Metode euristice de aliniere

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Metode euristice de aliniere"

Transcript

1 Curs 8. Metode euristice de aliniere Biblio: Cap 2. din Biological sequence analysis, Durbin et al cap. 9 din An introduction to Bioinformatics algorithms, N.Jones, P. Pevzner

2 Metode euristice de aliniere Motivatie Metode simple de identificare a sabloanelor Metode bazate pe arbori de cuvinte cheie si arbori de sufixe Metode euristice traditionale: BLAST, FASTA

3 Motivatie Algoritmii de aliniere globala (Needleman-Wunsch) si locala (Smith- Waterman) sunt costisitori in cazul secventelor lungi (ordinul de complexitate este O(mn) pentru secvente avand lungimile m respectiv n) Pentru cautarea unei secvente intr-o baza de secvente se prefera metode euristice (sub-optimale) care permit identificarea rapida a secventelor similare Metodele euristice se bazeaza pe ideea identificarii unor potriviri scurte dar semnificative (sabloane care se gasesc in secventa) si construirea alinierii prin extinderea acestor potriviri Identificarea potrivirilor scurte se bazeaza pe: Algoritmi de cautare in siruri de caractere Structuri de date pentru eficientizarea a cautarii

4 Cautarea unui sablon intr-o secventa Problema: determina toate ocurentele unui sablon p 1 p 2 p m intr-o secventa (text) t 1 t 2 t n Algoritm bazat pe metoda fortei brute: pentru fiecare i de la 1 la n-m+1 se compara p[1..m] cu t[i..i+m-1] iar daca se gaseste o nepotrivire atunci se mareste i cu 1 si se reia cautarea Exemplu: Secventa: CGCATC Sablon: GCAT

5 Cautarea unui sablon intr-o secventa Cautare_simpla(t[1..n],p[1..m]) k:=0 FOR i:=1,n-m+1 DO d:=false j:=i WHILE d=false AND j<=i+m-1 DO IF t[j]<>p[j-i+1] THEN d:= True ELSE j:=j+1 IF d=false THEN k:=k+1; rez[k]:=i RETURN -1 Analiza eficientei Dimensiunea pb: (n,m) Operatia dominanta: comparatia Cazul cel mai defavorabil: t: AAAAAAAAAAAAG p: AAG (n-m)*m comparatii Ordin de complexitate: O(n*m)

6 Cautarea unui sablon intr-o secventa Variante mai eficiente: Idee: cresterea pasului de deplasare la mai mult de o pozitie astfel incat sa nu fie pierduta nici o ocurenta Tehnica: se preproceseaza sablonul pentru a extrage informatii din el; se stocheaza aceste informatii si se folosesc in procesul de cautare. Exemple: Algorithm Boyer-Moore. Efficienta: O(n+m) Algorithm Knuth-Morris-Pratt. Efficienta: O(n+m)

7 Cautarea unui sablon intr-o secventa Algoritm Horspool: Varianta mai simpla dar nu la fel de eficienta a algoritmului Boyer-Moore Analizeaza daca caracterul din text Idee de baza: aliniat cu ultimul caracter al sablonului apare sau nu in EXTENSION OF EXTERNAL primele m-1 pozitii ale sablonului: EXTERN EXTERN EXTERN EXTERN Daca nu apare atunci se deplaseaza sablonul cu m pozitii la dreapta Daca prima aparitie de la dreapta la stanga este pe pozitia k a sablonului atunci se deplaseaza sablonul cu m-k pozitii catre dreapta (astfel ca elementele sa identice sa fie aliniate)

8 Cautarea unui sablon intr-o secventa t: p: Algoritm Horspool: calculul valorilor cu care se face deplasarea Obs: consideram ca indicii pornesc de la 0 0 i i+k i+m-1 n 0 k m-1 Text Sablon Valorile de deplasare sunt calculate o data pentru toate caracterele posibile din text (ex: toate elementele alfabetului) shift(c )= m daca c nu apare in p[0..m-2] m-k-1 daca c=p[k] (prima aparitie a lui of c in p[0..m-2] - de la dreapta la stanga)

9 Cautarea unui sablon intr-o secventa Algoritm Horspool: calculul valorilor deplasarilor shift(c )= m daca c nu e prezent in p[0..m-2] m-k-1 daca c=p[k] Shift_computation(p[0..m-1]) FOR all c in alphabet DO shift[c]:=m FOR k:=0,m-2 DO shift[p[k]]:=m-k-1 RETURN shift[alphabet]

10 Cautarea unui sablon intr-o secventa Horspool_search(t[0..n-1],p[0..m-1]) Calcul tabel deplasari shift[alphabet]:=shift_computation(p[0..m-1]) i:=0 Alinierea sablonului la inceputul textului WHILE i<=n-m-1 DO d:=false; j:=i+m-1; WHILE d=false AND j>=i DO IF t[j]<>p[j-i] THEN d:=true ELSE j:=j-1 IF d=false THEN Salveaza i i:=i+shift[t[i+m-1]] RETURN -1 Comparare sablon cu text pornind de la dreapta la stanga si oprire la prima potrivire Fara nepotrivire => s-a identificat o ocurenta Deplaseaza sablonul conform cu shift[t[i+m-1]]

11 Cautarea unui sablon intr-o secventa Algoritm Knuth-Morris-Pratt: rafineaza calculul deplasarii analizand structura sablonului Subsiruri identice 0 s. k (k+1). m-1 0 i i+s. i+k i+(k+1). i+m-1. n 0 k-s k-s+1. m-1 Elemente diferite Se cauta cea mai mare deplasare care nu conduce la pierderea nici unei ocurente shift(k) = min{s>0 p[s..k]=p[0..k-s]}

12 Cautarea unui sablon intr-o secventa KMP(t[0..n-1],p[0..m-1]) shift[-1..m-2]:=shift_computation(p[0..m-1]) i:=0 Index in text j:=0 Index in sablon WHILE i<=n-m-1 DO WHILE t[i+j]=p[j] AND j<m DO j:=j+1 IF j=m THEN Salveaza i ; i:=i+shift[j-1] Deplasare sablon j:=max{j-shift[j-1],0} RETURN -1 Calcul deplasari Comparare t[i..i+m-1] si p[0..m-1] de la stanga la dreapta Se ignora elementele sablonului care au fost deja comparate

13 Cautarea unui sablon intr-o secventa Alte variante: construirea unor structuri de date ajutatoare: Arbori de cuvinte cheie Propusi in 1975 de Aho si Corasick in contexul cautarii simultane a mai multor sabloane (cuvinte cheie) Arbori de sufixe = arbori de cuvinte cheie compactati Se folosesc pentru a preprocesa secventa in care se cauta astfel incat cautarea unui sablon de lungime m sa necesite un timp de ordinul O(m)

14 Arbori de cuvinte cheie si arbori de sufixe Arbore de cuvinte cheie: - fiecare muchie corespunde unui simbol - muchiile care pleaca din acelasi nod au etichete diferite - fiecare ramura reprezinta un cuvint cheie Arbore de sufixe: - fiecare muchie corespunde unei subsecvente de unul sau mai multe simboluri - fiecare nod intern (eventual cu exceptia radacinii) are cel putin doi fii - fiecare ramura contine un sufix al secventei de analizat Exemplu: se considera secventa 1: ATCATG si sufixele acesteia 2: TCATG, 3: CATG, 4: ATG, 5:TG, 6:G

15 Arbori de cuvinte cheie si arbori de sufixe Determinarea arborelui de sufixe poate fi mai eficienta decat determinarea arborelui de cuvinte cheie ATCATG TCATG CATG ATG TG G patratic Arbore de cuvinte cheie liniar (algoritmul Weiner) Arbore de sufixe

16 Arbori de sufixe Arborele de sufixe stocheaza toate sufixele unui text i.e., ATCGC: ATCGC, TCGC, CGC, GC, C Se poate construi in O(n) pentru un text de lungime n Pentru a gasi un sablon de lungime m in text se parcurg etapele: Se construieste arborele de sufixe pentru text Se scaneaza sablonul prin arborele de sufixe Se poate gasi sablonul in text in O(m) Complexitate totala: O(n + m)

17 Arbori de sufixe Exemplu

18 Metode euristice pentru aliniere Ideea de baza a metodelor euristice de aliniere este cea a filtrarii: Se porneste de la premiza ca alinierile contin portiuni scurte de potriviri exacte, asa ca se cauta astfel de potriviri exacte si se folosesc ca punct de start pentru le extinde. Lungimea potrivirilor exacte cautate depinde de tipul de secventa (mai scurte la secvente de aminoacizi si mai lungi la secvente de nucleotide) si de algoritmul folosit Extinderea potrivirilor exacte se bazeaza pe calcularea unor scoruri si a unui prag de acceptare care de asemenea depind de varianta de algoritm

19 Metode euristice: matrici de puncte Matrici de puncte: permit ilustrarea similaritatii intre doua secvente Algoritmii de tip FASTA genereaza o matrice de puncte implicita pornind de la potriviri exacte si incearca sa extinda diagonala de puncte cat timp numarul de nepotriviri nu este prea mare.

20 Metode euristice: matrici de puncte Se identifica diagonalele avand lungimea mai mare decat un anumit prag Diagonalele continue (fara intreruperi) indica potriviri exacte

21 Metode euristice: matrici de puncte Se extind diagonalele si se incearca conectarea lor acceptandu-se un numar mic de nepotriviri/insertii/stergeri Concatenarea diagonalelor exprima potriviri aproximative de-a lungul unor subsiruri mai lungi

22 Metode euristice: matrici de puncte Potrivire aproximativa a sabloanelor Input: Un sablon p = p 1 p m, un text t = t 1 t n, si k, numarul maxim de nepotriviri Output: Toate pozitiile 1 < i < (n m + 1) cu proprietatea ca t i t i+m-1 si p 1 p m au cel mult k nepotriviri (i.e., distanta Hamming dintre t i t i+m-1 and p < k)

23 Metode euristice: algoritmul FASTA FASTA = Fast Alignment (Lipman & Pearson,1985) Caracteristici: A fost primul instrument de cautare in bazele de secvente Foloseste o strategie de hashing pentru a gasi potriviri cu secvente scurte de cate k simboluri (k=2 pentru secvente de aminoacizi si k=6 pentru secvente de nucleotide); o astfel de secventa este numita k-tuplu Download:

24 Metode euristice: FASTA Etape Etapa1: identifica k-tuplurile comune secventei de interogare si bazei de date Etapa 2: pentru fiecare pereche de k-tupluri calculeaza diferenta dintre pozitiile de start in fiecare dintre cele doua secvente (deplasament); perechile de k-tupluri avand acelasi deplasament corespund aceleiasi diagonale in matricea de puncte Etapa 3: identifica regiunile cu similaritate mare: Calculeaza scorurile diagonalelor Uneste segmentele de scor mare de pe aceeasi diagonala Uneste segmentele de pe diagonale invecinate Rafineaza alinierea folosind algoritmul Smith- Waterman

25 Metode euristice: FASTA Etapa 4. Analiza statistica a similaritatii. Se calculeaza: Statistica E (E-value) Statistica Z (Z-score) Masoara abaterea fata de scorul mediu al unei cautari Scorul mediu corespunde interogarilor care conduc la secvente necorelate cu cea de interogare Potrivirea este considerata cu atat mai semnificativa cu cat scorul este mai mare Exemple de interpretare a statisticii Z: Z>15 - potrivire foarte semnificativa 5<=Z<=15 potrivire destul de semnificativa Z<5 potrivire putin plauzibila

26 Metode euristice: BLAST Basic Local Alignment Search Tool [Altschul, Gish, Lipman, Miller, Myers (1990)] Varianta initiala: Identifica segmente fara gap- uri (cu scor mare de similaritate ) Se bazeaza pe o analiza statistica a similaritatii dintre segmente care permite discriminarea intre secventele cu adevarat similare si cele similare din intamplare Foloseste o matrice de scor clasica (ex: PAM250 sau BLOSUM62)

27 Metode euristice: BLAST Etape: Etapa 1: Creaza o lista cu cuvinte din secventa de interogare (un cuvant contine cca 3 simboluri in cazul secventelor de aminoacizi si 11 in cazul secventelor de nucleotide) Etapa 2: Se cauta aceste cuvinte in baza de date; potrivirea cuvintelor se calculeaza folosind o matrice de scor; cuvantul se considera identificat daca scorul corespunzator depaseste un prag (nu e necesara potrivire exacta) Etapa 3: Se extind potrivirile de la nivelul cuvintelor pana cand scorul devine mai mic decat un prag; perechile astfel obtinute sunt ordonate dupa scor si pentru fiecare se estimeaza semnificatia statistica a similaritatii.

28 Metode euristice: BLAST Cuvant cheie din interogare Query: KRHRKVLRDNIQGITKPAIRRLARRGGVKRISGLIYEETRGVLKIFLENVIRD Scor de similaritate (T = 13) extindere GVK 18 GAK 16 GIK 16 GGK 14 GLK 13 GNK 12 GRK 11 GEK 11 GDK 11 Cuvinte similare (invecinate) Query: 22 VLRDNIQGITKPAIRRLARRGGVKRISGLIYEETRGVLK DN +G + IR L G+K I+ L+ E+ RG++K Sbjct: 226 IIKDNGRGFSGKQIRNLNYGIGLKVIADLV-EKHRGIIK 263 Perechea de scor maxim (High-scoring Pair - HSP)

29 BLAST A C G A A G T A A G G T C C A G T w = 4 Cuvantul cu care se potriveste exact GGTC Se extind diagonalele pana cand scorul de potrivire devine mai mic decat 50% din scorul potrivirii initiale sau cand scorul incepe sa descreasca Rezultat GTAAGGTCC GTTAGGTCC C T G A T C C T G G A T T G C G A From lectures by Serafim Batzoglou (Stanford)

30 BLAST Analiza statistica a potrivirii Scop: stabileste daca potrivirea este determinata de existenta unei similaritati reale intre secventa de interogare si cea din baza de date sau este doar intamplatoare Instrument: test statistic Ipoteza nula: cele doua secvente sunt independente P j k = p j p ' (, ) k Probabilitatea ca simbolul k sa apara in a doua secventa Probabilitatea ca simbolul j sa fie aliniat cu simbolul k Probabilitatea ca simbolul j sa apara in prima secventa

31 BLAST Statistica testului. Fie S(j,k) scorul substituirii lui j cu k Scorul corespunzator pozitiei i din cele doua secvente este suma scorurilor asociate perechilor de elemente pana la pozitia i inclusiv. Evolutia scorului in functie de i poate fi descrisa printrun proces de tip mers aleator (random walk) Exemplu: GGTGTAGA GACCTAGA Fiecare potrivire este recompensata cu 1; fiecare nepotrivire este penalizata cu 1 Y3=4 Y1=1 Y2=0

32 BLAST Statistica testului. Yi reprezinta inaltimea maxima dintre doua puncte de descrestere (i si i+1) un punct este considerat de descrestere daca atinge un nivel mai mic decat cele atinse pana in momentul respectiv (pct rosu pe grafic) Statistica testului este Y max = max{y1,y2, } Y1=1 Y3=4 Y2=0

33 BLAST Statistica testului. Daca ipoteza nula este adevarata atunci Y max are repartitia P( Y j, k max p j p y) Kmne ' k e λs ( j, k ) Observatii: S(j,k) este scorul potrivirii dintre elementele de pe pozitiile j respectiv k din cele doua secvente m si n sunt lungimile secventelor; K poate fi interpretat ca o masura a similaritatii componenteleor (aminoacizilor); lambda poate fi interpretat ca o scala asociata matricii de scor K si lambda se estimeaza numeric (valorile depind de matricea de scor utilizata S) Daca S e BLOSUM62 atunci estimarile pt K si lambda sunt: K=0.04, lambda=0.254 = 1 λy

34 BLAST Interpretarea valorilor statistice furnizate de catre pachetele software care implementeaza algoritmi de tip BLAST: E-value (expectation value): E=mnK exp(-lambda y) masoara numarul de potriviri cu scor mai mare decat y care s-ar obtine in cazul unor secvente necorelate (din intamplare) Interpretare: Daca E<10-50 secventele sunt probabil identice Daca <E<0.01 atunci secventele sunt semnificativ corelate Daca 0.01<E<10 atunci potrivirea este nerelevanta insa poate sugera o inrudire indepartata Daca E>10 secventele sunt probabil necorelate Obs: E-valoarea este influentata de dimensiunea bazei de date Pt. a evita acest lucru se foloseste si un alt indicator: bit score

35 BLAST Interpretarea valorilor statistice furnizate de catre pachetele software care implementeaza algoritmi de tip BLAST: Bit-score: este o varianta normalizata a masurii similaritatii dintre secvente S =(lambda*s-log K)/log 2 unde S este scorul clasic de similaritate iar lambda si K sunt ca in definitia de la E-valoare Interpretare: cu cat S este mai mare cu atat este mai semnificativa potrivirea

36 BLAST Variante de implementare blastn: Nucleotide-nucleotide blastp: Protein-protein blastx: Translated query vs. protein database tblastn: Protein query vs. translated database tblastx: Translated query vs. translated database (6 frames each) PSI-BLAST determina membrii unei familii de proteine sau construieste o matrice specifica de scor. Megablast: - cauta dupa secvente mai lungi, cu putine diferente WU-BLAST: (Wash U BLAST) varianta optimizata

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Esalonul Redus pe Linii (ERL). Subspatii.

Esalonul Redus pe Linii (ERL). Subspatii. Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Criptosisteme cu cheie publică III

Criptosisteme cu cheie publică III Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

Examen AG. Student:... Grupa:... ianuarie 2011

Examen AG. Student:... Grupa:... ianuarie 2011 Problema 1. Pentru ce valori ale lui n,m N (n,m 1) graful K n,m este eulerian? Problema 2. Să se construiască o funcţie care să recunoască un graf P 3 -free. La intrare aceasta va primi un graf G = ({1,...,n},E)

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Examen AG. Student:... Grupa: ianuarie 2016

Examen AG. Student:... Grupa: ianuarie 2016 16-17 ianuarie 2016 Problema 1. Se consideră graful G = pk n (p, n N, p 2, n 3). Unul din vârfurile lui G se uneşte cu câte un vârf din fiecare graf complet care nu-l conţine, obţinându-se un graf conex

Διαβάστε περισσότερα

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy Metode Runge-Kutta Radu T. Trîmbiţaş 8 ianuarie 7 Probleme scalare, pas constant Dorim să aproximăm soluţia problemei Cauchy y (t) = f(t, y), a t b, y(a) = α. pe o grilă uniformă de (N + )-puncte din [a,

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Laborator 1: INTRODUCERE ÎN ALGORITMI. Întocmit de: Claudia Pârloagă. Îndrumător: Asist. Drd. Gabriel Danciu

Laborator 1: INTRODUCERE ÎN ALGORITMI. Întocmit de: Claudia Pârloagă. Îndrumător: Asist. Drd. Gabriel Danciu INTRODUCERE Laborator 1: ÎN ALGORITMI Întocmit de: Claudia Pârloagă Îndrumător: Asist. Drd. Gabriel Danciu I. NOŢIUNI TEORETICE A. Sortarea prin selecţie Date de intrare: un şir A, de date Date de ieşire:

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB 1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

Proiectarea Algoritmilor 2. Scheme de algoritmi Divide & Impera

Proiectarea Algoritmilor 2. Scheme de algoritmi Divide & Impera Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Proiectarea Algoritmilor 2. Scheme de algoritmi Divide & Impera Cuprins Scheme de algoritmi Divide et impera Exemplificare

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Să se arate că n este număr par. Dan Nedeianu

Să se arate că n este număr par. Dan Nedeianu Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)

Διαβάστε περισσότερα

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument: Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

Geometrie computationala 2. Preliminarii geometrice

Geometrie computationala 2. Preliminarii geometrice Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,

Διαβάστε περισσότερα

Tehnici algoritmice utilizate în bioinformatică Problema maparii fragmentelor

Tehnici algoritmice utilizate în bioinformatică Problema maparii fragmentelor Curs 4. Tehnici algoritmice utilizate în bioinformatică Problema maparii fragmentelor Biblio: cap. 4 din An introduction to Bioinformatics algorithms, N.Jones, P. Pevzner cap 2 din Computational Molecular

Διαβάστε περισσότερα

Sortare. 29 martie Utilizarea şi programarea calculatoarelor. Curs 16

Sortare. 29 martie Utilizarea şi programarea calculatoarelor. Curs 16 Sortare 29 martie 2005 Sortare 2 Sortarea. Generalitǎţi Sortarea = aranjarea unei liste de obiecte dupǎ o relaţie de ordine datǎ (ex.: pentru numere, ordine lexicograficǎ pt. şiruri, etc.) una din clasele

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

Scoruri standard Curba normală (Gauss) M. Popa

Scoruri standard Curba normală (Gauss) M. Popa Scoruri standard Curba normală (Gauss) M. Popa Scoruri standard cunoaştere evaluare, măsurare evaluare comparare (Gh. Zapan) comparare raportare la un sistem de referință Povestea Scufiței Roşii... 70

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

Curs 2 DIODE. CIRCUITE DR

Curs 2 DIODE. CIRCUITE DR Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu

Διαβάστε περισσότερα

Proiectarea filtrelor prin metoda pierderilor de inserţie

Proiectarea filtrelor prin metoda pierderilor de inserţie FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri

Διαβάστε περισσότερα

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru

Διαβάστε περισσότερα

CURS 11: Programare dinamică - I - Algoritmica - Curs 11 1

CURS 11: Programare dinamică - I - Algoritmica - Curs 11 1 CURS 11: Programare dinamică - I - Algoritmica - Curs 11 1 Structura Ce este programarea dinamică? Etapele principale în aplicarea programării dinamice Relații de recurență: dezvoltare ascendentă vs.dezvoltare

Διαβάστε περισσότερα

Algoritmica grafurilor XI. Cuplaje in grafuri. Masuri de calitate. Numere Ramsey

Algoritmica grafurilor XI. Cuplaje in grafuri. Masuri de calitate. Numere Ramsey Algoritmica grafurilor XI. Cuplaje in grafuri. Masuri de calitate. Numere Ramsey Mihai Suciu Facultatea de Matematică și Informatică (UBB) Departamentul de Informatică Mai, 16, 2018 Mihai Suciu (UBB) Algoritmica

Διαβάστε περισσότερα

Laborator 6. Integrarea ecuaţiilor diferenţiale

Laborator 6. Integrarea ecuaţiilor diferenţiale Laborator 6 Integrarea ecuaţiilor diferenţiale Responsabili: 1. Surdu Cristina(anacristinasurdu@gmail.com) 2. Ştirbăţ Bogdan(bogdanstirbat@yahoo.com) Obiective În urma parcurgerii acestui laborator elevul

Διαβάστε περισσότερα

III. Reprezentarea informaţiei în sistemele de calcul

III. Reprezentarea informaţiei în sistemele de calcul Metode Numerice Curs 3 III. Reprezentarea informaţiei în sistemele de calcul III.1. Reprezentarea internă a numerelor întregi III. 1.1. Reprezentarea internă a numerelor întregi fără semn (pozitive) Reprezentarea

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

Sisteme liniare - metode directe

Sisteme liniare - metode directe Sisteme liniare - metode directe Radu T. Trîmbiţaş 27 martie 2016 1 Eliminare gaussiană Să considerăm sistemul liniar cu n ecuaţii şi n necunoscute Ax = b, (1) unde A K n n, b K n 1 sunt date, iar x K

Διαβάστε περισσότερα

Principiul incluziunii si excluziunii. Generarea şi ordonarea permutărilor. Principiul porumbeilor. Pri

Principiul incluziunii si excluziunii. Generarea şi ordonarea permutărilor. Principiul porumbeilor. Pri Generarea şi ordonarea permutărilor. Principiul porumbeilor. Principiul incluziunii si excluziunii Recapitulare din cursul trecut Presupunem că A este o mulţime cu n elemente. Recapitulare din cursul trecut

Διαβάστε περισσότερα

Capitolul 14. Asamblari prin pene

Capitolul 14. Asamblari prin pene Capitolul 14 Asamblari prin pene T.14.1. Momentul de torsiune este transmis de la arbore la butuc prin intermediul unei pene paralele (figura 14.1). De care din cotele indicate depinde tensiunea superficiala

Διαβάστε περισσότερα

Definiţia 1.1 Fiind date mulţimile A (alfabetul sursă) şi B (alfabetul cod), o codificare

Definiţia 1.1 Fiind date mulţimile A (alfabetul sursă) şi B (alfabetul cod), o codificare Prelegerea 1 Codificare şi decodificare 1.1 Codificare Definiţia 1.1 Fiind date mulţimile A (alfabetul sursă) şi B (alfabetul cod), o codificare este o aplicaţie injectivă K : A B. Elementele mulţimii

Διαβάστε περισσότερα

1. PROPRIETĂȚILE FLUIDELOR

1. PROPRIETĂȚILE FLUIDELOR 1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea

Διαβάστε περισσότερα

Statisticǎ - curs 3. 1 Seria de distribuţie a statisticilor de eşantioane 2. 2 Teorema limitǎ centralǎ 5. 3 O aplicaţie a teoremei limitǎ centralǎ 7

Statisticǎ - curs 3. 1 Seria de distribuţie a statisticilor de eşantioane 2. 2 Teorema limitǎ centralǎ 5. 3 O aplicaţie a teoremei limitǎ centralǎ 7 Statisticǎ - curs 3 Cuprins 1 Seria de distribuţie a statisticilor de eşantioane 2 2 Teorema limitǎ centralǎ 5 3 O aplicaţie a teoremei limitǎ centralǎ 7 4 Estimarea punctualǎ a unui parametru; intervalul

Διαβάστε περισσότερα

Noţiuni introductive

Noţiuni introductive Metode Numerice Noţiuni introductive Erori. Condiţionare numerică. Stabilitatea algoritmilor. Complexitatea algoritmilor. Metodele numerice reprezintă tehnici prin care problemele matematice sunt reformulate

Διαβάστε περισσότερα

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

Αλγόριθμοι Εύρεσης Ομοιοτήτων Ακολουθιών Μέρος ΙΙ: Ευριστικές μέθοδοι αναζήτησης σε βάσεις δεδομένων

Αλγόριθμοι Εύρεσης Ομοιοτήτων Ακολουθιών Μέρος ΙΙ: Ευριστικές μέθοδοι αναζήτησης σε βάσεις δεδομένων Αλγόριθμοι Εύρεσης Ομοιοτήτων Ακολουθιών Μέρος ΙΙ: Ευριστικές μέθοδοι αναζήτησης σε βάσεις δεδομένων Vasilis Promponas Bioinformatics Research Laboratory Department of Biological Sciences University of

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 21.2 - Sistemul de criptare ElGamal Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Scurt istoric

Διαβάστε περισσότερα

V O. = v I v stabilizator

V O. = v I v stabilizator Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,

Διαβάστε περισσότερα

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3 SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest

Διαβάστε περισσότερα

II. 5. Probleme. 20 c 100 c = 10,52 % Câte grame sodă caustică se găsesc în 300 g soluţie de concentraţie 10%? Rezolvare m g.

II. 5. Probleme. 20 c 100 c = 10,52 % Câte grame sodă caustică se găsesc în 300 g soluţie de concentraţie 10%? Rezolvare m g. II. 5. Problee. Care ete concentraţia procentuală a unei oluţii obţinute prin izolvarea a: a) 0 g zahăr în 70 g apă; b) 0 g oă cautică în 70 g apă; c) 50 g are e bucătărie în 50 g apă; ) 5 g aci citric

Διαβάστε περισσότερα

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4 SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei

Διαβάστε περισσότερα

2. STATICA FLUIDELOR. 2.A. Presa hidraulică. Legea lui Arhimede

2. STATICA FLUIDELOR. 2.A. Presa hidraulică. Legea lui Arhimede 2. STATICA FLUIDELOR 2.A. Presa hidraulică. Legea lui Arhimede Aplicația 2.1 Să se determine ce masă M poate fi ridicată cu o presă hidraulică având raportul razelor pistoanelor r 1 /r 2 = 1/20, ştiind

Διαβάστε περισσότερα

prin egalizarea histogramei

prin egalizarea histogramei Lucrarea 4 Îmbunătăţirea imaginilor prin egalizarea histogramei BREVIAR TEORETIC Tehnicile de îmbunătăţire a imaginilor bazate pe calculul histogramei modifică histograma astfel încât aceasta să aibă o

Διαβάστε περισσότερα

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1 Aparate de măsurat Măsurări electronice Rezumatul cursului 2 MEE - prof. dr. ing. Ioan D. Oltean 1 1. Aparate cu instrument magnetoelectric 2. Ampermetre şi voltmetre 3. Ohmetre cu instrument magnetoelectric

Διαβάστε περισσότερα

4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice

4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice 4. Măsurarea tensiunilor şi a curenţilor electrici oltmetre electronice analogice oltmetre de curent continuu Ampl.c.c. x FTJ Protectie Atenuator calibrat Atenuatorul calibrat divizor rezistiv R in const.

Διαβάστε περισσότερα

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1 FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile

Διαβάστε περισσότερα

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt. liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia

Διαβάστε περισσότερα

Algebra si Geometrie Seminar 9

Algebra si Geometrie Seminar 9 Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni

Διαβάστε περισσότερα

Proiectarea Algoritmilor 4. Scheme de algoritmi Programare dinamica

Proiectarea Algoritmilor 4. Scheme de algoritmi Programare dinamica Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Proiectarea Algoritmilor 4. Scheme de algoritmi Programare dinamica Bibliografie Cormen Introducere în Algoritmi cap.

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I. Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea

Διαβάστε περισσότερα

Măsurări în Electronică şi Telecomunicaţii 4. Măsurarea impedanţelor

Măsurări în Electronică şi Telecomunicaţii 4. Măsurarea impedanţelor 4. Măsurarea impedanţelor 4.2. Măsurarea rezistenţelor în curent continuu Metoda comparaţiei ceastă metodă: se utilizează pentru măsurarea rezistenţelor ~ 0 montaj serie sau paralel. Montajul serie (metoda

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul numarului intrebarii

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. = înălţimea triunghiului echilateral h =, R =, r = R = bh lh 2 A D ++ D. abc. abc =

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. = înălţimea triunghiului echilateral h =, R =, r = R = bh lh 2 A D ++ D. abc. abc = GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

Κεφάλαιο 5 ο : Αλγόριθµοι Σύγκρισης Ακολουθιών Βιολογικών εδοµένων

Κεφάλαιο 5 ο : Αλγόριθµοι Σύγκρισης Ακολουθιών Βιολογικών εδοµένων Κεφάλαιο 5 ο : Αλγόριθµοι Σύγκρισης Ακολουθιών Βιολογικών εδοµένων Σε αυτό το κεφάλαιο παρουσιάζουµε 2 βασικούς αλγορίθµους σύγκρισης ακολουθιών Βιολογικών εδοµένων τους BLAST & FASTA. Οι δυο αλγόριθµοι

Διαβάστε περισσότερα

10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea

Διαβάστε περισσότερα

INTERPOLARE. y i L i (x). L(x) = i=0

INTERPOLARE. y i L i (x). L(x) = i=0 INTERPOLARE Se dau punctele P 0, P 1,..., P n in plan sau in spatiu, numite noduri si avand vectorii de pozitie r 0, r 1,..., r n. Problemă. Să se găsească o curbă (dintr-o anumită familie) care să treacă

Διαβάστε περισσότερα

Diagnoza sistemelor tehnice

Diagnoza sistemelor tehnice Diagnoza sistemelor tehnice Curs 6: Metode de detectare a defectelor bazate pe modele de / Metode de detectare a defectelor 2/ Teste statistice de detectare a modificarilor 3/ Teste statistice de detectare

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα