HY121 Ηλεκτρικϊ Κυκλώματα
|
|
- Ανατόλιος Αγγελίδου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 HY121 Ηλεκτρικϊ Κυκλώματα Διδϊςκων: Χ. ωτηρύου, Βοηθού: Ε. Βαςιλϊκησ, Δ. Πούλιοσ 1 Στατικόσ Πλιρθσ Ακροιςτισ MO Ακροιςτισ Παράκαμψθσ (arry ypass) Ακροιςτισ Επιλογισ Κρατουμζνου (arry elect) Πρόγνωςθ Κρατουμζνου (arry 2 1
2 Στατικόσ Πλιρθσ Ακροιςτισ MO Ακροιςτισ Παράκαμψθσ (arry ypass) Ακροιςτισ Επιλογισ Κρατουμζνου (arry elect) Πρόγνωςθ Κρατουμζνου (arry 3 Δομικού Λύθοι Ψηφιακών Κυκλωμϊτων Κατηγορίεσ Αρικμθτικζσ, Λογικζσ Μονάδεσ Παραδείγματα Ακροιςτζσ, Πολλαπλαςιαςτζσ,, Συγκριτζσ, κτλ. Μνιμθ RM, ROM, ουρζσ, καταχωρθτζσ Κυκλϊματα Ελζγχου Μετρθτζσ, Μθχανζσ Πεπεραςμζνων Καταςτάςεων Κυκλϊματα Διαςυνδεςιμότθτασ Δρομολογθτζσ (witches), Διαιτθτζσ (rbiters), Κυκλϊματα Διαφλων (us) 4 2
3 it slice 63 Loopback us Loopback us Loopback us it slice 2 it slice 1 it slice 0 Δομό κυκλώματοσ κατατετμημϋνου ανϊ ψηφύο (bit-sliced) ontrol it 3 Data-In Register dder hifter Multiplexer it 2 it 1 it 0 Data-Out Η μεκοδολογία κατάτμθςθσ ανά bit χωροκετεί Οριηοντίωσ τα ψθφία των δρϊμενων 5 Είςοδοσ και Tile Ζξοδοσ identical οριηόντιαprocessing elements Κακζτωσ τα τμιματα των κυκλϊματα επεξεργαςίασ τουσ Σιματα Ελζγχου κάκετα Δομό κυκλώματοσ κατατετμημϋνου ανϊ ψηφύο (bit-sliced) From register files / ache / ypass Multiplexers hifter dder stage 1 Wiring dder stage 2 Wiring dder stage 3 um elect To register files / ache 6 3
4 Itanium Ακϋραιο Σμόμα Δεδομϋνων 7 Στατικόσ Πλιρθσ Ακροιςτισ MO Ακροιςτισ Παράκαμψθσ (arry ypass) Ακροιςτισ Επιλογισ Κρατουμζνου (arry elect) Πρόγνωςθ Κρατουμζνου (arry 8 4
5 Πλόρησ Αθροιςτόσ (Full dder) a b ci co s κρατοφμενο αναίρεςθ αναίρεςθ προϊκθςθ προϊκθςθ προϊκθςθ προϊκθςθ ανάκεςθ ανάκεςθ s = a b ci + a bci + ab ci + abci = ci (a b + ab) + ci (a b + ab ) = ci (a (+) b) + ci (a (+) b) = a (+) b (+) c co = a bci + ab ci + abci + abci = ab (ci + ci ) + ci (a b + ab ) = ab + ci(a (+) b) 9 Ιδιότητα Αντιςτροφόσ F o F o = o = o 10 5
6 Ιδιότητα Αντιςτροφόσ Even cell Odd cell ,0 o,0 o,1 o,2 o,3 F F F F Χρησιμοποιώντας την ιδιότητα Αντιστρουής 11 Στατικόσ Πλιρθσ Ακροιςτισ MO Ακροιςτισ Παράκαμψθσ (arry ypass) Ακροιςτισ Επιλογισ Κρατουμζνου (arry elect) Πρόγνωςθ Κρατουμζνου (arry 12 6
7 τατικόσ Πλόρησ Αθροιςτόσ MO V DD V DD X V DD V DD o 28 Transistors 13 Στατικόσ Πλιρθσ Ακροιςτισ MO Ακροιςτισ Παράκαμψθσ (arry ypass) Ακροιςτισ Επιλογισ Κρατουμζνου (arry elect) Πρόγνωςθ Κρατουμζνου (arry 14 7
8 Έμμεςη Τλοπούηςη και όματα a b ci co s κρατοφμενο αναίρεςθ αναίρεςθ προϊκθςθ προϊκθςθ προϊκθςθ προϊκθςθ ανάκεςθ ανάκεςθ Σε κάποιεσ υλοποιιςεισ ακροιςτϊν οι ζξοδοι (s, co) προκφπτουν από ζμμεςεσ εκφράςεισ: G =. D =. P = + ι P = (+) Έτσι, οι εκυπάσειρ για co, s μετατπέπονται ωρ εξήρ: co = G + P ci και s = p (+) ci 15 Στατικόσ Πλιρθσ Ακροιςτισ MO Ακροιςτισ Παράκαμψθσ (arry ypass) Ακροιςτισ Επιλογισ Κρατουμζνου (arry elect) Πρόγνωςθ Κρατουμζνου (arry 16 8
9 ειριακό Κρατούμενο Η απλοφςτερθ υλοποίθςθ ενόσ ν-bit ακροιςτι Εν ςειρά το κάκε ψθφίο ν παίρνει κρατοφμενο από το (ν-1) Μειονεκτιματα Μεγάλθσ κακυςτζρθςθσ κρίςιμο μονοπάτι Από το co μζχρι το δεξιότερο κρατοφμενο 17 Στατικόσ Πλιρθσ Ακροιςτισ MO Ακροιςτισ Παράκαμψθσ (arry ypass) Ακροιςτισ Επιλογισ Κρατουμζνου (arry elect) Πρόγνωςθ Κρατουμζνου (arry 18 9
10 Αθροιςτόσ Mirror «Καθρϋφτησ» V DD V DD V DD "0"-Propagate Kill o "1"-Propagate Generate 24 transistors Βαςίηεται ςτισ: co = G + P ci, s = p (+) ci, d = a b, g = ab, p = a + b 19 Γρϊμμο-διϊγραμμα Αθροιςτό Mirror V DD o o GND 20 10
11 Στατικόσ Πλιρθσ Ακροιςτισ MO Ακροιςτισ Παράκαμψθσ (arry ypass) Ακροιςτισ Επιλογισ Κρατουμζνου (arry elect) Πρόγνωςθ Κρατουμζνου (arry 21 Αθροιςτόσ Σρανζύςτορ Διϋλευςησ P V DD V DD P P um Generation V DD P P P V DD o arry Generation etup P 24 τρανηίςτορ 22 11
12 Αθροιςτόσ Παρϊκαμψησ (arry- ypass/kip) P 0 G 1 P 0 G 1 P 2 G 2 P 3 G 3 ή arry-kip,0 o,0 o,1 o,2 F F F F o,3 P 0 G 1 P 0 G 1 P 2 G 2 P 3 G 3 P=P o P 1 P 2 P 3,0 o,0 o,1 o,2 F F F F Multiplexer o,3 If (P0P1P2P3) Idea: If (P0 and o,3 P1 and = P2 1 and P3 = 1) then o3 = else 0, else o,3 kill = or i,0 generate. else GENERTE or DELETE 23 Αθροιςτόσ Παρϊκαμψησ (arry- ypass/kip) it 0 3 etup t setup it 4 7 etup t bypass it 8 11 etup it etup arry propagation arry propagation arry propagation arry propagation um um um t sum um M bits t adder = t setup + M tcarry + (N/M-1)t bypass + (M-1)t carry + t sum 24 12
13 Στατικόσ Πλιρθσ Ακροιςτισ MO Ακροιςτισ Παράκαμψθσ (arry ypass) Ακροιςτισ Επιλογισ Κρατουμζνου (arry elect) Πρόγνωςθ Κρατουμζνου (arry 25 Αθροιςτόσ Παρϊκαμψησ (arry- ypass/kip) t p ripple adder bypass adder 4..8 N 26 13
14 Στατικόσ Πλιρθσ Ακροιςτισ MO Ακροιςτισ Παράκαμψθσ (arry ypass) Ακροιςτισ Επιλογισ Κρατουμζνου (arry elect) Πρόγνωςθ Κρατουμζνου (arry 27 Αθροιςτόσ Επιλογόσ Κρατουμϋνου etup P,G "0" "0" arry Propagation "1" "1" arry Propagation o,k-1 Multiplexer o,k+3 um Generation arry Vector 28 14
15 Αθροιςτόσ Επιλογόσ Κρατουμϋνου - Γραμμικόσ it 0 3 it 4 7 it 8 11 it etup etup etup etup 0 0-arry 0 0-arry 0 0-arry 0 0-arry 1 1-arry 1 1-arry 1 1-arry 1 1-arry Multiplexer Multiplexer Multiplexer Multiplexer,0 o,3 o,7 o,11 o,15 um Generation um Generation um Generation um Generation Αθροιςτόσ Επιλογόσ Κρατουμϋνου Ρύζασ it 0-1 it 2-4 it 5-8 it 9-13 it etup etup etup etup (1) "0" "0" arry "0" "0" arry "0" "0" arry "0" "0" arry (1) "1" "1" arry "1" "1" arry "1" "1" arry "1" "1" arry (3) (3) (4) (5) (6) (4) (5) (6) (7) Multiplexer Multiplexer Multiplexer Multiplexer,0 um Generation um Generation um Generation um Generation (7) Mux (8) um (9) 30 15
16 t p (in unit delays) Αθροιςτόσ Επιλογόσ Κρατουμϋνου Ρύζασ Ripple adder Linear select 10 quare root select N Στατικόσ Πλιρθσ Ακροιςτισ MO Ακροιςτισ Παράκαμψθσ (arry ypass) Ακροιςτισ Επιλογισ Κρατουμζνου (arry elect) Πρόγνωςθ Κρατουμζνου (arry Πολλαπλαςιαςτισ Δζντρου Wallace Διαίρεςθ 32 16
17 Πρόγνωςη Κρατουμϋνου Ο βαςικόσ ςτόχοσ είναι να μειωκεί θ μεγάλθ κακυςτζρθςθ τθσ αλυςίδασ των κρατουμζνων των ν-bit Βαςικι ιδζα Ακριβισ πρόγνωςθ πριν αυτό προκφψει από τισ εξιςϊςεισ Για ομάδεσ ν-bit (όπου ςυνικωσ v ~ 4) Υπολογίηεται θ πρόγνωςθ του αυτι προωκείται ςτθν επόμενθ ομάδα Η κακυςτζρθςθ τθσ πρόγνωςθσ είναι ςθμαντικά μικρότερθ από τον ςειριακι προϊκθςθ του 33 Πρόγνωςη Κρατουμϋνου - Γϋνεςη, Προώθηςη Στθν πρόςκεςθ + Β παράγεται κρατοφμενο μόνο όταν ΑΒ: G = Ζνα κρατοφμενο προάγεται ςτο επόμενο ψθφίο όταν: P = + Το κρατοφμενο μπορεί να εκφραςτεί ωσ: co = G + P ci Για ν=4-bits: c1 = G0 + P0 c0 c2 = G1 + P1 c1 = G1 + P1(G0 + P0 c0) = G1 + G0P1 + c0p0p1 c3 = G2 + G1P2 + G0P1P2 + 0P0P1P2 4 = G3 + G2P3 + G1P2P3 + 0P0P1P2P
18 Πρόγνωςη Κρατουμϋνου 4-bit Αθροιςτόσ 4 = (G3 + G2P3 + G1P2P3 + G0P1P2P3) + 0(P0P1P2P3) PG = P0P1P2P3 GG = G3 + G2P3 + G1P2P3 + G0P1P2P3 4 = GG + 0 PG 35 Πρόγνωςη Κρατουμϋνου 16-bit Αθροιςτόσ Ιεραρχικά θ μονάδα LU υπολογίηει τα: PG, GG c
19 Πρόγνωςη Κρατουμϋνου 64-bit Αθροιςτόσ Ίδια ιδζα με 2 ο επίπεδο ιεραρχίασ 37 Στατικόσ Πλιρθσ Ακροιςτισ MO Ακροιςτισ Παράκαμψθσ (arry ypass) Ακροιςτισ Επιλογισ Κρατουμζνου (arry elect) Πρόγνωςθ Κρατουμζνου (arry 38 19
20 Αλγόριθμοσ Πολλαπλαςιαςμού MULTIPLY(x, y, m) // Είςοδοι - x : πολλαπλαςιαςτζοσ, y : πολλαπλαςιαςτισ, Ζξοδοσ m : γινόμενο { n = LENGTH(y); m = 0; t = x; // ολιςκθτισ // for i in 1 to n // για κάκε ψθφίο του y // { if (y[i] == 1) m = m + t; // πρόςκεςθ μερικοφ παράγοντα // t = t << 1; // ολίςκθςθ 1 ψθφίο δεξιά για κάκε ψθφίο του y // } return r; } 39 Μερικών Γινομϋνων 67 x 54 1 ο με 1 ο 2 ο με 1 ο 1 ο με 2 ο 2 ο με 2 ο 67 X X X X οι τζςςερισ αυτοί ςυνδυαςμοί μποροφν να γίνουν ςε ςφνολα από δυαδικά ψηφία 40 20
21 Μερικών Παραγόντων + x Multiplicand Πολλαπλαςιαςτζοσ Multiplier Πολλαπλαςιαςτισ Partial Μερικά products Γινόμενα Result Τελικό Αποτζλεςμα Μια πφλθ ND αρκεί για κάκε ψθφίο του πολλαπλαςια 41 Στατικόσ Πλιρθσ Ακροιςτισ MO Ακροιςτισ Παράκαμψθσ (arry ypass) Ακροιςτισ Επιλογισ Κρατουμζνου (arry elect) Πρόγνωςθ Κρατουμζνου (arry 42 21
22 Πολλαπλαςιαςτόσ Πύνακα (rray) X 3 X 2 X 1 X 0 Y 0 X 3 X 2 X 1 X 0 Y 1 Z 0 H F F H X3 X 2 X 1 X 0 Y 2 Z 1 F F F H X3 X 2 X 1 X 0 Y 3 Z 2 F F F H Z 7 Z 6 Z 5 Z 4 Z 3 43 Πολλαπλαςιαςτόσ Πύνακα (rray) - Κρύςιμη Οδόσ H F F H F F F H ritical Path 1 ritical Path 2 F F F H ritical Path 1 & 2 NxM πολλαπλαςιαςμόσ 44 22
23 Στατικόσ Πλιρθσ Ακροιςτισ MO Ακροιςτισ Παράκαμψθσ (arry ypass) Ακροιςτισ Επιλογισ Κρατουμζνου (arry elect) Πρόγνωςθ Κρατουμζνου (arry 45 Πολλαπλαςιαςτόσ Αποθόκευςησ Κρατουμϋνου (arry ave) H H H H H F F F H F F F H F F H Vector Merging dder 46 23
24 Στατικόσ Πλιρθσ Ακροιςτισ MO Ακροιςτισ Παράκαμψθσ (arry ypass) Ακροιςτισ Επιλογισ Κρατουμζνου (arry elect) Πρόγνωςθ Κρατουμζνου (arry 47 Χωροθϋτηςη Πολλαπλαςιαςτό X 3 X 2 X 1 X 0 Y 0 Y 1 Z 0 H Multiplier ell F Multiplier ell Y 2 Z 1 Vector Merging ell Y 3 Z 2 X and Y signals are broadcasted through the complete array. ( ) Z 7 Z 6 Z 5 Z 4 Z
25 Στατικόσ Πλιρθσ Ακροιςτισ MO Ακροιςτισ Παράκαμψθσ (arry ypass) Ακροιςτισ Επιλογισ Κρατουμζνου (arry elect) Πρόγνωςθ Κρατουμζνου (arry Πολλαπλαςιαςτισ Δζντρου Wallace Διαίρεςθ 49 Δυαδικόσ Ολιςθητόσ Right nop Left i i i-1 i-1 it-lice i
26 Περιςτροφικόσ Ολιςθητόσ (arrel) 3 3 h1 2 2 h2 : Data Wire 1 1 : ontrol Wire h3 0 0 h0 h1 h2 h3 51 Περιςτροφικόσ Ολιςθητόσ 4x h0 h1 h2 h3 Width barrel ~ 2 p m M uffer 52 26
27 Λογαριθμικόσ Ολιςθητόσ h1 h1 h2 h2 h4 h bit Λογαριθμικόσ Ολιςθητόσ Out3 Out2 Out1 Out
HY422 Ειςαγωγό ςτα υςτόματα VLSI. 1 ΗΤ422 - Διάλεξθ 11θ Κυκλϊματα Δεδομζνων
HY422 Ειςαγωγό ςτα υςτόματα VLI Διδϊςκων: Χ. ωτηρύου, Βοηθόσ: Π. Ματτθαιϊκησ http://www.csd.uoc.gr/~hy422 1 Περιεχόμενα Δομικοί Λίκοι Ψθφιακϊν Κυκλωμάτων Κφκλωμα Πλιρουσ Ακροιςτι Ιδιότθτα Αντιςτροφισ τατικόσ
Διαβάστε περισσότεραHY220 Εργαςτήριο Ψηφιακών Κυκλωμάτων.
HY220 Εργαςτήριο Ψηφιακών Κυκλωμάτων Διδάςκων: Χ. Σωτηρίου, Βοηθοί: Ε. Κουναλάκησ, Π. Ματτθαιάκησ http://www.csd.uoc.gr/~hy220 1 ΗΥ220 - Διάλεξθ 7θ - Αρικμθτικά Κυκλϊματα Κυκλϊματα Πρόςκεςθσ Half-adder
Διαβάστε περισσότεραHY330 Ψηφιακά Κυκλώματα - Εισαγωγή στα Συστήματα VLSI. 1 ΗΥ330 - Διάλεξη 11η - Κυκλώματα Δεδομένων
HY330 Ψηφιακά Κυκλώματα - Εισαγωγή στα Συστήματα VLI Διδάσκων: Χ. Σωτηρίου, Βοηθοί: θα ανακοινωθούν http://inf-server.inf.uth.gr/courses/ce330 1 Περιεχόμενα Δομικοί Λίθοι Ψηφιακών Κυκλωμάτων Κύκλωμα Πλήρους
Διαβάστε περισσότεραHY430 Εργαστήριο Ψηφιακών Κυκλωμάτων.
HY430 Εργαστήριο Ψηφιακών Κυκλωμάτων Διδάσκων: Χ. Σωτηρίου, Βοηθός: (θα ανακοινωθεί) http://inf-server.inf.uth.gr/courses/ce430/ 1 Περιεχόμενα Κυκλώματα Πρόσθεσης Half-adder Full-Adder Σειριακό Κρατούμενο
Διαβάστε περισσότεραΠαραπάνω παρουςιάηεται ο πιο ςυνικθσ χωροκζτθςθ αρικμθτικϊν, λογικϊν κυκλωμάτων. Η μονάδα επεξεργαςίασ είναι θ λζξθ (λ.χ. 32-bit ςε επεξεργαςτζσ,
1 2 3 4 Παραπάνω παρουςιάηεται ο πιο ςυνικθσ χωροκζτθςθ αρικμθτικϊν, λογικϊν κυκλωμάτων. Η μονάδα επεξεργαςίασ είναι θ λζξθ (λ.χ. 32-bit ςε επεξεργαςτζσ, 8-bit ςε DSP) και αυτι κακορίηει και τθν δομι τθσ
Διαβάστε περισσότεραΛαμβάνοντασ υπόψη ότι κατά την πρόςθεςη δφο δυαδικϊν ψηφίων ιςχφει: Κρατοφμενο
Αριθμητικά κυκλώματα Ημιαθροιστής (Half Adder) Ο ημιαθροιςτήσ είναι ζνα κφκλωμα το οποίο προςθζτει δφο δυαδικά ψηφία (bits) και δίνει ωσ αποτζλεςμα το άθροιςμά τουσ και το κρατοφμενο. Με βάςη αυτή την
Διαβάστε περισσότερα7 η διάλεξη Ακολουθιακά Κυκλώματα
7 η διάλεξη Ακολουθιακά Κυκλώματα 1 2 3 4 5 Παραπάνω παρουσιάζεται ο πιο συνήθης χωροθέτηση αριθμητικών, λογικών κυκλωμάτων. Η μονάδα επεξεργασίας είναι η λέξη (λ.χ. 32-bit σε επεξεργαστές, 8-bit σε DSP)
Διαβάστε περισσότεραx n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό.
Κωδικοποιητές Ο κωδικοποιθτισ (nor) είναι ζνα κφκλωμα το οποίο διακζτει n γραμμζσ εξόδου και το πολφ μζχρι m = 2 n γραμμζσ ειςόδου και (m 2 n ). Οι ζξοδοι παράγουν τθν κατάλλθλθ λζξθ ενόσ δυαδικοφ κϊδικα
Διαβάστε περισσότεραEE434 ASIC & Digital Systems Arithmetic Circuits
EE434 ASIC & Digital Systems Arithmetic Circuits Spring 25 Dae Hyun Kim daehyun@eecs.wsu.edu Arithmetic Circuits What we will learn Adders Basic High-speed 2 Adder -bit adder SSSSSS = AA BB CCCC CCCC =
Διαβάστε περισσότεραi Το τρανζίστορ αυτό είναι τύπου NMOS. Υπάρχει και το συμπληρωματικό PMOS. ; Τι συμβαίνει στο τρανζίστορ PMOS; Το τρανζίστορ MOS(FET)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 25-6 Το τρανζίστορ MOS(FET) πύλη (gate) Ψηφιακή και Σχεδίαση πηγή (source) καταβόθρα (drai) (σχεδίαση συνδυαστικών κυκλωμάτων) http://di.ioio.gr/~mistral/tp/comparch/
Διαβάστε περισσότεραΨηφιακή Λογική και Σχεδίαση
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 26-7 Ψηφιακή Λογική και Σχεδίαση (σχεδίαση συνδυαστικών κυκλωμάτων) http://mixstef.github.io/courses/comparch/ Μ.Στεφανιδάκης Το τρανζίστορ
Διαβάστε περισσότεραΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων
ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 28 Αριθμητικές Συναρτήσεις και Κυκλώματα Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πρόσθεση
Διαβάστε περισσότεραΨηφιακά Κυκλώματα (1 ο μέρος) ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική
Ψηφιακά Κυκλώματα ( ο μέρος) ΜΥΥ-6 Εισαγωγή στους Η/Υ και στην Πληροφορική Ψηφιακά κυκλώματα Οι δύο λογικές τιμές, αντιστοιχούν σε ηλεκτρικές τάσεις Υλοποιούνται με τρανζίστορ ή διόδους: ελεγχόμενοι διακόπτες
Διαβάστε περισσότεραΨηφιακά Συστήματα VLSI
Ψηφιακά Συστήματα VLSI. ΑΡΙΘΜΗΤΙΚΑ ΚΥΚΛΩΜΑΤΑ VLSI Αθροιστές, Πολλαπλασιαστές (Σειριακοί- Παράλληλοι). ΠΡΑΞΕΙΣ ΜΕ ΠΡΟΣΗΜΑΣΜΕΝΟΥΣ ΑΡΙΘΜΟΥΣ Συμπλήρωμα ως προς, Αφαιρέτες, Booth, Modified Booth, αριθμητικά
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ : Κ. ΠΕΚΜΕΣΤΖΗ
ΠΡΑΞΕΙΣ ΜΕ ΠΡΟΣΗΜΑΣΜΕΝΟΥΣ ΑΡΙΘΜΟΥΣ ΚΥΚΛΩΜΑΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΠΑΡΑΣΤΑΣΗ ΑΡΙΘΜΩΝ Συμπλήρωμα ως προς 2 Booth, Modified Booth Reduntant αριθμητικά συστήματα Signed Digit αριθμητική Κανονική
Διαβάστε περισσότεραΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Άλλες Αριθμητικές Συναρτήσεις/Κυκλώματα
ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Αριθμητικές Συναρτήσεις και Κυκλώματα Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πρόσθεση υαδική Πρόσθεση
Διαβάστε περισσότεραΠράξεις με δυαδικούς αριθμούς
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Πράξεις με δυαδικούς
Διαβάστε περισσότεραΠαράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2
Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Δρ. Χρήζηος Ηλιούδης Μθ Προςθμαςμζνοι Ακζραιοι Εφαρμογζσ (ςε οποιαδιποτε περίπτωςθ δεν χρειάηονται αρνθτικοί αρικμοί) Καταμζτρθςθ. Διευκυνςιοδότθςθ.
Διαβάστε περισσότεραΠολυπλέκτες. 0 x 0 F = S x 0 + Sx 1 1 x 1
Πολυπλέκτες Ο πολυπλζκτθσ (multipleer - ) είναι ζνα ςυνδυαςτικό κφκλωμα που επιλζγει δυαδικι πλθροφορία μιασ από πολλζσ γραμμζσ ειςόδου και τθν κατευκφνει ςε μια και μοναδικι γραμμι εξόδου. Η επιλογι μιασ
Διαβάστε περισσότερα«Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο
ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανικών Πληροφορικής ΤΕ Εργαστήριο Σχεδίασης Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων «Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο 2016-2017 Διάλεξη 6 η :
Διαβάστε περισσότεραΕργαστήριο Εισαγωγής στη Σχεδίαση Συστημάτων VLSI
Ε.Μ.Π. - ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ VLSI
Διαβάστε περισσότεραΕνότητα 9 ΑΡΙΘΜΗΤΙΚΑ & ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ
Ενότητα 9 ΑΡΙΘΜΗΤΙΚΑ & ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ Γενικές Γραμμές Προσημασμένοι Ακέραιοι Δυαδικοί Αριθμοί Ημιαθροιστής - Ημιαφαιρέτης Πλήρης Αθροιστής - Πλήρης Αφαιρέτης Αθροιστής Διάδοσης Κρατούμενου Επαναληπτικές
Διαβάστε περισσότεραΔυαδικοσ πολλαπλαςιαςμοσ και διαιρεςη ακεραιων
Δυαδικοσ πολλαπλαςιαςμοσ και διαιρεςη ακεραιων Δρ. Χρήστος Ηλιούδης Πολλαπλαςιαςμόσ μη προςημαςμζνων ακεραίων βρίςκουμε ζνα άκροιςμα το οποίο αποτελείται από μετατοπιςμζνα γινόμενα, τα οποία προζκυψαν
Διαβάστε περισσότεραΠαράςταςη ςυμπλήρωμα ωσ προσ 1
Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ ΣΤ1 Προςθεςη αφαίρεςη ςτο ΣΤ1 2 ή ΣΤ1 Ονομάηουμε ςυμπλιρωμα ωσ προσ μειωμζνθ βάςθ R ενόσ μθ προςθμαςμζνου αρικμοφ Χ = ( Χ θ-1 Χ θ-2... Χ 0 ) R ζναν άλλον αρικμό Χ'
Διαβάστε περισσότεραΨηφιακά Συστήματα. 6. Σχεδίαση Συνδυαστικών Κυκλωμάτων
Ψηφιακά Συστήματα 6. Σχεδίαση Συνδυαστικών Κυκλωμάτων Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016. [59382199] 2. Floyd
Διαβάστε περισσότεραΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 9: Σχεδιασµός Συνδυαστικών Κυκλωµάτων ΙΙ (Κεφάλαιο 5) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη
Διαβάστε περισσότεραΗΜΥ 100 Εισαγωγή στην Τεχνολογία
ΗΜΥ 00 Εισαγωγή στην Τεχνολογία Στέλιος Τιμοθέου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ ΜΑΣ ΣΗΜΕΡΑ Δυαδική λογική Πύλες AND, OR, NOT, NAND,
Διαβάστε περισσότεραΠανεπιστήμιο Ιωαννίνων Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών. Γεώργιος Τσιατούχας
Πανεπιστήμιο Ιωαννίνων ΚΥΚΛΩΜΑΤΑ VLI Εργαστηριακές Ασκήσεις Γεώργιος Τσιατούχας Ιωάννινα 2016 VLI ystems and Computer rchitecture Lab ΚΥΚΛΩΜΑΤΑ VLI ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΕΧΟΜΕΝΑ Χαρακτηριστικές MO
Διαβάστε περισσότεραΟργάνωση Η/Υ. Γιώργος Δημητρίου. Μάθημα 2 ο Σύντομη Επανάληψη. Πανεπιστήμιο Θεσσαλίας - Τμήμα Πληροφορικής
Γιώργος Δημητρίου Μάθημα 2 ο Σύντομη Επανάληψη Από την Εισαγωγή στους Η/Υ Γλώσσες Μηχανής Πεδία εντολής Μέθοδοι διευθυνσιοδότησης Αρχιτεκτονικές συνόλου εντολών Κύκλος εντολής Αλγόριθμοι/Υλικό Αριθμητικών
Διαβάστε περισσότερα! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit!
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές ) http://di.ionio.gr/~mistral/tp/csintro/ Αριθμοί Πράξεις με δυαδικούς αριθμούς
Διαβάστε περισσότεραΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΣΕΙΡΙΑΚΗ ΠΡΟΣΘΕΣΗ
ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑΣ & ΗΛΕΚΤΡΟΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ & μ-υπολογιστων ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΣΕΙΡΙΑΚΗ ΠΡΟΣΘΕΣΗ Θεωρητικό Μέρος Οι σειριακές λειτουργίες είναι πιο
Διαβάστε περισσότεραΠανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Συνδυαστική Λογική. Επιμέλεια Διαφανειών: Δ.
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Συνδυαστική Λογική Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Ψηφιακά Κυκλώματα Τα ψηφιακά κυκλώματα διακρίνονται σε συνδυαστικά (combinational)
Διαβάστε περισσότεραΥποσυστήματα Χειρισμού Δεδομένων
Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI II VLSI ΙI 2011-2012 1 Κεφάλαιο 11 Υποσυστήματα Χειρισμού Δεδομένων VLSI ΙI 2011-2012 2 1 Περίγραμμα Διάλεξης Πρόσθεση / Αφαίρεση Ανιχνευτές 1/0 Συγκριτές Μετρητές
Διαβάστε περισσότεραΑΣΚΗΣΗ 4 ΣΧΕΔΙΑΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΛΟΓΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ
ΑΣΚΗΣΗ 4 ΣΧΕΔΙΑΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΛΟΓΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Αντικείμενο της άσκησης: Λογική και μεθοδολογία σχεδίασης αριθμητικών λογικών κυκλωμάτων και λειτουργική εξομοίωση με το λογισμικό EWB.. Αθροιστές. Σχεδίαση
Διαβάστε περισσότεραΟργάνωση Η/Υ. Γιώργος ηµητρίου. Μάθηµα 3 ο. Πανεπιστήµιο Θεσσαλίας - Τµήµα Μηχανικών Η/Υ, Τηλεπικοινωνιών και ικτύων
Γιώργος ηµητρίου Μάθηµα 3 ο Πανεπιστήµιο Θεσσαλίας - Τµήµα Μηχανικών Η/Υ, Τηλεπικοινωνιών και ικτύων Μονάδα Επεξεργασίας εδοµένων Υποµονάδες πράξεων n Αριθµητική/Λογική Μονάδα (ΑΛΜ - ALU): Βασικές αριθµητικές
Διαβάστε περισσότεραΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 15: Καταχωρητές (Registers)
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 15: Καταχωρητές (Registers) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη q Καταχωρητές Παράλληλης
Διαβάστε περισσότεραΥποσυστήματα Χειρισμού Δεδομένων
Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI II VLSI ΙI 1 Υποσυστήματα Χειρισμού Δεδομένων VLSI ΙI 2 1 Περίγραμμα Διάλεξης Πρόσθεση / Αφαίρεση Ανιχνευτές 1/0 Συγκριτές Μετρητές Κωδικοποίηση Ολισθητές Πολλαπλασιασμός
Διαβάστε περισσότεραΛογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 2013 Διάρκεια εξέτασης : 160 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών:
Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 23 Διάρκεια εξέτασης : 6 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών: Θέμα (,5 μονάδες) Στις εισόδους του ακόλουθου κυκλώματος c b a εφαρμόζονται οι κάτωθι κυματομορφές.
Διαβάστε περισσότεραHY523 Εργαςτηριακό χεδύαςη Ψηφιακών Κυκλωμϊτων με εργαλεύα Ηλεκτρονικού χεδιαςτικού Αυτοματιςμού.
HY523 Εργαςτηριακό χεδύαςη Ψηφιακών Κυκλωμϊτων με εργαλεύα Ηλεκτρονικού χεδιαςτικού Αυτοματιςμού Διδϊςκων: Χ. ωτηρύου http://www.csd.uoc.gr/~hy523 1 Περιεχόμενα Ροι Φυςικισ χεδίαςθσ χεδίαςθ με Κακιερωμζνα
Διαβάστε περισσότεραΠερίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο Παράδειγµα: Καταχωρητής 2-bit. Καταχωρητής 4-bit. Μνήµη Καταχωρητών
ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Κεφάλαιο 7 i: Καταχωρητές Περίληψη Καταχωρητές Παράλληλης Φόρτωσης Καταχωρητές Ολίσθησης Σειριακή Φόρτωση Σειριακή Ολίσθηση Καταχωρητές Ολίσθησης Παράλληλης Φόρτωσης
Διαβάστε περισσότεραΠανεπιστήμιο Θεσσαλίας - Τμήμα Πληροφορικής. Οργάνωση Η/Υ. Γιώργος ηµητρίου. Μάθηµα 2 ο Σύντοµη Επανάληψη
Γιώργος ηµητρίου Μάθηµα 2 ο Σύντοµη Επανάληψη Από την Εισαγωγή στους Η/Υ Γλώσσες Μηχανής n Πεδία εντολής n Μέθοδοι διευθυνσιοδότησης n Αρχιτεκτονικές συνόλου εντολών n Κύκλος εντολής Αλγόριθµοι/Υλικό Αριθµητικών
Διαβάστε περισσότεραΕισαγωγή στους Υπολογιστές
Εισαγωγή στους Υπολογιστές Ενότητα 10: Ψηφιακή Αριθμητική Βασίλης Παλιουράς Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Εισαγωγικές έννοιες ψηφιακής λογικής
Διαβάστε περισσότεραHY121 Ηλεκτρικϊ Κυκλώματα
HY Ηλεκτρικϊ Κυκλώματα Διδϊςκων: Χ. Σωτηρύου, Βοηθού: Ε. Βαςιλϊκησ, Δ. Πούλιοσ http://www.csd.uoc.gr/~hy Περιεχόμενα Στατικζσ Πφλεσ CMOS και Μεγζκθ Τρανηίςτορ Λογικι Λόγου Αντίςταςθσ/Μεγεκών (NMOS) Διαφορικι
Διαβάστε περισσότεραHY437 Αλγόριθμοι CAD
HY437 Αλγόριθμοι CAD Διδάςκων: Χ. Σωτηρίου http://inf-server.inf.uth.gr/courses/ce437/ 1 ΗΥ437 - Πολυεπίπεδθ Λογικι Απλοποίθςθ με Περιεχόμενα Είδθ Αδιάφορων Τιμϊν ςε Πολφ-επίπεδα Δυαδικά Δίκτυα Αδιάφορεσ
Διαβάστε περισσότεραΣχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI II
Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI II 3 η Εργαστηριακή Άσκηση Σχεδίαση και Υλοποίηση μίας ALU δύο εισόδων VHDL Εργαστήριο_2 2012-2013 1 Άδειες Χρήσης Το παρόν υλικό διατίθεται με τους όρους της άδειας
Διαβάστε περισσότερα9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ
ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 61 9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ I. Βασική Θεωρία Οι πύλες NAND και NOR ονομάζονται οικουμενικές πύλες (universal gates) γιατί κάθε συνδυαστικό κύκλωμα μπορεί να υλοποιηθεί
Διαβάστε περισσότεραΕισαγωγή στους Υπολογιστές
Εισαγωγή στους Υπολογιστές Ενότητα 11: Βασικές έννοιες ψηφιακής λογικής Βασίλης Παλιουράς Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Γιατί χρησιμοποιούμε
Διαβάστε περισσότεραΘεςιακά ςυςτιματα αρίκμθςθσ
Θεςιακά ςυςτιματα αρίκμθςθσ Δρ. Χρήστος Ηλιούδης αρικμθτικό ςφςτθμα αρίκμθςθσ (Number System) Αξία (value) παράςταςθ Οι αξίεσ (π.χ. το βάροσ μιασ ποςότθτασ μιλων) μποροφν να παραςτακοφν με πολλοφσ τρόπουσ
Διαβάστε περισσότεραΣχεδίαση Ψηφιακών Συστημάτων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Σχεδίαση Ψηφιακών Συστημάτων Ενότητα 4: Σχεδιασμός Σειριακού Αθροιστή Κυριάκης - Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών
Διαβάστε περισσότεραΣΕΙ ΕΡΡΩΝ ΜΑΙΟ 2013 ΠΣΤΧΙΑΚΗ ΕΡΓΑΙΑ ΣΙΜΕΝΙΔΗ ΣΕΦΑΝΟ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΣΗ : ΜΑΔΕΜΛΗ ΙΩΑΝΝΗ
ΣΕΙ ΕΡΡΩΝ ΜΑΙΟ 2013 ΠΣΤΧΙΑΚΗ ΕΡΓΑΙΑ ΠΟΤΔΑΣΕ: ΛΑΔΑ ΧΡΙΣΙΝΑ ΣΙΜΕΝΙΔΗ ΣΕΦΑΝΟ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΣΗ : ΜΑΔΕΜΛΗ ΙΩΑΝΝΗ ΘΕΜΑ: ΧΕΔΙΑΗ ΚΑΙ ΤΛΟΠOΙΗΗ ΕΚΠΑΙΔΕΤΣΙΚΩΝ ΑΝΑΠΣΤΓΜΑΣΩΝ ΜΕΛΕΣΗ ΨΗΦΙΑΚΩΝ ΚΤΚΛΩΜΑΣΩΝ ΚΑΙ ΤΓΓΡΑΦΗ
Διαβάστε περισσότεραΣχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI II
Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI II Επιμέλεια: Βασίλης Παλιουράς, Αναπληρωτής Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας 1 Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα
Διαβάστε περισσότεραΔυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2017-2018 1 Κατακερματισμός Πρόβλημα στατικού κατακερματισμού: Έστω Μ κάδους και r εγγραφές ανά κάδο - το πολύ Μ * r εγγραφές (αλλιώς μεγάλες αλυσίδες υπερχείλισης)
Διαβάστε περισσότεραΠανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 6: Δυαδικές Πράξεις, Συμπλήρωμα του 2, Δυαδικοί Αποκωδικοποιητές, Κωδικοποιητές, Πολυπλέκτες Δρ. Μηνάς Δασυγένης @ieee.ormdasygg
Διαβάστε περισσότερα3 θ διάλεξθ Επανάλθψθ, Επιςκόπθςθ των βαςικϊν γνϊςεων τθσ Ψθφιακισ Σχεδίαςθσ
3 θ διάλεξθ Επανάλθψθ, Επιςκόπθςθ των βαςικϊν γνϊςεων τθσ Ψθφιακισ Σχεδίαςθσ 1 2 3 4 5 6 7 Παραπάνω φαίνεται θ χαρακτθριςτικι καμπφλθ μετάβαςθσ δυναμικοφ (voltage transfer characteristic) για ζναν αντιςτροφζα,
Διαβάστε περισσότεραΔυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή
Διαβάστε περισσότεραΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΚΑΡΑΓΚΙΑΟΥΡΗΣ ΝΙΚΟΛΑΟΣ
ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ 3/02/2019 ΚΑΡΑΓΚΙΑΟΥΡΗΣ ΝΙΚΟΛΑΟΣ ΘΕΜΑ 1 ο 1. Να γράψετε στο τετράδιό σας το γράμμα καθεμιάς από τις παρακάτω προτάσεις και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή ή τη λέξη ΛΑΘΟΣ, αν είναι
Διαβάστε περισσότεραΔυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δυναμικός Κατακερματισμός 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή (ως τρόπος οργάνωσης αρχείου) μέγεθος
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ
ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΗΛΕΚΤΡΟΝΙΚΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΟΜΑ Α Α Αριθµητική Λογική Μονάδα των 8-bit 1. Εισαγωγή Γενικά µια αριθµητική λογική µονάδα (ALU, Arithmetic Logic Unit)
Διαβάστε περισσότεραΕισαγωγή στους Ηλεκτρονικούς Υπολογιστές
στους Ηλεκτρονικούς Υπολογιστές http://courseware.mech.tua.gr/ml232/ 3 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.tua.gr URL: http://users.tua.gr/leo Λογικές Πράξεις Λογικές Συναρτήσεις
Διαβάστε περισσότεραΨηφιακή Λογική Σχεδίαση
Ψηφιακή Λογική Σχεδίαση Γ. Θεοδωρίδης Ψηφιακή Λογική Σχεδίαση Γ. Θεοδωρίδης 1 Κεφάλαιο 8 Σχεδίαση στο Επίπεδο Μεταφοράς Περιεχομένων Καταχωρητών Ψηφιακή Λογική Σχεδίαση Γ. Θεοδωρίδης 2 Περίγραμμα Κεφαλαίου
Διαβάστε περισσότεραΕργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ211
Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 υαδικός Αθροιστής, Πολυπλέκτες και Αποκωδικοποιητές Εβδοµάδα: 5 Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 Στόχοι
Διαβάστε περισσότεραΤυπικζσ Γλϊςςεσ Περιγραφισ Υλικοφ Διάλεξθ 4
Τμήμα Μησανικών Πληποφοπικήρ, Τ.Ε.Ι. Ηπείπος Ακαδημαϊκό Έτορ 2016-2017, 6 ο Εξάμηνο Τυπικζσ Γλϊςςεσ Περιγραφισ Υλικοφ Διάλεξθ 4 Διδάςκων Τςιακμάκθσ Κυριάκοσ, Phd MSc in Electronic Physics (Radioelectrology)
Διαβάστε περισσότεραΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ - ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ
ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ - ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ ΣΗΜΜΥ, 5 Ο ΕΞΑΜΗΝΟ http://www.cslab.ece.ntua.gr/courses/comparch 1 ΑΡΙΘΜΟΙ Decimal Eύκολο για τον άνθρωπο Ιδιαίτερα για την εκτέλεση αριθμητικών πράξεων
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Σχεδίαση Ψηφιακών Συστημάτων. Ενότητα: ΚΑΤΑΧΩΡΗΤΕΣ - ΑΠΑΡΙΘΜΗΤΕΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ᄃ Σχεδίαση Ψηφιακών Συστημάτων Ενότητα: ΚΑΤΑΧΩΡΗΤΕΣ - ΑΠΑΡΙΘΜΗΤΕΣ Κυριάκης - Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών
Διαβάστε περισσότεραΗ κανονική μορφή της συνάρτησης που υλοποιείται με τον προηγούμενο πίνακα αληθείας σε μορφή ελαχιστόρων είναι η Q = [A].
Κανονική μορφή συνάρτησης λογικής 5. Η κανονική μορφή μιας λογικής συνάρτησης (ΛΣ) ως άθροισμα ελαχιστόρων, από τον πίνακα αληθείας προκύπτει ως εξής: ) Παράγουμε ένα [A] όρων από την κάθε σειρά για την
Διαβάστε περισσότεραChapter 3 Αριθμητική Υπολογιστών
Chapter 3 Αριθμητική Υπολογιστών Διαφάνειες διδασκαλίας από το πρωτότυπο αγγλικό βιβλίο (4 η έκδοση), μετάφραση: Καθ. Εφαρμογών Νικόλαος Πετράκης, Τμήματος Ηλεκτρονικών Μηχανικών του Τ.Ε.Ι. Κρήτης. Τελευταία
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ
ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ 1.1 Εισαγωγή...11 1.2 Τα κύρια αριθμητικά Συστήματα...12 1.3 Μετατροπή αριθμών μεταξύ των αριθμητικών συστημάτων...13 1.3.1 Μετατροπή ακέραιων
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ
ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ ΜΑΘΗΜΑ 2 ο ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ 2009-10 ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ 1 Άλγεβρα Βοοle η θεωρητική βάση των λογικών κυκλωμάτων Η άλγεβρα Βοοle ορίζεται επάνω στο σύνολο
Διαβάστε περισσότερα1. ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ. α i. (α i β i ) (1.3) όπου: η= το πλήθος ακεραίων ψηφίων του αριθμού Ν. n-1
1. ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ 1.1 Εισαγωγή Το δεκαδικό σύστημα (Decimal System) αρίθμησης χρησιμοποιείται από τον άνθρωπο και είναι κατάλληλο βέβαια γι αυτόν, είναι όμως εντελώς ακατάλληλο για τις ηλεκτρονικές
Διαβάστε περισσότεραΔυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2018-2019 1 Κατακερματισμός Πρόβλημα στατικού κατακερματισμού: Έστω Μ κάδους και r εγγραφές ανά κάδο - το πολύ Μ * r εγγραφές (αλλιώς μεγάλες αλυσίδες υπερχείλισης)
Διαβάστε περισσότεραHY437 Αλγόριθμοι CAD
HY437 Αλγόριθμοι CAD Διδάςκων: Χ. Σωτηρίου http://inf-server.inf.uth.gr/courses/ce437/ 1 Περιεχόμενα Κανονικζσ Μορφζσ Οριςμόσ των Δυαδικών Διαγραμμάτων Αποφάςεων (Binary Decision Diagrams BDDs) Αναπαράςταςθ
Διαβάστε περισσότεραΕπεξεργαστής Υλοποίηση ενός κύκλου μηχανής
ΗΥ 232 Οργάνωση και Σχεδίαση Υπολογιστών Διάλεξη 9 Επεξεργαστής Υλοποίηση ενός κύκλου μηχανής Νίκος Μπέλλας Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ 1 Ti είναι Αρχιτεκτονική και τι Μικροαρχιτεκτονική
Διαβάστε περισσότεραMatrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου
Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού
Διαβάστε περισσότεραa -j a 5 a 4 a 3 a 2 a 1 a 0, a -1 a -2 a -3
ΑΣΚΗΣΗ 5 ΑΘΡΟΙΣΤΕΣ - ΑΦΑΙΡΕΤΕΣ 5.1. ΣΚΟΠΟΣ Η πραγματοποίηση της αριθμητικής πρόσθεσης και αφαίρεσης με λογικά κυκλώματα. 5.2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ: Κάθε σύστημα αρίθμησης χαρακτηρίζεται
Διαβάστε περισσότερα26-Nov-09. ΗΜΥ 210: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο Καταχωρητές 1. Διδάσκουσα: Μαρία Κ. Μιχαήλ
ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2009 Καταχωρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Καταχωρητές Παράλληλης
Διαβάστε περισσότεραΠΛΗ10 Κεφάλαιο 2. ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: : Αριθμητική περιοχή της ALU 2.5: Κυκλώματα Υπολογιστών
ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: 2 2.3 : Αριθμητική περιοχή της ALU 2.5: Κυκλώματα Υπολογιστών Στόχοι Μαθήματος: Να γνωρίσετε τις βασικές αρχές αριθμητικής των Η/Υ. Ποια είναι τα κυκλώματα
Διαβάστε περισσότεραΒασικές Σχεδίασης Υπολογιστών Αριθμητική Μονάδα Επεξεργασίας Κεφάλαιο 10
Βασικές Σχεδίασης Υπολογιστών Αριθμητική Μονάδα Επεξεργασίας Κεφάλαιο 10 Chapter 10 Part 1 1 Περιεχόμενο Εισαγωγή Παράδειγμα Διαδρομής Δεδομένων Αριθμητική Λογική Μονάδα (Arithmetic Logic Uit - ALU) Μονάδα
Διαβάστε περισσότεραΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Καταχωρητές 1
ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Καταχωρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Καταχωρητές Παράλληλης Φόρτωσης Καταχωρητές
Διαβάστε περισσότεραΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Αποδοτική σχεδίαση Multiplier-Adder/Accumulator για αριθμούς σε μορφή
Διαβάστε περισσότεραΗΜΥ211 Εργαστήριο Ψηφιακών Συστηµάτων
ΗΜΥ211 Εργαστήριο Ψηφιακών Συστηµάτων Πλήρης Αθροιστής, Αποκωδικοποιητής και Πολυπλέκτης ιδάσκων: ρ. Γιώργος Ζάγγουλος Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Λύσεις
Διαβάστε περισσότερα100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ
100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 1) Να μετατρέψετε τον δεκαδικό αριθμό (60,25) 10, στον αντίστοιχο δυαδικό 11111,11 111001,01 111100,01 100111,1 111100,01 2)
Διαβάστε περισσότερα4.1 Θεωρητική εισαγωγή
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΥΑ ΙΚΟΣ ΑΘΡΟΙΣΤΗΣ-ΑΦΑΙΡΕΤΗΣ Σκοπός: Να µελετηθούν αριθµητικά κυκλώµατα δυαδικής πρόσθεσης και αφαίρεσης. Να σχεδιαστούν τα κυκλώµατα από τους πίνακες αληθείας
Διαβάστε περισσότεραΠαράρτηµα Γ. Τα Βασικά της Λογικής Σχεδίασης. Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση
Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση Παράρτηµα Γ Τα Βασικά της Λογικής Σχεδίασης ιαφάνειες διδασκαλίας του πρωτότυπου βιβλίου µεταφρασµένες στα ελληνικά και εµπλουτισµένες
Διαβάστε περισσότεραΨηφιακή Σχεδίαση. Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No:07. Δρ. Μηνάς Δασυγένης. Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Ψηφιακή Σχεδίαση Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No:07 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής Υπολογιστών http:
Διαβάστε περισσότεραΑΡΙΘΜΗΤΙΚΗ ΓΙΑ ΥΠΟΛΟΓΙΣΤΕΣ
ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΑΡΙΘΜΗΤΙΚΗ ΓΙΑ ΥΠΟΛΟΓΙΣΤΕΣ ΣΗΜΜΥ, 5 Ο ΕΞΑΜΗΝΟ http://www.cslab.ece.ntua.gr/courses/comparch t / / h 1 ΑΡΙΘΜΟΙ Decimal Eύκολο για τον άνθρωπο Ιδιαίτερα για την εκτέλεση αριθμητικών
Διαβάστε περισσότεραΠερίληψη. Συναρτησιακές Μονάδες: Αθροιστής (Functional Blocks: Addition) ιάγραµµαενός1d επαναληπτικού πίνακα
Περίληψη Κεφάλαιο 5 Αριθµητικές Συναρτήσεις και Κυκλώµατα Επαναληπτικά συνδυαστικά κυκλώµατα υαδικός Αθροιστής Μισός και Πλήρης Αθροιστής Κυµατικό κρατούµενο και Προ-υπολογιτέο κρατούµενο υαδική Αφαίρεση
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 1 5. ΑΛΓΕΒΡΑ BOOLE ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΜΕΡΟΣ Β 2 Επαναληπτική
Διαβάστε περισσότεραΣχεδίαση Βασικών Κυκλωµάτων. Χρ. Καβουσιανός. Επίκουρος Καθηγητής
Σχεδίαση Βασικών Κυκλωµάτων Χρ. Καβουσιανός Επίκουρος Καθηγητής Εισαγωγή Τα αριθµητικά κυκλώµατα χρησιµοποιούνται ευρέως στην σχεδίαση συστηµάτων. Data Paths Επεξεργαστές ASICs Κυρίαρχες Αριθµητικές Πράξεις:
Διαβάστε περισσότεραHY121 Ηλεκτρικϊ Κυκλώματα
HY121 Ηλεκτρικϊ Κυκλώματα Διδϊςκων: Χ. Σωτηρύου, Βοηθού: Ε. Βαςιλϊκησ, Δ. Πούλιοσ http://www.csd.uoc.gr/~hy121 1 Περιεχόμενα Συςκευζσ ςτο Πυρίτιο Πυρίτιο n και p Δίοδοσ Θετικι, αρνθτικι πόλωςθ Εξίςωςθ
Διαβάστε περισσότεραΚΥΚΛΩΜΑΤΑ VLSI. Ασκήσεις Ι. Γ. Τσιατούχας. Πανεπιςτιμιο Ιωαννίνων. Τμιμα Μθχανικϊν Η/Υ και Πλθροφορικισ 8/11/18
ΚΥΚΛΩΜΑΤΑ LSI Πανεπιςτιμιο Ιωαννίνων Ασκήσεις Ι Τμιμα Μθχανικϊν Η/Υ και Πλθροφορικισ 8/11/18 Γ. Τσιατούχας Άσκηση 1 1) Σχεδιάςτε τισ ςφνκετεσ COS λογικζσ πφλεσ (ςε επίπεδο τρανηίςτορ) που υλοποιοφν τισ
Διαβάστε περισσότεραΨηφιακή Σχεδίαση Ενότητα 10:
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 10: Καταχωρητές & Μετρητές Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής Υπολογιστών http://arch.icte.uowm.gr/mdasyg
Διαβάστε περισσότεραΛάμπρος Μπισδούνης. ρ. Ηλεκτρολόγος Μηχανικός
ΑΝΑΛΥΣΗ ΚΑΤΑΝΑΛΩΣΗΣ ΕΝΕΡΓΕΙΑΣ & ΚΑΘΥΣΤΕΡΗΣΗΣ ΚΥΚΛΩΜΑΤΩΝ CMOS & ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΑΡΙΘΜΗΤΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΜΕ ΧΑΜΗΛΗ ΚΑΤΑΝΑΛΩΣΗ ΕΝΕΡΓΕΙΑΣ & ΥΨΗΛΗ ΤΑΧΥΤΗΤΑ Λάμπρος Μπισδούνης ρ. Ηλεκτρολόγος Μηχανικός Χανιά
Διαβάστε περισσότεραHY437 Αλγόριθμοι CAD
HY437 Αλγόριθμοι CAD Διδϊςκων: Χ. Σωτηρύου http://inf-server.inf.uth.gr/courses/ce437/ 1 Περιεχόμενα Στόχοι τθσ Τεχνολογικισ Απεικόνιςθσ Περιγραφι σ ωσ Βαςικοί Γράφοι Μεταςχθματιςμόσ Δυαδικοφ Κυκλϊματοσ
Διαβάστε περισσότεραΓενικά Στοιχεία Ηλεκτρονικού Υπολογιστή
Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ - VLSI Ενότητα: Συνδιαστικά κυκλώματα, βασικές στατικές λογικές πύλες, σύνθετες και δυναμικές πύλες Κυριάκης
Διαβάστε περισσότεραΜικροηλεκτρονική - VLSI
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μικροηλεκτρονική - VLSI Ενότητα 6.2: Συνδυαστική Λογική - Σύνθετες Πύλες Κυριάκης - Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών
Διαβάστε περισσότεραΟΡΓΑΝΩΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Η/Υ
ΟΡΓΑΝΩΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Η/Υ Γιώργος Δημητρίου Μάθημα 4 ο ΜΣ Εφαρμοσμένη ληροφορική ΜΟΝΑΔΑ ΕΕΞΕΡΓΑΣΙΑΣ ΔΕΔΟΜΕΝΩΝ Υπομονάδες πράξεων Αριθμητική/Λογική Μονάδα (ΑΛΜ - ALU): Βασικές αριθμητικές πράξεις Λογικές
Διαβάστε περισσότεραΑριθμητικά Συστήματα = 3 x x x x 10 0
Δεκαδικό Όταν αναφερόμαστε σε μία αριθμητική τιμή, απεικονίζουμε μία ποσότητα με ένα σύμβολο ή έναν συνδυασμό από σύμβολα. Το αριθμητικό σύστημα που χρησιμοποιούμε είναι το δεκαδικό. Αποτελείται από δέκα
Διαβάστε περισσότεραΕθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών. ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΠερίληψη. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005. υαδική Αφαίρεση. υαδική Αφαίρεση (συν.) Ακόµη ένα παράδειγµα Αφαίρεσης.
ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005 Κεφάλαιο 5 -ii: Αριθµητικές Συναρτήσεις και Κυκλώµατα Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Αφαίρεση δυαδικών Περίληψη
Διαβάστε περισσότερα