikamo naprej s korakom h r in za λ r vzamemo kh r, kjer je prvič g((k + 1)h r ) g(kh r ). Sicer pa h r razpolavljamo toliko časa, da je g(h r ) < g(0) in za λ r vzamemo h r.

22 Konvergenca Če iščemo minimum nenegativne funkcije, kar delamo, ko uporabimo variacijsko metodo za reševanje nelienarnega sistema, imamo zagotovljeno konvergenco ne glede na začetni približek, saj dobimo zaporedje približkov {x (r) }, za katere velja G(x (r+1) ) < G(x (r) ). Kar se tiče reda konvergence, je ta ponavadi linearen. Tako vedno dobimo nek lokalni minimum, nič pa nam ne zagotavlja, da bomo našli tudi globalni minimum. Ponavadi uporabimo kombinacijo variacijske metode in Newtonove metode ali kvazi Newtonove metode. Variacijska metoda nas ne glede na kvaliteto začetnega približka pripelje v bližino rešitve, potem pa uporabimo hitrejšo metodo, ki potrebuje dobre začetne približke.

23 Uporabne formule Če rešujemo nelinearni sistem F (x) = 0, kjer je F : R n R n, potem za G(x) = f 1 (x) f n (x) 2 velja Za gradient velja gradg(x) = 2 G(x) = F (x) T F (x). f 1 (x)f 1x1 (x) + f 2 (x)f 2x1 (x) + + f n (x)f nx1 (x) f 1 (x)f 1x2 (x) + f 2 (x)f 2x2 (x) + + f n (x)f nx2 (x). f 1 (x)f 1x n(x) + f 2 (x)f 2x n(x) + + f n (x)f nx n(x) oziroma enostavneje gradg(x) = JF (x) T F (x). Če definiramo g(λ) = G(x + λz), potem dobimo g (0) = 2F (x) T JF (x)z.

24 Testni primer in gradientna metoda Reševanje testnega primera lahko prevedemo na iskanje minimuma funkcije G(x) = f 1 (x) 2 + f 2 (x) 2 + f 3 (x) 2, kjer so f 1 (x) = 3x 1 cos(x 1 x 2 ) 0.6 f 2 (x) = x (x ) 2 + sin(x 3 ) f 3 (x) = e x 1 x x Če vzamemo začetni približek x (0) = (0, 0, 0) potem po 20 korakih dobimo x (20) = ( , , ). Če to uporabimo za začetni približek za Newtonovo metodo, potem po 5 korakih dobimo rešitev α = ( , , ). Če bi namesto Newtonove metode še naprej uporabljali gradientno metodo, bi za enako natančnost potrebovali še 104 korake gradientne metode.

25 3.5 Reševanje nelinearnih enačb v Matlabu V standardni verziji so na voljo naslednje funkcije: fminsearch: iskanje minimuma realne funkcije iz R n v R. Uporablja simpleksni algoritem. fminbnd: iskanje minimuma funkcije ene spremenljivke. Uporablja kombinacijo metode zlatega reza in parabolične interpolacije. Če ga imamo, potem je v dodatnem paketu za optimizacijo na voljo še: fsolve: reševanje sistema F (x) = 0 preko iskanja minimuma F (x) 2. Primeri uporabe: f=inline( x(1)^2+x(2)^2 ); fminsearch(f,[0.3;0.2]) f=inline( (x(1)^2+x(2)^2-10*x(1)-1)^2+(x(1)^2-x(2)^2+10*x(2)-25)^2 ); fminsearch(f,[2;4])

26 3.6 Metoda zveznega nadaljevanja To je metoda za reševanje nelinearne enačbe f(x) = 0. Če je težko poiskati začetni približek (še posebno pri nelinearnih sistemih), si lahko pomagamo z uvedbo dodatnega parametra. Opazujemo npr. F (t, x) = t f(x) + (1 t) g(x), kjer je 0 t 1 in poznamo rešitve g(x) = 0. S sledenjem krivulji od t = 0 do t = 1 dobimo rešitve f(x) = 0.

27 Metoda zveznega nadaljevanja in diferencialne enačbe Povezava z diferencialnimi enačbami je naslednja. Z odvajanjem po t dobimo kar nam da začetni problem kjer je g(x 0 ) = 0. F t (t, x) + F x (t, x) ẋ = 0, ẋ = F x (t, x) 1 F t (t, x), x(0) = x 0, Z metodami za reševanje začetnih problemov lahko sledimo rešitvi, poleg tega pa pri vsaki vrednosti t lahko upoštevamo še, da mora za x(t) veljati F (t, x(t)) = 0.

28 Prediktor-korektor sledenje homotopske krivulje a) prediktor: Iz točke (t, x(t)) z eno izmed metod za reševanje začetnega problema (npr. z Eulerjevo metodo) izračunamo prediktor x (P ) (t + h), ki je približek za rešitev v točki t + h. b) korektor: Z eno izmed metod za reševanje nelinearnega sistema (npr. z Newtonovo metodo) rešimo sistem F (t + h, x(t + h)) = 0, za začetni približek pa vzamemo (t + h, x (P ) (t + h)).

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Funkcije več spremenljivk

Funkcije več spremenljivk DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

11.5 Metoda karakteristik za hiperbolične PDE

11.5 Metoda karakteristik za hiperbolične PDE 11.5 Metoda karakteristik za hiperbolične PDE Hiperbolična kvazi linearna PDE ima obliko au xx + bu xy + cu yy = f, (1) kjer so a, b, c, f funkcije x, y, u, u x in u y, ter velja b 2 4ac > 0. Če predpostavimo,

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1 Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni

Διαβάστε περισσότερα

Dragi polinom, kje so tvoje ničle?

Dragi polinom, kje so tvoje ničle? 1 Dragi polinom, kje so tvoje ničle? Vito Vitrih FAMNIT - Izlet v matematično vesolje 17. december 2010 Polinomi: 2 Polinom stopnje n je funkcija p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, a i R.

Διαβάστε περισσότερα

8. Navadne diferencialne enačbe

8. Navadne diferencialne enačbe 8. Navadne diferencialne enačbe 8.1. Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogoju y(x 0 ) = y 0, kjer je f dana dovolj gladka funkcija

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

Analiza 2 Rešitve 14. sklopa nalog

Analiza 2 Rešitve 14. sklopa nalog Analiza Rešitve 1 sklopa nalog Navadne diferencialne enačbe višjih redov in sistemi diferencialnih enačb (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) 6 + 8 0, (b)

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

vezani ekstremi funkcij

vezani ekstremi funkcij 11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad

Διαβάστε περισσότερα

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. 1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

Matematika 2. Diferencialne enačbe drugega reda

Matematika 2. Diferencialne enačbe drugega reda Matematika 2 Diferencialne enačbe drugega reda (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) y 6y + 8y = 0, (b) y 2y + y = 0, (c) y + y = 0, (d) y + 2y + 2y = 0. Rešitev:

Διαβάστε περισσότερα

α i y n i + h β i f n i = 0, Splošni nastavek je k

α i y n i + h β i f n i = 0, Splošni nastavek je k 10.4 Večkoračne metode Splošni nastavek je k α i y n i + h i=0 k β i f n i = 0, kjer je f i = f(x i, y i ), privzamemo pa še α 0 = 1. Če je β 0 = 0, je metoda eksplicitna, sicer pa implicitna. i=0 Adamsove

Διαβάστε περισσότερα

Reševanje sistema linearnih

Reševanje sistema linearnih Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα

Navadne diferencialne enačbe

Navadne diferencialne enačbe Navadne diferencialne enačbe Navadne diferencialne enačbe prvega reda V celotnem poglavju bo y = dy dx. Diferencialne enačbe z ločljivima spremeljivkama Diferencialna enačba z ločljivima spremeljivkama

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

Osnove matematične analize 2016/17

Osnove matematične analize 2016/17 Osnove matematične analize 216/17 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Kaj je funkcija? Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

8. Posplošeni problem lastnih vrednosti

8. Posplošeni problem lastnih vrednosti 8. Posplošeni problem lastnih vrednosti Bor Plestenjak NLA 13. april 2010 Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april 2010 1 / 15 Matrični šop Dani sta kvadratni n n matriki

Διαβάστε περισσότερα

diferencialne enačbe - nadaljevanje

diferencialne enačbe - nadaljevanje 12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

Navadne diferencialne enačbe

Navadne diferencialne enačbe Poglavje 6 Navadne diferencialne enačbe 6.1 Uvod Splošna rešitev navadne diferencialne enačbe n-tega reda F(x, y, y, y,..., y (n) ) = 0 je n-parametrična družina funkcij. Kadar želimo iz splošne rešitve

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

Matematika. Funkcije in enačbe

Matematika. Funkcije in enačbe Matematika Funkcije in enačbe (1) Nariši grafe naslednjih funkcij: (a) f() = 1, (b) f() = 3, (c) f() = 3. Rešitev: (a) Linearna funkcija f() = 1 ima začetno vrednost f(0) = 1 in ničlo = 1/. Definirana

Διαβάστε περισσότερα

Matematično modeliranje 3. poglavje Dinamično modeliranje: diferencialne enačbe, sistemi diferencialnih enačb

Matematično modeliranje 3. poglavje Dinamično modeliranje: diferencialne enačbe, sistemi diferencialnih enačb Matematično modeliranje 3. poglavje Dinamično modeliranje: diferencialne enačbe, sistemi diferencialnih enačb Fakulteta za računalništvo in informatiko Univerza v Ljubljani 2017/2018 Za kaj rabimo diferencialne

Διαβάστε περισσότερα

Problem lastnih vrednosti 1 / 20

Problem lastnih vrednosti 1 / 20 Problem lastnih vrednosti 1 / 20 2 / 20 1 Uvod 2 Potenčna metoda 3 Inverzna iteracija 4 QR iteracija 5 Metode za simetrične matrike Sturmovo zaporedje Jacobijeva iteracija 3 / 20 Uvod Naj bo A R n n. Paru

Διαβάστε περισσότερα

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO MATEMATIKA III

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO MATEMATIKA III UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA III Maribor, september 215 ii Kazalo Diferencialni račun vektorskih funkcij 1 1.1 Skalarne funkcije...........................

Διαβάστε περισσότερα

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

Programi v Matlabu za predmet numerične metode

Programi v Matlabu za predmet numerične metode Programi v Matlabu za predmet numerične metode 18. 04 2002 1 1 Reševanje nelinearnih enačb Napisali bomo program za reševanje nelinearnih enačb z uporabo posameznih metod. Rešujete nelinearne enačbe oblike

Διαβάστε περισσότερα

Enočlenske metode veljajo trenutno za najprimernejše metode v numeričnem reševanju začetnih problemov. Skoraj vse sodijo v

Enočlenske metode veljajo trenutno za najprimernejše metode v numeričnem reševanju začetnih problemov. Skoraj vse sodijo v Enočlenske metode J.Kozak Uvod v numerične metode - / 4 Enočlenske metode veljajo trenutno za najprimernejše metode v numeričnem reševanju začetnih problemov. Skoraj vse sodijo v skupino Runge-Kutta metod.

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

Poglavje 2. Sistemi linearnih enačb

Poglavje 2. Sistemi linearnih enačb Poglavje 2 Sistemi linearnih enačb Najpogostejši problem, na katerega naletimo pri numeričnem računanju, je reševanje sistema linearnih enačb Tak sistem lahko dobimo direktno iz matematične formulacije

Διαβάστε περισσότερα

Funkcije dveh in več spremenljivk

Funkcije dveh in več spremenljivk Poglavje 3 Funkcije dveh in več spremenljivk 3.1 Osnovni pojmi Definicija 3.1.1. Funkcija dveh spremenljivk je preslikava, ki vsaki točki (x, y) ravninske množice D priredi realno število z = f(x, y),

Διαβάστε περισσότερα

Zbirka rešenih izpitnih nalog iz numeričnih metod

Zbirka rešenih izpitnih nalog iz numeričnih metod Zbirka rešenih izpitnih nalog iz numeričnih metod Borut Jurčič - Zlobec Andrej Perne Univerza v Ljubljani Fakulteta za elektrotehniko Ljubljana 6 Kazalo Iterativno reševanje nelinearnih enačb 4 Navadna

Διαβάστε περισσότερα

Problem lastnih vrednosti

Problem lastnih vrednosti Problem lastnih vrednosti Naj bo A R n n. Iščemo lastni par, da zanj velja Ax = λx, kjer je x C n, x 0 (desni) lastni vektor, λ C pa lastna vrednost. Vektor y 0, pri katerem je y H A = λy H, je levi lastni

Διαβάστε περισσότερα

11. Posplošeni problemi lastnih vrednosti

11. Posplošeni problemi lastnih vrednosti 11. Posplošeni problemi lastnih vrednosti Dani sta kvadratni n n matriki A in B. Množico vseh matrik oblike A λb, kjer je λ C, imenujemo matrični šop in označimo z (A, B) ali A λb. Karakteristični polinom

Διαβάστε περισσότερα

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta Matematika Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 6. november 200 Poglavje 2 Zaporedja in številske vrste 2. Zaporedja 2.. Uvod Definicija 2... Zaporedje (a n ) = a, a 2,..., a n,... je predpis,

Διαβάστε περισσότερα

FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22. junij Navodila

FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22. junij Navodila FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22 junij 212 Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Veljale bodo samo rešitve na papirju, kjer

Διαβάστε περισσότερα

Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim

Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim Študij AHITEKTURE IN URBANIZMA, šol l 06/7 Vaje iz MATEMATIKE 8 Odvod funkcije f( Definicija: Naj bo f definirana na neki okolici točke 0 Če obstaja lim 0 +h f( 0 h 0 h, pravimo, da je funkcija f odvedljiva

Διαβάστε περισσότερα

Nekaj zgledov. J.Kozak Numerične metode II (IŠRM) / 21

Nekaj zgledov. J.Kozak Numerične metode II (IŠRM) / 21 Nekaj zgledov J.Kozak Numerične metode II (IŠRM) 2011-2012 1 / 21 V robnih problemih rešitev diferencialne enačbe zadošča dodatnim pogojem, ki niso vsi predpisani v isti točki. Že osnovna zahteva, kot

Διαβάστε περισσότερα

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti Poglavje XI Kvadratne forme V zadnjem poglavju si bomo ogledali še eno vrsto preslikav, ki jih tudi lahko podamo z matrikami. To so tako imenovane kvadratne forme, ki niso več linearne preslikave. Kvadratne

Διαβάστε περισσότερα

5.1 Predpogojevanje. K 1 Ax = K 1 b,

5.1 Predpogojevanje. K 1 Ax = K 1 b, 5.1 Predpogojevanje Konvergenca metod podprostorov za reševanje linearnega sistema Ax = b je v veliki meri odvisna od razporeditve lastnih vrednosti (in lastnih vektorjev) matrike A. Kadar je konvergenca

Διαβάστε περισσότερα

Uporabna matematika za naravoslovce

Uporabna matematika za naravoslovce Uporabna matematika za naravoslovce Zapiski predavanj Študijski programi: Aplikativna kineziologija, Biodiverziteta Študijsko leto 203/4 doc.dr. Barbara Boldin Fakulteta za matematiko, naravoslovje in

Διαβάστε περισσότερα

Bor Plestenjak. Numerične metode. delovna verzija. verzija: 4. marec 2010

Bor Plestenjak. Numerične metode. delovna verzija. verzija: 4. marec 2010 Bor Plestenjak Numerične metode delovna verzija verzija: 4. marec 200 Kazalo Uvod 7. Numerična matematika................................. 7.2 Plavajoča vejica...................................... 0.3

Διαβάστε περισσότερα

Uvod v numerične metode

Uvod v numerične metode Uvod v numerične metode Bor Plestenjak soba 4.04 bor.plestenjak@fmf.uni-lj.si http://www-lp.fmf.uni-lj.si/plestenjak/vaje/vaje.htm asistent: Gašper Jaklič Režim 2 sklopa domačih nalog - 20% pisne ocene

Διαβάστε περισσότερα

Računski del izpita pri predmetu MATEMATIKA I

Računski del izpita pri predmetu MATEMATIKA I Kemijska tehnologija Visokošolski strokovni program Računski del izpita pri predmetu MATEMATIKA I 29. 8. 2013 Čas reševanja je 75 minut. Navodila: Pripravi osebni dokument. Ugasni in odstrani mobilni telefon.

Διαβάστε περισσότερα

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta Matematika 1 Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 21. april 2008 102 Poglavje 4 Odvod 4.1 Definicija odvoda Naj bo funkcija f definirana na intervalu (a, b) in x 0 točka s tega intervala. Vzemimo

Διαβάστε περισσότερα

Uvod v numerične metode (matematika)

Uvod v numerične metode (matematika) Bor Plestenjak Uvod v numerične metode (matematika) delovna verzija verzija: 5. oktober 202 Kazalo Uvod 5. Numerična matematika................................. 5.2 Plavajoča vejica......................................

Διαβάστε περισσότερα

Tema 1 Osnove navadnih diferencialnih enačb (NDE)

Tema 1 Osnove navadnih diferencialnih enačb (NDE) Matematične metode v fiziki II 2013/14 Tema 1 Osnove navadnih diferencialnih enačb (NDE Diferencialne enačbe v fiziki Večina osnovnih enačb v fiziki je zapisana v obliki diferencialne enačbe. Za primer

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

Osnovne lastnosti odvoda

Osnovne lastnosti odvoda Del 2 Odvodi POGLAVJE 4 Osnovne lastnosti odvoda. Definicija odvoda Odvod funkcije f v točki x je definiran z f f(x + ) f(x) (x) =. 0 Ta definicija je smiselna samo v primeru, ko x D(f), ita na desni

Διαβάστε περισσότερα

Interpolacija in aproksimacija funkcij

Interpolacija in aproksimacija funkcij Poglavje 4 Interpolacija in aproksimacija funkcij Na interpolacijo naletimo, kadar moramo vrednost funkcije, ki ima vrednosti znane le v posameznih točkah (pravimo jim interpolacijske točke), izračunati

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

DISKRETNA FOURIERJEVA TRANSFORMACIJA

DISKRETNA FOURIERJEVA TRANSFORMACIJA 29.03.2004 Definicija DFT Outline DFT je linearna transformacija nekega vektorskega prostora dimenzije n nad obsegom K, ki ga označujemo z V K, pri čemer ima slednji lastnost, da vsebuje nek poseben element,

Διαβάστε περισσότερα

Numerična analiza. Bor Plestenjak. Fakulteta za matematiko in fiziko. Jadranska 21, 4. nadstropje, soba 4.04

Numerična analiza. Bor Plestenjak. Fakulteta za matematiko in fiziko. Jadranska 21, 4. nadstropje, soba 4.04 Numerična analiza Bor Plestenjak Fakulteta za matematiko in fiziko Jadranska 21, 4. nadstropje, soba 4.04 govorilne ure: četrtek 11-12 oz. po dogovoru bor.plestenjak@fmf.uni-lj.si http://www-lp.fmf.uni-lj.si/plestenjak/vaje/vaje.htm

Διαβάστε περισσότερα

INŽENIRSKA MATEMATIKA I

INŽENIRSKA MATEMATIKA I INŽENIRSKA MATEMATIKA I REŠENE NALOGE za izredne študente VSŠ Tehnično upravljanje nepremičnin Marjeta Škapin Rugelj Fakulteta za gradbeništvo in geodezijo Kazalo Števila in preslikave 5 Vektorji 6 Analitična

Διαβάστε περισσότερα

Uvod v numerične metode

Uvod v numerične metode Uvod v numerične metode B. Plestenjak, J.Kozak: Uvod v numerične metode 2011-2012 1 / 56 Jernej Kozak Jadranska 21, IV. nadstropje, št. 407. Iz dvigala, v desno, do konca hodnika in korak v smeri Krima.

Διαβάστε περισσότερα

Afina in projektivna geometrija

Afina in projektivna geometrija fina in projektivna geometrija tožnice () kiciraj stožnico v evklidski ravnini R, ki je določena z enačbo 6 3 8 + 6 =. Rešitev: tožnica v evklidski ravnini je krivulja, ki jo določa enačba a + b + c +

Διαβάστε περισσότερα

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant.

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant. Poglavje IV Determinanta matrike V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant 1 Definicija Preden definiramo determinanto,

Διαβάστε περισσότερα

Del 5. Vektorske funkcije in funkcije več spremenljivk

Del 5. Vektorske funkcije in funkcije več spremenljivk Del 5 Vektorske funkcije in funkcije več spremenljivk POGLAVJE 1 Krivulje v R n 1. Risanje vektorskih funkcij in vektorskih zaporedij Funkcija iz R v R n je podana z dvema podatkoma: z definicijskim območjem,

Διαβάστε περισσότερα

Navadne diferencialne enačbe

Navadne diferencialne enačbe Navadne diferencialne enačbe (študijsko gradivo) Matija Cencelj 1. maja 2003 2 Kazalo 1 Uvod 5 1.1 Preprosti primeri......................... 8 2 Diferencialne enačbe prvega reda 11 2.1 Ločljivi spremenljivki.......................

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

Numerične metode 2 (finančna matematika)

Numerične metode 2 (finančna matematika) Bor Plestenjak Numerične metode 2 (finančna matematika) delovna verzija verzija:. februar 203 Kazalo Nesimetrični problem lastnih vrednosti 5. Uvod............................................ 5.2 Schurova

Διαβάστε περισσότερα

Obvestila. Matematično programiranje z aplikacijami. Pregled predmeta Matematično programiranje z aplikacijami. Vaje: Nadaljujemo z začinjeno pizzo.

Obvestila. Matematično programiranje z aplikacijami. Pregled predmeta Matematično programiranje z aplikacijami. Vaje: Nadaljujemo z začinjeno pizzo. Obvestila. z aplikacijami Drago Bokal Oddelek za matematiko in računalništvo Fakulteta za naravoslovje in matematiko Univerza v Mariboru 21. februar 2012 http://um.fnm.uni-mb.si/ Prosojnice: MPA NN Naslov

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

ZBIRKA REŠENIH NALOG IZ MATEMATIKE I

ZBIRKA REŠENIH NALOG IZ MATEMATIKE I Univerza v Ljubljani Fakulteta za elektrotehniko Andrej Perne ZBIRKA REŠENIH NALOG IZ MATEMATIKE I Skripta za vaje iz Matematike I (UNI + VSP) Ljubljana, množice Osnovne definicije: Množica A je podmnožica

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

Odvode odvisnih spremenljivk po neodvisni spremenljivki bomo označevali s piko: Sistem navadnih diferencialnih enačb prvega reda ima obliko:

Odvode odvisnih spremenljivk po neodvisni spremenljivki bomo označevali s piko: Sistem navadnih diferencialnih enačb prvega reda ima obliko: 4 Sisemi diferencialnih enačb V prakičnih primerih večkra naleimo na več diferencialnih enačb, ki opisujejo določen pojav in so medsebojno povezane edaj govorimo o sisemih diferencialnih enačb V eh enačbah

Διαβάστε περισσότερα

Izpeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega

Izpeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega Izeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega 1. Najosnovnejše o konveksnih funkcijah Definicija. Naj bo X vektorski rostor in D X konveksna množica. Funkcija ϕ: D R je konveksna,

Διαβάστε περισσότερα

VARIACIJSKE SUBDIVIZIJSKE SHEME

VARIACIJSKE SUBDIVIZIJSKE SHEME UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO Seminar za Numerično analizo VARIACIJSKE SUBDIVIZIJSKE SHEME Ljubljana, 004 Marjeta Krajnc . Uvod Subdivizija je postala v zadnjih letih zelo pomembno

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik

Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik Univerza v Ljubljani Fakulteta za računalništvo in informatiko Fakulteta za matematiko in fiziko Peter Škvorc Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik DIPLOMSKO DELO UNIVERZITETNI

Διαβάστε περισσότερα

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO MATEMATIKA II

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO MATEMATIKA II UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA II Maribor, 2016 Kazalo Uvod v linearno algebro 1 1.1 Matrike................................ 1 1.2 Računanje

Διαβάστε περισσότερα

Računalniško vodeni procesi I

Računalniško vodeni procesi I Šolski center Velenje Višja strokovna šola Velenje Trg mladosti 3, 33 Velenje Računalniško vodeni procesi I Osnove višješolske matematike Interno gradivo - druga, popravljena izdaja Robert Meolic. september

Διαβάστε περισσότερα

Domača naloga 6: dušeno nihanje

Domača naloga 6: dušeno nihanje Domača naloga 6: dušeno nihanje Vaje iz predmeta Numerične metode v fiziki Igor Grešovnik Kazalo: 1 Naloga 6a Nihanje... 1.1 Enačbe nihanja... 1. Numerično reševanje problema... 3 1..1 Reševanje sistema

Διαβάστε περισσότερα

Spoznajmo sedaj definicijo in nekaj osnovnih primerov zaporedij števil.

Spoznajmo sedaj definicijo in nekaj osnovnih primerov zaporedij števil. Zaporedja števil V matematiki in fiziki pogosto operiramo s približnimi vrednostmi neke količine. Pri numeričnemu računanju lahko npr. število π aproksimiramo s števili, ki imajo samo končno mnogo neničelnih

Διαβάστε περισσότερα

II. LIMITA IN ZVEZNOST FUNKCIJ

II. LIMITA IN ZVEZNOST FUNKCIJ II. LIMITA IN ZVEZNOST FUNKCIJ. Preslikave med množicami Funkcija ali preslikava med dvema množicama A in B je predpis f, ki vsakemu elementu x množice A priredi natanko določen element y množice B. Važno

Διαβάστε περισσότερα

MATEMATIČNI IZRAZI V MAFIRA WIKIJU

MATEMATIČNI IZRAZI V MAFIRA WIKIJU I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH

Διαβάστε περισσότερα

Realne funkcije. Elementarne funkcije. Polinomi in racionalne funkcije. Eksponentna funkcija a x : R R + FKKT Matematika 1

Realne funkcije. Elementarne funkcije. Polinomi in racionalne funkcije. Eksponentna funkcija a x : R R + FKKT Matematika 1 Realne funkcije Funkcija f denirana simetri nem intervalu D = ( a, a) ali D = [ a, a] (i) je soda, e velja f(x) = f( x), x D; (ii) je liha, e velja f(x) = f( x), x D. Naj bo f denirana D f in x 1, x 2

Διαβάστε περισσότερα

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA. Naj bo vektorsko polje R : R 3 R 3 dano s predpisom R(x, y, z) = (2x 2 + z 2, xy + 2yz, z). Izračunaj pretok polja R skozi površino torusa

Διαβάστε περισσότερα

Iterativne numerične metode v linearni algebri

Iterativne numerične metode v linearni algebri Bor Plestenja Iterativne numerične metode v linearni algebri sripta verzija: 2. januar 204 Kazalo Klasične iterativne metode za linearne sisteme 4. Uvod............................................ 4.2

Διαβάστε περισσότερα

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1 Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije

Διαβάστε περισσότερα

ZBIRKA REŠENIH NALOG IZ MATEMATIKE II

ZBIRKA REŠENIH NALOG IZ MATEMATIKE II Univerza v Ljubljani Fakulteta za elektrotehniko Andrej Perne ZBIRKA REŠENIH NALOG IZ MATEMATIKE II Skripta za vaje iz Matematike II (UNI + VSP) Ljubljana, determinante Determinanta det A je število, prirejeno

Διαβάστε περισσότερα

Poliedri Ines Pogačar 27. oktober 2009

Poliedri Ines Pogačar 27. oktober 2009 Poliedri Ines Pogačar 27. oktober 2009 Pri linearnem programiranju imamo opravka s končnim sistemom neenakosti in končno spremenljivkami, torej je množica dopustnih rešitev presek končno mnogo polprostorov.

Διαβάστε περισσότερα

1. UREJENE OBLIKE KVADRATNE FUNKCIJE

1. UREJENE OBLIKE KVADRATNE FUNKCIJE 1. UREJENE OBLIKE KVADRATNE FUNKCIJE A) Splošna oblika Definicija 1 : Naj bodo a, b in c realna števila in a 0. Realno funkcijo: f : x ax + bx + c imenujemo kvadratna funkcija spremenljivke x v splošni

Διαβάστε περισσότερα