ΣΕΙ ΕΡΡΩΝ ΜΑΙΟ 2013 ΠΣΤΧΙΑΚΗ ΕΡΓΑΙΑ ΣΙΜΕΝΙΔΗ ΣΕΦΑΝΟ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΣΗ : ΜΑΔΕΜΛΗ ΙΩΑΝΝΗ
|
|
- Λαύρα Αλεξιάδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΣΕΙ ΕΡΡΩΝ ΜΑΙΟ 2013 ΠΣΤΧΙΑΚΗ ΕΡΓΑΙΑ ΠΟΤΔΑΣΕ: ΛΑΔΑ ΧΡΙΣΙΝΑ ΣΙΜΕΝΙΔΗ ΣΕΦΑΝΟ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΣΗ : ΜΑΔΕΜΛΗ ΙΩΑΝΝΗ
2 ΘΕΜΑ: ΧΕΔΙΑΗ ΚΑΙ ΤΛΟΠOΙΗΗ ΕΚΠΑΙΔΕΤΣΙΚΩΝ ΑΝΑΠΣΤΓΜΑΣΩΝ ΜΕΛΕΣΗ ΨΗΦΙΑΚΩΝ ΚΤΚΛΩΜΑΣΩΝ ΚΑΙ ΤΓΓΡΑΦΗ ΜΙΑ ΕΙΡΑ ΕΡΓΑΣΗΡΙΑΚΩΝ ΑΚΗΕΩΝ ΓΙΑ ΑΤΣΑ
3 ΠΕΡΙΛΗΨΗ Αναπτφχκθκε μια ςειρά ψθφιακϊν κυκλωμάτων ςε μορφι καταςκευισ, τα οποία υλοποιικθκαν ςε πρόγραμμα προςομοίωςθσ MultiSim και ςυγγράφθκε μια ςειρά εργαςτθριακϊν αςκιςεων για αυτά. Χωρίηονται ςτισ 2 βαςικζσ κατθγορίεσ ΑΚΟΛΟΤΘΙΑΚΑ και ΤΝΔΤΑΣΙΚΑ Σα ςυνδυαςτικά περιλαμβάνουν : Λογικζσ πφλεσ Πολυπλζκτεσ Αποκωδικοποιθτζσ Κυκλϊματα αρικμθτικϊν πράξεων Σα ακολουκιακά περιλαμβάνουν : Flip-flops Απαρικμθτι Καταχωρθτι ολίςκθςθσ τατικι μνιμθ RAM Μετατροπείσ DAC και ADC
4 Βήμα πρώτο : Δοκιμι των chip πάνω ςτο raster για τθν επιβεβαίωςθ τθσ ορκισ λειτουργίασ τουσ. ΠΡΑΚΣΙΚΟ ΜΕΡΟ Βήμα δεύτερο : Σοποκζτθςθ των chip ακολουκϊντασ τθν ίδια δομι και ςυνδεςμολογία, ςτισ πλακζτεσ για τθν ολοκλιρωςθ των κολλιςεων. Βήμα τρίτο : χεδιαςμόσ τθσ πρόςοψθσ των κουτιϊν και υλοποίθςθ τουσ.
5 ΜΕΛΕΣΗ ΚΤΚΛΩΜΑΣΩΝ 1. ΨΗΦΙΑΚΕ ΠΤΛΕ το κεωρθτικό κομμάτι επεξθγικθκαν μια προσ μια όλεσ οι ψθφιακζσ πφλεσ δίνοντασ αναλυτικά τον οριςμό τθσ κάκε μιασ, τον πίνακα αλθκείασ τθσ, το ςφμβολο τθσ και τθν λογικι ςυνάρτθςθ τθσ. το εργαςτθριακό κομμάτι δόκθκε ςε μορφι ςχεδιαγράμματοσ θ ςυνδεςμολογία των ψθφιακϊν πυλϊν ζτςι ϊςτε να υλοποιθκεί από τουσ ςπουδαςτζσ ςτο Multisim. Πάνω ςε αυτό βαςίςτθκαν και οι εργαςτθριακζσ αςκιςεισ που ςυγγράφθκαν.
6 NOT: AND: OR: NAND: XOR: XNOR: Α A Α Β Ζ Α Β Ζ Α Β Ζ Α Β Ζ Α Β Ζ
7 ΨΗΦΙΑΚΕ ΠΤΛΕ ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ VCC 5V NOTA R1 NOT1 74LS04D 330Ω R4 330Ω ANDA ANDB R2 AND2 BIT0 Key = A 74LS00D 74LS00D NANDC 330Ω R3 NAND3 74LS00D 330Ω ORA R8 330Ω 74LS00D ORB ORC 74LS00D R5 330Ω OR4 74LS00D BIT1 Key = B XORA R6 XOR5 74LS86D 330Ω XNORB U1D R7 XNOR6 74LS86D 74LS04D 330Ω Εργαςτθριακό μζροσ με βάςθ τθν ςελίδα 6
8 2. ΠΟΛΤΠΛΕΚΣΗ ΘΕΩΡΗΣΙΚΟ ΜΕΡΟ: 4 ΓΡΑΜΜΕ ΕΙΟΔΟΤ 2 ΓΡΑΜΜΕ ΕΠΙΛΟΓΗ 1 ΕΞΟΔΟ ΕΡΓΑΣΗΡΙΑΚΟ ΜΕΡΟ: Chip 74ls151 // Multiplex 8Χ1 Μετατροπι ςε πολυπλζκτθ 4Χ1 γειϊνοντασ τισ 4 από τισ 8 ειςόδουσ
9 3. ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΕ 3.1 ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗ 2 to 4 ΘΕΩΡΗΣΙΚΟ ΜΕΡΟ: 2 ΓΡΑΜΜΕ ΕΙΟΔΟΤ 4 ΓΡΑΜΜΕ ΕΞΟΔΟΤ ΕΡΓΑΣΗΡΙΑΚΟ ΜΕΡΟ: Chip 74ls138 //Decoder 2to4 Ο ςυνδυαςμόσ ειςόδων δίνει μια μοναδικι γραμμι εξόδου
10 3.2 Αποκωδικοποιθτισ BCDto7segment ΘΕΩΡΗΣΙΚΟ ΜΕΡΟ: 4 ΓΡΑΜΜΕ ΕΙΟΔΟΤ 7 ΓΡΑΜΜΕ ΕΞΟΔΟΤ Ε ΜΙΑ ΟΘΟΝΗ ΕΡΓΑΣΗΡΙΑΚΟ ΜΕΡΟ : Chip 74ls47//Decoder BCDto7segment O ςυνδυαςμόσ των 4 ειςόδων δίνει ζνα αρικμθτικό αποτζλεςμα ςτθν οκόνθ
11 4. ΑΘΡΟΙΣΕ 4.1 ΗΜΙΑΘΡΟΙΣΗ ΘΕΩΡΗΣΙΚΟ ΜΕΡΟ: 2 ΓΡΑΜΜΕ ΕΙΟΔΟΤ 2 ΓΡΑΜΜΕ ΕΞΟΔΟΤ ΕΡΓΑΣΗΡΙΑΚΟ ΜΕΡΟ: Chip 74ls86 & 74ls08// SEMIADDER Πρόςκεςθ των ψθφίων ειςόδου με αποτζλεςμα το άκροιςμα και το κρατοφμενο
12 4.2 ΠΛΗΡΗ ΑΘΡΟΙΣΗ ΘΕΩΡΗΣΙΚΟ ΜΕΡΟ: 2 ΓΡΑΜΜΕ ΕΙΟΔΟΤ 1 ΚΡΑΣΟΤΜΕΝΟ 2 ΓΡΑΜΜΕ ΕΞΟΔΟΤ ΕΡΓΑΣΗΡΙΑΚΟ ΜΕΡΟ : Chip 74ls86 & 74ls08 & 74ls32 // FULLADDER Πρόςκεςθ των ψθφίων ειςόδου, λαμβάνοντασ υπόψθ το κρατοφμενο με αποτζλεςμα το άκροιςμα και το κρατοφμενο εξόδου
13 4.3 ΑΘΡΟΙΣΗ 4 BITS ΘΕΩΡΗΣΙΚΟ ΜΕΡΟ: 8 ΓΡΑΜΜΕ ΕΙΟΔΟΤ 1 ΑΡΧΙΚΟ ΚΡΑΣΟΤΜΕΝΟ 4 ΓΡΑΜΜΕ ΕΞΟΔΟΤ ΕΡΓΑΣΗΡΙΑΚΟ ΜΕΡΟ: Chip 74ls83 // ADDER4Bits Πρόςκεςθ ανά δφο ειςόδουσ λαμβάνοντασ υπόψθ το αρχικό και όποια κρατοφμενα μπορεί να προκφψουν, με αποτζλεςμα το άκροιςμα και το τελικό κρατοφμενο.
14 5. FLIP-FLOPS 5.1 ΜΑΝΔΑΛΩΣΗ SR ΘΕΩΡΗΣΙΚΟ ΜΕΡΟ: 2 ΓΡΑΜΜΕ ΕΙΟΔΟΤ 2 ΓΡΑΜΜΕ ΕΞΟΔΟΤ ΕΡΓΑΣΗΡΙΑΚΟ ΜΕΡΟ: Chip 74LS00//NAND Βρόχοσ ανάδραςθσ Θυμάται προθγοφμενθ κατάςταςθ Αςφγχρονο
15 5.2 D FLIP-FLOP ΘΕΩΡΗΣΙΚΟ ΜΕΡΟ: 4 ΓΡΑΜΜΕ ΕΙΟΔΟΤ 2 ΓΡΑΜΜΕ ΕΞΟΔΟΤ ΕΡΓΑΣΗΡΙΑΚΟ ΜΕΡΟ : Chip 74LS74//D flip-flop Ειςάγει κακυςτζρθςθ ςυγχρονιςμόσ
16 5.3 J-K FLIP-FLOP ΘΕΩΡΗΣΙΚΟ ΜΕΡΟ: 5 ΓΡΑΜΜΕ ΕΙΟΔΟΤ 2 ΓΡΑΜΜΕ ΕΞΟΔΟΤ ΕΡΓΑΣΗΡΙΑΚΟ ΜΕΡΟ : Chip 74LS76//J-K flip-flop υνδυαςμόσ 2 ειςόδων ςυγχρονιςμόσ
17 5.4 Σ FLIP-FLOP ΘΕΩΡΗΣΙΚΟ ΜΕΡΟ: 4 ΓΡΑΜΜΕ ΕΙΟΔΟΤ 2 ΓΡΑΜΜΕ ΕΞΟΔΟΤ ΕΡΓΑΣΗΡΙΑΚΟ ΜΕΡΟ: Chip 74LS76//J-K flip-flop Βραχυκλωμζνεσ είςοδοι toggle
18 6. ΑΠΑΡΙΘΜΗΣΕ ΘΕΩΡΗΣΙΚΟ ΜΕΡΟ: 2 ΓΡΑΜΜΕ ΕΙΟΔΟΤ 4 ΓΡΑΜΜΕ ΕΞΟΔΟΤ ΕΡΓΑΣΗΡΙΑΚΟ ΜΕΡΟ: Chip 74LS90 & 74LS247 & 7 segment display //BCD counter & Decoder BCDto7segment υγχρονιςμόσ Από binary ςε decimal ςε απεικόνιςθ
19 7. ΚΑΣΑΧΩΡΗΣΗ ΟΛΙΘΗΗ ΘΕΩΡΗΣΙΚΟ ΜΕΡΟ: 10 ΓΡΑΜΜΕ ΕΙΟΔΟΤ 4 ΓΡΑΜΜΕ ΕΞΟΔΟΤ ΕΡΓΑΣΗΡΙΑΚΟ ΜΕΡΟ : Chip 74LS194// Shift Register 4 bits 4 λειτουργίεσ Διατιρθςθ, ολίςκθςθ(l,r), παράλλθλθ φόρτωςθ
20 8. ΣΑΣΙΚΗ RAM ΘΕΩΡΗΣΙΚΟ ΜΕΡΟ: 30 ΓΡΑΜΜΕ ΕΙΟΔΟΤ 8 ΓΡΑΜΜΕ ΕΞΟΔΟΤ ΕΡΓΑΣΗΡΙΑΚΟ ΜΕΡΟ : Chip 6116 //Static RAM 2K X 8 bits Απλοποίθςθ (2K X 8 8 X 4) Εγγραφι/ανάγνωςθ
21 9. ΜΕΣΑΣΡΟΠΕΙ ADC & DAC 9.1 ADC 8 BITS Αναλογικό (ςυνεχζσ) ςιμα 0-5 Volt Ψθφιακό (διακριτό) ςιμα 8 bits
22 9.2 DAC 4 bits ΘΕΩΡΗΣΙΚΟ ΜΕΡΟ: 4 BIT ΕΙΟΔΟΤ 1 ΑΝΑΛΟΓΙΚΗ ΕΞΟΔΟ ΕΡΓΑΣΗΡΙΑΚΟ ΜΕΡΟ: Δικτφωμα R2R
Λαμβάνοντασ υπόψη ότι κατά την πρόςθεςη δφο δυαδικϊν ψηφίων ιςχφει: Κρατοφμενο
Αριθμητικά κυκλώματα Ημιαθροιστής (Half Adder) Ο ημιαθροιςτήσ είναι ζνα κφκλωμα το οποίο προςθζτει δφο δυαδικά ψηφία (bits) και δίνει ωσ αποτζλεςμα το άθροιςμά τουσ και το κρατοφμενο. Με βάςη αυτή την
Πολυπλέκτες. 0 x 0 F = S x 0 + Sx 1 1 x 1
Πολυπλέκτες Ο πολυπλζκτθσ (multipleer - ) είναι ζνα ςυνδυαςτικό κφκλωμα που επιλζγει δυαδικι πλθροφορία μιασ από πολλζσ γραμμζσ ειςόδου και τθν κατευκφνει ςε μια και μοναδικι γραμμι εξόδου. Η επιλογι μιασ
Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 10 : Καταχωρθτζσ Φϊτιοσ Βαρτηιϊτθσ
Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 10 : Καταχωρθτζσ Φϊτιοσ Βαρτηιϊτθσ 1 Ανοιχτά Ακαδημαϊκά Σμιμα Ψθφιακά Ηλεκτρονικά Ενότητα 10: Καταχωρθτζσ Φϊτιοσ
x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό.
Κωδικοποιητές Ο κωδικοποιθτισ (nor) είναι ζνα κφκλωμα το οποίο διακζτει n γραμμζσ εξόδου και το πολφ μζχρι m = 2 n γραμμζσ ειςόδου και (m 2 n ). Οι ζξοδοι παράγουν τθν κατάλλθλθ λζξθ ενόσ δυαδικοφ κϊδικα
Ελλθνικι Δθμοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 1 : Ειςαγωγι. Φϊτιοσ Βαρτηιϊτθσ
Ελλθνικι Δθμοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 1 : Ειςαγωγι Φϊτιοσ Βαρτηιϊτθσ 1 Ανοιχτά Ακαδημαϊκά Μαθήματα Τμιμα Ψθφιακά Ηλεκτρονικά Ενότητα 1: Ειςαγωγι Φϊτιοσ
HY220 Εργαςτήριο Ψηφιακών Κυκλωμάτων.
HY220 Εργαςτήριο Ψηφιακών Κυκλωμάτων Διδάςκων: Χ. Σωτηρίου, Βοηθοί: Ε. Κουναλάκησ, Π. Ματτθαιάκησ http://www.csd.uoc.gr/~hy220 1 ΗΥ220 - Διάλεξθ 7θ - Αρικμθτικά Κυκλϊματα Κυκλϊματα Πρόςκεςθσ Half-adder
HY220 Εργαςτήριο Ψηφιακών Κυκλωμάτων. 9/28/ ΗΥ220 - Διάλεξθ 3θ, Επανάλθψθ
HY220 Εργαςτήριο Ψηφιακών Κυκλωμάτων Διδάςκων: Χ. Σωτηρίου, Βοηθοί: Ε. Κουναλάκησ, Π. Ματτθαιάκησ http://www.csd.uoc.gr/~hy220 1 Περιεχόμενα Συςτιματα Αρικμϊν και Δυαδικοί Αρικμοί Ψθφιακι Λογικι Ηλεκτρικά
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές 12 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.ntua.gr URL: http://users.ntua.gr/leo 1 GROUP I A Λ ΤΡΙΤΗ PC-Lab GROUP IΙ Μ Ω ΠΑΡΑΣΚΕΥΗ Central Κέντρο
Λογικά Ψθφιακά Κυκλϊματα
Λογικά Ψθφιακά Κυκλϊματα Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ Βαςικεσ λογικεσ ςυναρτηςεισ Βαςικεσ πυλεσ Συνθετεσ πυλεσ ςυνδυαςτικά κυκλώματα 2 Ψηφιακζσ Λογικζσ Πφλεσ Οι λογικζσ ςυναρτιςεισ είναι δυνατόν
Λογικά Ψθφιακά Κυκλϊματα
Λογικά Ψθφιακά Κυκλϊματα Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ Βαςικεσ λογικεσ ςυναρτηςεισ Βαςικεσ πυλεσ Συνθετεσ πυλεσ ςυνδυαςτικά κυκλώματα 2 λογικά ψθφιακά κυκλϊματα Ονομάηουμε λογικά ψθφιακά κυκλϊματα,
100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ
100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 1) Να μετατρέψετε τον δεκαδικό αριθμό (60,25) 10, στον αντίστοιχο δυαδικό 11111,11 111001,01 111100,01 100111,1 111100,01 2)
Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2
Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Δρ. Χρήζηος Ηλιούδης Μθ Προςθμαςμζνοι Ακζραιοι Εφαρμογζσ (ςε οποιαδιποτε περίπτωςθ δεν χρειάηονται αρνθτικοί αρικμοί) Καταμζτρθςθ. Διευκυνςιοδότθςθ.
Τυπικζσ Γλϊςςεσ Περιγραφισ Υλικοφ Διάλεξθ 4
Τμήμα Μησανικών Πληποφοπικήρ, Τ.Ε.Ι. Ηπείπος Ακαδημαϊκό Έτορ 2016-2017, 6 ο Εξάμηνο Τυπικζσ Γλϊςςεσ Περιγραφισ Υλικοφ Διάλεξθ 4 Διδάςκων Τςιακμάκθσ Κυριάκοσ, Phd MSc in Electronic Physics (Radioelectrology)
Ελίνα Μακρή
Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,
Παραπάνω παρουςιάηεται ο πιο ςυνικθσ χωροκζτθςθ αρικμθτικϊν, λογικϊν κυκλωμάτων. Η μονάδα επεξεργαςίασ είναι θ λζξθ (λ.χ. 32-bit ςε επεξεργαςτζσ,
1 2 3 4 Παραπάνω παρουςιάηεται ο πιο ςυνικθσ χωροκζτθςθ αρικμθτικϊν, λογικϊν κυκλωμάτων. Η μονάδα επεξεργαςίασ είναι θ λζξθ (λ.χ. 32-bit ςε επεξεργαςτζσ, 8-bit ςε DSP) και αυτι κακορίηει και τθν δομι τθσ
Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 11 : Μετρθτζσ Ριπισ Φϊτιοσ Βαρτηιϊτθσ
Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 11 : Μετρθτζσ Ριπισ Φϊτιοσ Βαρτηιϊτθσ 1 Ανοιχτά Σμιμα Ψθφιακά Ηλεκτρονικά Ενότητα 11: Μετρθτζσ Ριπισ Φϊτιοσ Βαρτηιϊτθσ
Ελίνα Μακρή
Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,
EPΓAΣTHPIAKEΣ AΣKHΣEIΣ ΛOΓIKOY ΣXEΔIAΣMOY
ΠANEΠIΣTHMIO ΠATPΩN TMHMA MHX H/ Y & ΠΛHPOΦOPIKHΣ TOMEAΣ YΛIKOY KAI APXITEKTONIKHΣ YΠOΛOΓIΣTΩN Εργαστήριο Θεωρίας Κυκλωμάτων, Ηλεκτρονικών & Λογικού Σχεδιασμού EPΓAΣTHPIAKEΣ AΣKHΣEIΣ ΛOΓIKOY ΣXEΔIAΣMOY
ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 7 θ Διάλεξθ Διαχείριςθ Μνιμθσ Μζροσ Γ
ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ 7 θ Διάλεξθ Διαχείριςθ Μνιμθσ Μζροσ Γ ελιδοποίθςθ (1/10) Σόςο θ κατάτμθςθ διαμεριςμάτων ςτακεροφ μεγζκουσ όςο και θ κατάτμθςθ διαμεριςμάτων μεταβλθτοφ και άνιςου μεγζκουσ δεν κάνουν
ΠΛΗ10 Κεφάλαιο 2. ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: : Αριθμητική περιοχή της ALU 2.5: Κυκλώματα Υπολογιστών
ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: 2 2.3 : Αριθμητική περιοχή της ALU 2.5: Κυκλώματα Υπολογιστών Στόχοι Μαθήματος: Να γνωρίσετε τις βασικές αρχές αριθμητικής των Η/Υ. Ποια είναι τα κυκλώματα
Συπικζσ Γλϊςςεσ Περιγραφισ Τλικοφ Διάλεξθ 5
Τμήμα Μησανικών Πληποφοπικήρ, Τ.Ε.Ι. Ηπείπος Ακαδημαϊκό Έτορ 2016-2017, 6 ο Εξάμηνο Συπικζσ Γλϊςςεσ Περιγραφισ Τλικοφ Διάλεξθ 5 Διδάςκων Σςιακμάκθσ Κυριάκοσ, Phd MSc in Electronic Physics (Radioelectrology)
ΑΣΚΗΣΗ 7 ΚΩΔΙΚΕΣ Η ΟΘΟΝΗ 7 ΤΜΗΜΑΤΩΝ - ΚΩΔΙΚΟΠΟΙΗTΕΣ ( ENCODERS )
ΑΣΚΗΣΗ ΚΩΔΙΚΕΣ Η ΟΘΟΝΗ ΤΜΗΜΑΤΩΝ - ΚΩΔΙΚΟΠΟΙΗTΕΣ ( ENCOERS ).. ΣΚΟΠΟΣ Η κατανόηση των κωδίκων των ψηφίων του δεκαδικού αριθμητικού συστήματος, της λειτουργίας των κωδικοποιητών και των εφαρμογών τους και
Ραραπάνω παρουςιάηεται ο πυρινασ των εντολϊν του επεξεργαςτι MIPS, με τισ οποίεσ, και τθν υλοποίθςθ τουσ ςε υλικό κα αςχολθκοφμε.
1 2 3 Ραραπάνω παρουςιάηεται ο πυρινασ των εντολϊν του επεξεργαςτι MIPS, με τισ οποίεσ, και τθν υλοποίθςθ τουσ ςε υλικό κα αςχολθκοφμε. 4 5 Ραραπάνω φαίνονται τα απαιτοφμενα βιματα για τθν εκτζλεςθ κάθε
ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΥΠΟΛΟΓΙΣΤΩΝ. Τμήμα Πληρουορικής και Τεχμολογίας Υπολογιστώμ
ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΥΠΟΛΟΓΙΣΤΩΝ Αριθμητικά Συςτήματα Ζνασ αριθμόσ m-ψηφίων και βάςησ b, γράφεται ωσ μια ακολουθία m-ψηφίων. x = xm-1xm-2 x1x0 Όπου τα ψηφία xi ανήκουν ςτο διάςτημα 0 xi b-1 Ζτςι, η τιμή
Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 3 : τοιχεία Μνιμθσ flip-flop.
Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 3 : τοιχεία Μνιμθσ flip-flop Φϊτιοσ Βαρτηιϊτθσ 1 Ανοιχτά Ακαδημαϊκά Σμιμα Ψθφιακά Ηλεκτρονικά Ενότητα 3: τοιχεία
ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ 4.1
ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ 4. Να γίνει πρόγραμμα το οποίο να επιλφει το Διαγώνιο Σφςτθμα: A ι το ςφςτθμα : ι ςε μορφι εξιςώςεων το ςφςτθμα : Αλγόρικμοσ m(). Διαβάηουμε τθν τιμι του ( θ διάςταςθ του Πίνακα Α )..
Ελίνα Μακρή
Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,
ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ. Κεφάλαιο 8 Η γλϊςςα Pascal
ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ Κεφάλαιο 8 Η γλϊςςα Pascal Παράγραφοσ 8.2 Βαςικοί τφποι δεδομζνων Σα δεδομζνα ενόσ προγράμματοσ μπορεί να: είναι αποκθκευμζνα εςωτερικά ςτθν μνιμθ είναι αποκθκευμζνα εξωτερικά
Παράςταςη ςυμπλήρωμα ωσ προσ 1
Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ ΣΤ1 Προςθεςη αφαίρεςη ςτο ΣΤ1 2 ή ΣΤ1 Ονομάηουμε ςυμπλιρωμα ωσ προσ μειωμζνθ βάςθ R ενόσ μθ προςθμαςμζνου αρικμοφ Χ = ( Χ θ-1 Χ θ-2... Χ 0 ) R ζναν άλλον αρικμό Χ'
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 9: Ελαχιστοποίηση και Κωδικοποίηση Καταστάσεων, Σχεδίαση με D flip-flop, Σχεδίαση με JK flip-flop, Σχεδίαση με T flip-flop Δρ. Μηνάς
ΑΣΚΗΣΗ 7 FLIP - FLOP
ΑΣΚΗΣΗ 7 FLIP - FLOP Αντικείμενο της άσκησης: Η κατανόηση της δομής και λειτουργίας των Flip Flop. Flip - Flop Τα Flip Flop είναι δισταθή λογικά κυκλώματα με χαρακτηριστικά μνήμης και είναι τα πλέον βασικά
Σχεδίαση Ψηφιακών Συστηµάτων
Σχεδίαση Ψηφιακών Συστηµάτων Πανεπιστήμιο Δυτικής Αττικής Τμήμα Μηχανικών Πληροφορικής και Υπολογιστών Γιάννης Βογιατζής Πάνος Καρκαζής 27-28 Παρουσίαση 4 η : Ψηφιακή Σχεδίαση Μέρος 3 Ανάλυση και Σχεδίαση
ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ ΜΕΛΕΣΗ ΣΗ ΚΙΝΗΗ ΩΜΑΣΟ Ε ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ - ΜΕΣΡΗΗ ΣΟΤ ΤΝΣΕΛΕΣΗ ΣΡΙΒΗ ΟΛΙΘΗΗ
ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ ΜΕΛΕΣΗ ΣΗ ΚΙΝΗΗ ΩΜΑΣΟ Ε ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ - ΜΕΣΡΗΗ ΣΟΤ ΤΝΣΕΛΕΣΗ ΣΡΙΒΗ ΟΛΙΘΗΗ ΕΚΦΕ Α & Β ΑΝΑΣΟΛΙΚΗ ΑΣΣΙΚΗ τόχοι Μετά το πζρασ τθσ εργαςτθριακισ άςκθςθσ, οι μακθτζσ κα πρζπει να είναι ςε κζςθ:
Ψηφιακά Συστήματα. Ενότητα: Ψηφιακά Συστήματα. Δρ. Κοντογιάννης Σωτήρης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
Ψηφιακά Συστήματα Ενότητα: Ψηφιακά Συστήματα Δρ. Κοντογιάννης Σωτήρης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Κ. ΕΥΣΤΑΘΙΟΥ, Γ. ΠΑΠΑΔΟΠΟΥΛΟΣ ΠΑΤΡΑ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ & ΥΠΟΛΟΓΙΣΤΩΝ ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΣΗΜΕΙΩΣΕΙΣ ΑΠΑΡΙΘΜΗΤΕΣ Κ. ΕΥΣΤΑΘΙΟΥ, Γ. ΠΑΠΑΔΟΠΟΥΛΟΣ
Ακολουκιακά Λογικά Κυκλώματα
Ακολουκιακά Λογικά Κυκλώματα Τα ψθφιακά λογικά κυκλϊματα που μελετιςαμε μζχρι τϊρα ιταν ςυνδυαςτικά κυκλϊματα. Στα ςυνδυαςτικά κυκλϊματα οι ζξοδοι ςε κάκε χρονικι ςτιγμι εξαρτϊνται αποκλειςτικά και μόνο
Τυπικζσ Γλϊςςεσ Περιγραφισ Υλικοφ Εργαςτιριο 3
Τμήμα Μησανικών Πληποφοπικήρ, Τ.Ε.Ι. Ηπείπος Ακαδημαϊκό Έτορ 2016-2017, 6 ο Εξάμηνο Τυπικζσ Γλϊςςεσ Περιγραφισ Υλικοφ Εργαςτιριο 3 Διδάςκων Τςιακμάκθσ Κυριάκοσ, Phd MSc in Electronic Physics (Radioelectrology)
ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ.3 ΑΣΥΓΧΡΟΝΟΣ ΔYΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ.5 ΑΣΥΓΧΡΟΝΟΣ ΔΕΚΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ.7 ΑΣΥΓΧΡΟΝΟΣ ΔΕΚΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ ΜΕ LATCH.
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ & ΥΠΟΛΟΓΙΣΤΩΝ ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΣΗΜΕΙΩΣΕΙΣ ΑΠΑΡΙΘΜΗΤΕΣ Κ. ΕΥΣΤΑΘΙΟΥ, Γ. ΠΑΠΑΔΟΠΟΥΛΟΣ
Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες
Πρώτο Κεφάλαιο Εισαγωγή στα Ψηφιακά Συστήματα 1.1 Αναλογικά και Ψηφιακά Σήματα και Συστήματα... 1 1.2 Βασικά Ψηφιακά Κυκλώματα... 3 1.3 Ολοκληρωμένα κυκλώματα... 4 1.4 Τυπωμένα κυκλώματα... 7 1.5 Εργαλεία
7.1 Θεωρητική εισαγωγή
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7 ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΜΑΝ ΑΛΩΤΕΣ FLIP FLOP Σκοπός: Η κατανόηση της λειτουργίας των βασικών ακολουθιακών κυκλωµάτων. Θα µελετηθούν συγκεκριµένα: ο µανδαλωτής (latch)
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ. Κεφάλαιο 3
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Κεφάλαιο 3 Δυαδική λογική Με τον όρο λογική πρόταση ή απλά πρόταση καλούμε κάθε φράση η οποία μπορεί να χαρακτηριστεί αληθής ή ψευδής με βάση το νόημα της. π.χ. Σήμερα
ΑΠΟ ΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΚΕΦΑΛΑΙΟ 7-8 (ΚΑΤΑΧΩΡΗΤΕΣ & ΑΠΑΡΙΘΜΗΤΕΣ)
ΑΠΟ ΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2009 205 ΚΕΦΑΛΑΙΟ 7-8 (ΚΑΤΑΧΩΡΗΤΕΣ & ΑΠΑΡΙΘΜΗΤΕΣ) ΑΠΟ ΘΕΜΑ Α Ερωτήσεις. Γιατί στους ασύγχρονους απαριθμητές τα flip-flops δεν αλλάζουν ταυτόχρονα κατάσταση; 2. Να
Ελίνα Μακρή
Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,
Θεςιακά ςυςτιματα αρίκμθςθσ
Θεςιακά ςυςτιματα αρίκμθςθσ Δρ. Χρήστος Ηλιούδης αρικμθτικό ςφςτθμα αρίκμθςθσ (Number System) Αξία (value) παράςταςθ Οι αξίεσ (π.χ. το βάροσ μιασ ποςότθτασ μιλων) μποροφν να παραςτακοφν με πολλοφσ τρόπουσ
Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 9 : Διαδικαςία φνκεςθσ Φϊτιοσ Βαρτηιϊτθσ
Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 9 : Διαδικαςία φνκεςθσ Φϊτιοσ Βαρτηιϊτθσ 1 Ανοιχτά Σμιμα Ψθφιακά Ηλεκτρονικά Ενότητα 9: Διαδικαςία φνκεςθσ Φϊτιοσ
Κεφάλαιο 3 ο Ακολουθιακά Κυκλώματα με ολοκληρωμένα ΤΤL
Κεφάλαιο 3 ο Ακολουθιακά Κυκλώματα με ολοκληρωμένα ΤΤL 3.1 Εισαγωγή στα FLIP FLOP 3.1.1 Θεωρητικό Υπόβαθρο Τα σύγχρονα ακολουθιακά κυκλώματα με τα οποία θα ασχοληθούμε στο εργαστήριο των Ψηφιακών συστημάτων
ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ (Α)
ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ (Α) Αντικείμενο της άσκησης: Η χρήση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων (ΟΚ), η συνδεσμολόγησή τους στην κάρτα εργασίας (bread-board) και η κατανόηση της λογικής συμπεριφοράς των
Ασύγχρονοι Απαριθμητές. Διάλεξη 7
Ασύγχρονοι Απαριθμητές Διάλεξη 7 Δομή της διάλεξης Εισαγωγή στους Απαριθμητές Ασύγχρονος Δυαδικός Απαριθμητής Ασύγχρονος Δεκαδικός Απαριθμητής Ασύγχρονος Δεκαδικός Απαριθμητής με Latch Ασκήσεις 2 Ασύγχρονοι
Σχεδίαςη Σφγχρονων Ακολουθιακών Κυκλωμάτων
Σχεδίαςη Σφγχρονων Ακολουθιακών Κυκλωμάτων Πίνακεσ Διζγερςησ των FF Όπωσ είδαμε κατά τθ μελζτθ των FF, οι χαρακτθριςτικοί πίνακεσ δίνουν τθν τιμι τθσ επόμενθσ κατάςταςθσ κάκε FF ωσ ςυνάρτθςθ τθσ παροφςασ
4 η Θεµατική Ενότητα : Καταχωρητές και Μετρητές. Επιµέλεια διαφανειών: Χρ. Καβουσιανός
4 η Θεµατική Ενότητα : Καταχωρητές και Μετρητές Επιµέλεια διαφανειών: Χρ. Καβουσιανός Εισαγωγή Καταχωρητής: οµάδα από δυαδικά κύτταρα αποθήκευσης και λογικές πύλες που αποθηκεύουν και µεταφέρουν πληροφορίες.
Ψθφιακά Ηλεκτρονικά. Ενότθτα 7 : Ελαχιςτοποίθςθ και κωδικοποίθςθ καταςτάςεων Φϊτιοσ Βαρτηιϊτθσ
Ελλθνικι Δθμοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 7 : Ελαχιςτοποίθςθ και κωδικοποίθςθ καταςτάςεων Φϊτιοσ Βαρτηιϊτθσ 1 Ανοιχτά Ακαδημαϊκά Μαθήματα ςτο ΤΕΙ Ηπείρου Τμιμα
3 θ διάλεξθ Επανάλθψθ, Επιςκόπθςθ των βαςικϊν γνϊςεων τθσ Ψθφιακισ Σχεδίαςθσ
3 θ διάλεξθ Επανάλθψθ, Επιςκόπθςθ των βαςικϊν γνϊςεων τθσ Ψθφιακισ Σχεδίαςθσ 1 2 3 4 5 6 7 Παραπάνω φαίνεται θ χαρακτθριςτικι καμπφλθ μετάβαςθσ δυναμικοφ (voltage transfer characteristic) για ζναν αντιςτροφζα,
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΤΕΤΑΡΤΗ 19 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΤΕΤΑΡΤΗ 19 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις
ΑΚΑΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ : TEΣT ΑΞΙΟΛΟΓΗΣΗΣ ΓΝΩΣΕΩΝ ΣΤΑ ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ
ΑΚΑΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ : TEΣT ΑΞΙΟΛΟΓΗΣΗΣ ΓΝΩΣΕΩΝ ΣΤΑ ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΣΠΟΥΔΑΣΤΗΣ : Λιασένκο Ρομάν ΕΠΙΒΛΕΠΟΥΣΑ ΚΑΘΗΓΗΤΡΙΑ : Τόλιου Κατερίνα NEA
Ψηφιακή Σχεδίαση Ενότητα 10:
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 10: Καταχωρητές & Μετρητές Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής Υπολογιστών http://arch.icte.uowm.gr/mdasyg
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΚΑΙ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΟΜΑ Α Β ) ΤΡΙΤΗ 28 ΙΟΥΝΙΟΥ 2016
ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΙΣΟΤΣΟ ΚΤΠΡΟΤ Πρόγραμμα Επιμόρυωσης Τποψηυίων Καθηγητών Σεχνολογίας. Ηλεκτρονικά ΙΙ
ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΙΣΟΤΣΟ ΚΤΠΡΟΤ Πρόγραμμα Επιμόρυωσης Τποψηυίων Καθηγητών Σεχνολογίας Ηλεκτρονικά ΙΙ Πέμπτη 3/3/2011 Διδάζκων: Γιώργος Χαηζηιωάννοσ Τηλέθωνο: 99653828 Ε-mail: georghios.h@cytanet.com.cy Ώρες
ΑΣΚΗΣΗ 9. Tα Flip-Flop
ΑΣΚΗΣΗ 9 Tα Flip-Flop 9.1. ΣΚΟΠΟΣ Η κατανόηση της λειτουργίας των στοιχείων μνήμης των ψηφιακών κυκλωμάτων. Τα δομικά στοιχεία μνήμης είναι οι μανδαλωτές (latches) και τα Flip-Flop. 9.2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ
Ενότητα 8 Η ΠΥΛΗ XOR ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΩΔΙΚΟΠΟΙΗΣΗ
Ενότητα 8 Η ΠΛΗ XOR ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΩΔΙΚΟΠΟΙΗΣΗ Γενικές Γραμμές Πύλες XOR και XNOR λοποιήσεις με AND-OR-INV Κώδικας Ισοτιμίας (Parity) Άρτια και Περιττή Συνάρτηση Κυκλώματα ανίχνευσης λαθών Συγκριτές
Μετατροπεσ Παραςταςεων
Δρ. Χρήστος Ηλιούδης Μεηαηποπή 346 10 ζε δςαδικο 346 10 1) 346/2 = 173 με ςπόλοιπο 0 2) 173/2 = 86 με ςπόλοιπο 1 3) 86/2 = 43 με ςπόλοιπο 0 4) 43/2 = 21 με ςπόλοιπο 1 5) 21/2 = 10 με ςπόλοιπο 1 6) 10/2
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Ψηφιακά Ηλεκτρονικά
Πράξεις με δυαδικούς αριθμούς
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (λογικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Εκτέλεση πράξεων
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Τεχνολογία και
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα : Τεχνολογία Αναλογικών και Ψηφιακών Ηλεκτρονικών Τεχνολογία ΙΙ, Πρακτικής
Αρχιτεκτονικές Υπολογιστών
ΑΡΧΙΤΕΚΤΟΝΙΚΕΣ ΥΠΟΛΟΓΙΣΤΩΝ Μάθηµα: Αρχιτεκτονικές Υπολογιστών FLIP-FLOPS ΣΥΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΙΑ ΙΚΑΣΙΑ ΑΝΑΛΥΣΗΣ ΚΑΙ ΣΧΕ ΙΑΣΗ ΣΑΚ ιδάσκων: Αναπλ. Καθ. Κ. Λαµπρινουδάκης clam@uipi.gr Αρχιτεκτονικές
i Το τρανζίστορ αυτό είναι τύπου NMOS. Υπάρχει και το συμπληρωματικό PMOS. ; Τι συμβαίνει στο τρανζίστορ PMOS; Το τρανζίστορ MOS(FET)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 25-6 Το τρανζίστορ MOS(FET) πύλη (gate) Ψηφιακή και Σχεδίαση πηγή (source) καταβόθρα (drai) (σχεδίαση συνδυαστικών κυκλωμάτων) http://di.ioio.gr/~mistral/tp/comparch/
ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωμάτων
ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωμάτων Χειμερινό Εξάμηνο 2017-2018 Λογικές Πύλες, Στοιχεία Μνήμης, Συνδυαστική Λογική και Κυματομορφές ΗΥ220 - Βασίλης Παπαευσταθίου & Γιώργος Καλοκαιρινός 1 Τα βασικά της
ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ
ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ 1.1 Εισαγωγή...11 1.2 Τα κύρια αριθμητικά Συστήματα...12 1.3 Μετατροπή αριθμών μεταξύ των αριθμητικών συστημάτων...13 1.3.1 Μετατροπή ακέραιων
Ελίνα Μακρή
Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,
Προςζξτε ότι για τα A, B ςε ςειρά, θ πθγι του πάνω, όταν είναι ανοικτό φτάνει μόνο τα (Vdd Vtn)V.
1 2 Όπωσ και ςτον αντιςτροφζα, ζτςι και ςτισ βαςικζσ ι πολφπλοκεσ ςτατικζσ διατάξεισ τρανηίςτορ μποροφμε να χρθςιμοποιιςουμε το μοντζλο τθσ ιςοδφναμθσ αντίςταςθσ. Με αυτό τον τρόπο προκφπτουν πιο πολφπλοκα
ΜΙΧΑΛΗΣ ΨΑΡΑΚΗΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ
Εργαστήριο Λογικής Σχεδίασης Ψηφιακών Συστημάτων ΜΙΧΑΛΗΣ ΨΑΡΑΚΗΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ Τμήμα Πληροφορικής - Πανεπιστήμιο Πειραιώς i ΠΕΡΙΕΧΟΜΕΝΑ ΕΡΓΑΣΤΗΡΙΟ
ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΚΑΡΑΓΚΙΑΟΥΡΗΣ ΝΙΚΟΛΑΟΣ
ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ 3/02/2019 ΚΑΡΑΓΚΙΑΟΥΡΗΣ ΝΙΚΟΛΑΟΣ ΘΕΜΑ 1 ο 1. Να γράψετε στο τετράδιό σας το γράμμα καθεμιάς από τις παρακάτω προτάσεις και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή ή τη λέξη ΛΑΘΟΣ, αν είναι
ΑΣΚΗΣΗ 10 ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ
ΑΣΚΗΣΗ ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ.. ΣΚΟΠΟΣ Η σχεδίαση ακολουθιακών κυκλωμάτων..2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ.2.. ΑΛΓΟΡΙΘΜΟΣ ΣΧΕΔΙΑΣΗΣ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Τα ψηφιακά κυκλώματα με μνήμη ονομάζονται ακολουθιακά.
Ακολουθιακό κύκλωμα Η έξοδος του κυκλώματος εξαρτάται από τις τιμές εισόδου ΚΑΙ από την προηγούμενη κατάσταση του κυκλώματος
1 Συνδυαστικό κύκλωμα Η έξοδος του κυκλώματος εξαρτάται ΜΟΝΟ από τις εισόδους του Εάν γνωρίζουμε τις τιμές των εισόδων του κυκλώματος, τότε μπορούμε να προβλέψουμε ακριβώς τις εξόδους του Ακολουθιακό κύκλωμα
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 12: Σύνοψη Θεμάτων Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής Υπολογιστών http://arch.icte.uowm.gr/mdasyg
Ελλθνικι Δθμοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 13 : Άλλοι Μετρθτζσ Φϊτιοσ Βαρτηιϊτθσ
Ελλθνικι Δθμοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 13 : Άλλοι Μετρθτζσ Φϊτιοσ Βαρτηιϊτθσ 1 Ανοιχτά Τμιμα Ψθφιακά Ηλεκτρονικά Ενότητα 13: Άλλοι Μετρθτζσ Φϊτιοσ Βαρτηιϊτθσ
«Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο Διάλεξη 8 η : Μηχανές Πεπερασμένων Κaταστάσεων σε FPGAs
ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανικών Πληροφορικής ΤΕ Εργαστήριο Σχεδίασης Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων «Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο 2016-2017 Διάλεξη 8 η :
ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΠΙΝΑΚΑ ΕΠΙΔΕΙΞΗΣ ΨΗΦΙΑΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ
ΑΕΝ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΠΙΝΑΚΑ ΕΠΙΔΕΙΞΗΣ ΨΗΦΙΑΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ 2017 ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΩΝ: ΜΑΚΙΕΒ ΓΕΩΡΓΙΟΣ ΚΑΛΕΝΤΖΗ ΣΟΪΚΑΝ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΠΑΠΑΣΤΑΜΟΥΛΗΣ ΑΘΑΝΑΣΙΟΣ Περιεχόμενα
ΗΜΥ211 Εργαστήριο Ψηφιακών Συστημάτων
ΗΜΥ211 Εργαστήριο Ψηφιακών Συστημάτων Behavioral & Mixed VHDL Architectures Finite State Machines in VHDL Διδάσκων: Γιώργος Ζάγγουλος Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
5.1 Θεωρητική εισαγωγή
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 5 ΚΩ ΙΚΟΠΟΙΗΣΗ BCD Σκοπός: Η κατανόηση της µετατροπής ενός τύπου δυαδικής πληροφορίας σε άλλον (κωδικοποίηση/αποκωδικοποίηση) µε τη µελέτη της κωδικοποίησης BCD
Ψθφιακά Ηλεκτρονικά. Ενότθτα 5 : Ανάλυςθ κυκλώματοσ με D και JK FLIP- FLOP Φώτιοσ Βαρτηιώτθσ
Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 5 : Ανάλυςθ κυκλώματοσ με D και JK FLIP- FLOP Φώτιοσ Βαρτηιώτθσ 1 Ανοιχτά Ακαδημαϊκά Μαθήματα ςτο ΤΕΙ Ηπείρου Σμιμα
επανενεργοποιηθεί Βιομηχανικά Ηλεκτρονικά - Κ.Ι.Κυριακόπουλος Control Systems Laboratory
Μετατροπέας Αναλογικού Σήµατος σε Ψηφιακό Ο δειγματολήπτης (S/H) παίρνει δείγματα του στιγμιαίου εύρους ενός σήματος και διατηρεί την τάση που αντιστοιχεί σταθερή, τροφοδοτώντας έναν κβαντιστή, μέχρι την
Ψηφιακή Λογική Σχεδίαση
Ψηφιακή Λογική Σχεδίαση Επιμέλεια: Νίκος Φακωτάκης, Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται
K24 Ψηφιακά Ηλεκτρονικά 9: Flip-Flops
K24 Ψηφιακά Ηλεκτρονικά 9: TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 1 2 3 Γενικά Ύστερα από τη μελέτη συνδυαστικών ψηφιακών κυκλωμάτων, θα μελετήσουμε
ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ
ΣΧΟΛΗ ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ 1) Οι απαριθμητές ή μετρητές (counters) είναι κυκλώματα που
Ψθφιακά Ηλεκτρονικά. Ενότθτα 4 : Ανάλυςθ ακολουκιακϊν κυκλωμάτων με ρολόι Φϊτιοσ Βαρτηιϊτθσ
Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Κδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 4 : Ανάλυςθ ακολουκιακϊν κυκλωμάτων με ρολόι Φϊτιοσ Βαρτηιϊτθσ 1 Ανοιχτά Ακαδημαϊκά Μαθήματα ςτο ΤΕΙ Ηπείρου Σμιμα
Καταχωρητές, Μετρητές και Ακολουθιακά Κυκλώματα
ΗΜΥ211 Εργαστήριο Ψηφιακών Συστημάτων Καταχωρητές, Μετρητές και Ακολουθιακά Κυκλώματα Διδάσκoντες: Γιώργος Ζάγγουλος και Λάζαρος Ζαχαρία Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Καταχωρητές,Σύγχρονοι Μετρητές και ΑκολουθιακάΚυκλώματα
ΗΜΥ211 Εργαστήριο Ψηφιακών Συστηµάτων Καταχωρητές,Σύγχρονοι Μετρητές και ΑκολουθιακάΚυκλώματα ιδάσκων: ρ. Γιώργος Ζάγγουλος Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Ατζέντα
Ενότητα 7 ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ - ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΠΛΕΚΤΕΣ - ΠΟΛΥΠΛΕΚΤΕΣ
Ενότητα 7 ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ - ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΠΛΕΚΤΕΣ - ΠΟΛΥΠΛΕΚΤΕΣ Γενικές Γραμμές Δυαδικοί Αριθμοί έναντι Δυαδικών Κωδίκων Δυαδικοί Αποκωδικοποιητές Υλοποίηση Συνδυαστικής Λογικής με Δυαδικό Αποκωδικοποιητή
Σχεδιασμός Ψηφιακών Συστημάτων
ΗΜΥ 2: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 27 Νοε-7 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 27 Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches) και Flip-Flops Flops Διδάσκουσα:
Ασύγχρονοι Απαριθμητές. Διάλεξη 7
Ασύγχρονοι Απαριθμητές Διάλεξη 7 Δομή της διάλεξης Εισαγωγή στους Απαριθμητές Ασύγχρονος Δυαδικός Απαριθμητής Ασύγχρονος Δεκαδικός Απαριθμητής Ασύγχρονος Δεκαδικός Απαριθμητής με Latch Ασκήσεις 2 Ασύγχρονοι
f(x, y, z) = y z + xz
Λύσεις θεμάτων Εξεταστικής Περιόδου Ιανουαρίου Φεβρουαρίου 27 ΘΕΜΑ Ο (2, μονάδες) Δίνεται η λογική συνάρτηση : f (, y, z ) = ( + y )(y + z ) + y z. Να συμπληρωθεί ο πίνακας αλήθειας της συνάρτησης. (,
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Τεχνολογία και
Ψηφιακά Συστήματα. 6. Σχεδίαση Συνδυαστικών Κυκλωμάτων
Ψηφιακά Συστήματα 6. Σχεδίαση Συνδυαστικών Κυκλωμάτων Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016. [59382199] 2. Floyd
ε. Ένα κύκλωμα το οποίο παράγει τετραγωνικούς παλμούς και απαιτείται εξωτερική διέγερση ονομάζεται ασταθής πολυδονητής Λ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΣΑΒΒΑΤΟ 16/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ (ΣΥΣΤΗΜΑΤΑ ΨΗΦΙΑΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΕΝΔΕΙΚΤΙΚΕΣ
Α. ΣΚΟΔΡΑΣ ΠΛΗ21 ΟΣΣ#2. 14 Δεκ 2008 ΠΑΤΡΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ 2008 Α. ΣΚΟΔΡΑΣ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ
ΠΛΗ21 ΟΣΣ#2 14 Δεκ 2008 ΠΑΤΡΑ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ 7-segment display 7-segment display 7-segment display Αποκωδικοποιητής των 7 στοιχείων (τμημάτων) (7-segment decoder) Κύκλωμα αποκωδικοποίησης του στοιχείου
HY121 Ηλεκτρικϊ Κυκλώματα
HY121 Ηλεκτρικϊ Κυκλώματα Διδϊςκων: Χ. ωτηρύου, Βοηθού: Ε. Βαςιλϊκησ, Δ. Πούλιοσ http://www.csd.uoc.gr/~hy121 1 Στατικόσ Πλιρθσ Ακροιςτισ MO Ακροιςτισ Παράκαμψθσ (arry ypass) Ακροιςτισ Επιλογισ Κρατουμζνου
1. Κατέβαςμα του VirtueMart
1. Κατέβαςμα του VirtueMart Αρχικό βήμα (προαιρετικό). Κατζβαςμα και αποςυμπίεςη αρχείων VirtueMart ΠΡΟΟΧΗ. Αυτό το βήμα να παρακαμφθεί ςτο εργαςτήριο. Τα αρχεία θα ςασ δοθοφν από τουσ καθηγητζσ ςασ. Οι
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 11
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΛΑΜΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΤΟΜΕΑΣ ΥΠΟΔΟΜΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Δρ. ΑΣΗΜΑΚΗΣ ΝΙΚΟΛΑΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗ
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 3: Άλγεβρα Βοole και Λογικές Πράξεις Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης