REPORT DOCUMENTATION PAGE
|
|
- Κυριακή Δημαράς
- 7 χρόνια πριν
- Προβολές:
Transcript
1 REPORT DOCUMENTATION PAGE Form Approved OMB NO The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE Ph.D. Dissertation 4. TITLE AND SUBTITLE Topology, Localization, and Quantum Information in Atomic, Molecular and Optical Systems 3. DATES COVERED (From - To) - 5a. CONTRACT NUMBER W911NF b. GRANT NUMBER 6. AUTHORS Norman Ying Yao 5c. PROGRAM ELEMENT NUMBER d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES Massachusetts Institute of Technology (MIT 77 Massachusetts Ave 8. PERFORMING ORGANIZATION REPORT NUMBER Cambridge, MA SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box Research Triangle Park, NC DISTRIBUTION AVAILIBILITY STATEMENT Approved for public release; distribution is unlimited. 10. SPONSOR/MONITOR'S ACRONYM(S) ARO 11. SPONSOR/MONITOR'S REPORT NUMBER(S) PH-MUR SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation. 14. ABSTRACT The scientific interface between atomic, molecular and optical (AMO) physics, condensed matter, and quantum information science has recently led to the development of new insights and tools that bridge the gap between macroscopic quantum behavior and detailed microscopic intuition. While the dialogue between these fields has sharpened our understanding of quantum theory, it has also raised a bevy of new questions regarding the out-ofequilibrium dynamics and control of many-body systems. This thesis is motivated by experimental advances that make it possible to produce and probe isolated, strongly interacting ensembles of disordered particles, as found in 15. SUBJECT TERMS QuISM 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT UU UU UU UU 15. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON Paola Cappellaro 19b. TELEPHONE NUMBER Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18
2 Report Title Topology, Localization, and Quantum Information in Atomic, Molecular and Optical Systems ABSTRACT The scientific interface between atomic, molecular and optical (AMO) physics, condensed matter, and quantum information science has recently led to the development of new insights and tools that bridge the gap between macroscopic quantum behavior and detailed microscopic intuition. While the dialogue between these fields has sharpened our understanding of quantum theory, it has also raised a bevy of new questions regarding the out-ofequilibrium dynamics and control of many-body systems. This thesis is motivated by experimental advances that make it possible to produce and probe isolated, strongly interacting ensembles of disordered particles, as found in systems ranging from trapped ions and Rydberg atoms to ultracold polar molecules and spin defects in the solid state. The presence of strong interactions in these systems underlies their potential for exploring correlated many-body physics and this thesis presents recent results on realizing fractionalization and localization. From a complementary perspective, the controlled manipulation of individual quanta can also enable the bottom-up construction of quantum devices. To this end, this thesis also describes blueprints for a room-temperature quantum computer, quantum credit cards and nanoscale quantum thermometry.
3 4 HARVARD UNIVERSITY Graduate School of Arts and Sciences DISSERTATION ACCEPTANCE CERTIFICATE The undersigned, appointed by the Department of Physics have examined a dissertation entitled Topology, Localization, and Quantum Information in Atomic, Molecular and Optical Systems presented by Norman Ying Yao candidate for the degree of Doctor of Philosophy and hereby certify that it is worthy of acceptance. Signature /?4 :::_~ ::,, ~= Typed name: ~ikhail Lill<in, Chair Szgnature -----""-= :y,r~,::~_e_:_p~~~o~ft-es_s_o_r_e_u_g~_n_e_d-em-le_r Typed name: Professor Subir Sachdev Date: May 7, 2014
4 5
5 6
6 7
7 8
8 9
9 10 W
10 11
11 G σσ LL (z) Gσσ LR (z) Πσσ LL (z) Πσσ LR (z)
12 13 ν =1/2
13 14 W
14 15
15 16
16 17
17 18
18 19
19 20
20 21
21 22 ß
22 23
23 24
24 25 Energy Site H = t ij c i c j + h.c. + ij i µ i n i t ij {µ i } µ i W W =0 t =0 W t t i + j t µ i µ j j
25 26 e r/ξ ξ H = α c αc α + α,β,γ,δ V α,β,γ,δ c αc β c γc δ.
26 27 ν =1/2 ν =1/2
27 28 1/r 2 H sd = 1 2N k,k,α,β J(k k )c k,α σ αβc k,β J(k k ) σ 1 2 J RKKY S 1 S 2 J RKKY r ξ J RKKY
28 29 J RKKY (r) = 1 8πr 3 J 2 exρ f ν 2 0 cos(2k f r) J ex ρ f ν o k f r ξ J SC RKKY (r) = 1 8πrξ 2 J 2 exρ f ν 2 0 cos(2k f r)e r/ξ. ξ 2 r ξ (ξ/r) 2 r 1 J RKKY H 0 = k,α ɛ k c k,α c k,α + k [c k c k + c k c k ]. Ψ k =(c k,c k,c k,c k )T H 0
29 30 H 0 = k Ψ k (ɛ kτ 3 + k τ 2 σ 2 )Ψ k. τ 1,2,3 σ 1,2,3 τ {c k,c k } σ G 0 (k, ω) = 1 iω ɛ k τ 3 k τ 2 σ 2. G(k, k,ω)=g 0 (k, ω)δ(k k )+G 0 (k, ω)t (k, k,ω)g 0 (k,ω) J(k k )=J ex T (ω) = 1 N (SJ ex /2) 2 g 0 (ω) 1 (g 0 (ω)sj ex /2) 2 g 0 (ω) =1/N k G 0(k, ω) S k ω + τ 2 σ 2 g 0 (ω) = πρ f 2 ω. 2 E b < ω = E b
30 31 2 ( 1+π 2 (JS/2) 2 ρ 2 f ) (ω + ωπ2 (JS/2) 2 ρ f ) 2 =0 E b = 1 π2 (JS/2) 2 ρ 2 f. 1+π 2 (JS/2) 2 ρ 2 f J ex 0 E b J ex E b S =1 0 e 0 e 1 e I =1/
31 32 H e,n = 0 S 2 z + µ e BS z + µ n BI z + AS z I z, 0 =2.87 µ e = 2.8 µ n = 0.43 A =3.0 ẑ
32 33
33 34 (a) R 1 R 2 R R1 (b) 2R 2,,,,,! 1 "! 2 " = =,,, Pair 1 Pair 2 R2 R R <r<2r t 1/r α α d d d =1
34 35 α = β β<α β<α d<α d<α d<α d<β d<β d<β+2 d<β/2 d< αβ α+β d<β/2 d<β/2 d<(β +2)/2 d< α(β+2) α+β+4 1/2 S z H = i ɛ i S z i ij t ij r ij α (S+ i S j + h.c.)+ ij V ij r ij β Sz i S z j ɛ i W α β β α ɛ i ɛ j t ij / r ij α R 1 < r ij < 2R 1 N 1 (R 1 ) (ρr d 1) t/rα 1 W ρ N 1 (R 1 ) R 1 d>α d = α δ t/r1 α
35 36 Dynamic Polarization (D) ν =1/2 α = β =1 α = β =2 (a) (c) α = β =3/2 α = β =3 (b) (d) Disorder Width (W ) d =1 t =1,V =2 α = β =1 α = β =3/2 α = β =2 α = β =3 W c 10 V S z R 2 δ 1,δ 2 >V(R 2 ) δ 1 δ 2 R 2 2R 2 N 2 (R 1,R 2 ) (n 1 (R 1 )R d 2) V/Rβ 2 t/r α 1, n 1 = ρn 1 N 2 R 2 R 1 R 2 d<β R 1 R 2 V/Rβ 2 t/r α 1 [1, V/Rβ 2 ] R t/r1 α 1 R β/α 2 d< αβ α+β
36 37 N 3 (R 1,R 2,R 3 ) (n 2 (R 1,R 2 )R d 3) V/Rβ 3 V/R β 2 n 2 = n 1 N 2 R 3 R 1,R 2 R 1 R 2 R 3 d<β/2 R 1 R β/α 2 R 2 R 3 t ij,v ij R 1 <R 2 V/R β 2 VR 2 1/R β+2 2 N 2 α = β d<β/2 α<β+4 α>β+4 α d c =1.5 α = β =3 d c =1.5 α =6 β =3 d c 2.3
37 38 d =1 α = β =1, 3/2, 2, 3 L =14 ν =1/2 W V ij = V =2 t ij = t =1 D ˆF = j Sz j e i2πj/l η k Dη k =1 k ˆF k k ˆF k k ˆF ˆF. k D Dη k L D 1 D 0 D α =2, 3 α =1 α =3 α =3/2 d =1 1 <α c < 3 α c =2
38 39 (a) (b) (c) z y x E (d) 1, 1 (e) 1, 1 1, 1 1, 1 1, 1 2B 0, 0 i t ij 1 r 6 ij ŷ ẑ ˆx = 1, 1, = 0, 0 α = β =3 α =6 j ŷ ẑ t ˆx α E d V d 2 /R 3 β =3 B W
39 40 V d 2 E 0 V 0 ν =1/2, 1/3, 1/4 L =16, 18, 20 H m = BJ 2 d z E = J =0,m j =0 = J =1,m j =1 H dd = 1 d i (1 3ˆr ij ˆr ij )d j 2 i j d rij 3 H dd {, } ɛ i = j i d s d a α = β =3 d rij 3 s,a = 1 dz 1 ± 0 d z 0 2 ɛ i W d sd a a ν(1 ν) 3 a0 0 d =1 d c =3/2 α = β =3
40 41 Dynamic Polarization (D) (a) β =3 V/t = ν =1/ Disorder Width (W ) Disorder Width (W ) (b) V/t =1 V/t =2 V/t =4 MBL Ergodic /4 1/3 1/2 Filling Fraction (ν) α β =3 W W c 1.4t V/t =1, 2, 4 d c =3 d =2 B = J =1,m j = 1 = J =1,m j =1 J z H = t 2 [ ij r (d i ij 6 + ) 2 (d j ) 2 +(d i ) 2 (d j +) 2] α =6 β =3 d =2 d c 2.3 d c =2.5 H NV = D 0 S 2 z + µ e BS z D 0
41 42 e Dk2t D D =0 T 1 k T 2 D T2 a 2 0/T 2 T 2 T 1 D T2 D e a 2 0/T a0 T a0 l (l 2 + Dt) d/2 e t/t T a0 10µ T T 1 25
42 T a0 1µ T 1,T 2 10
43 44 π/2 τ z i ±1
44 45 Ĥ = i h i τ z i + ij J ij τ z i τ z j + ijk J ijk τ z i τ z j τ z k +... J ij, J ijk,... ξ τi z τ z i Ĥ... + =( + )/ 2 h ( ) = h + j J jτ z j + j,k J jkτ z j τ z k +... π t/2 h ( ) t/2 t/2 π h ( )
45 spin echo DEER F(t) D(t) W L J z = J F (t) d ξ t/2 π π/2 τ z
46 47 ψ(t) = R π/2 e iĥ t 2 R π R π/2 e iĥ t 2 R π/2 ψ(0), Rr π/2 = j r (ˆ1 iˆσ y j )/ 2 Rr π =(Rr π/2 ) 2 D(t) ψ(t) ˆτ z ψ(t) = ( 1+e 2iJ Ij τ j ) t 2 j II N τ j j D(t) J Ij j I N J Ij t 1 J Ij t 1 1 D(t) D(t) D osc (t) D(t) = D(t)+D osc (t), D(t) =1/2 N (t), 1/2
47 48 J Ij exp( j I /ξ) j I ξ log(t) t t 0 /J Ik k = I + d N fast =0 t 0 t t 0 e N/ξ N (t) ξ log(t/t 0 ) D(t) t ξ ln 2 t t 0 e N/ξ D( ) 2 N (1 + t D(t) 2 /t 2 0) α/2 t t 0 e N/ξ =, 2 N t t 0 e N/ξ α = ξ ln 2 D osc (t) D osc (t) D osc (t)
48 fit J z =0.1J J z = J W =6J =3 d =3 N =7 Ĥ = J 2 (Ŝ+ i ij Ŝ j + Ŝ+ j Ŝ i )+J z Ŝi z Ŝz j + i ij h i Ŝ z i Ŝa j a {x, y, z} ±1/2 Ŝ± j = Ŝx j ± iŝy j h i [ W ; W ] J z =0 Ĥ W>0 J z 0 W/J S τ
49 fit J z =0.1J J z = J d =3 d =7 W =8J N =3 α W d = 7 N = 3 α = c 1 / ln(c 2 W ) ξ 1/ ln(w ) D( ) N J z D( ) J z N c/1.8 N L =12 S z ψ(0) D(0) = ψ(0) ˆσ z ψ(0) > 0 D(t) π/2 t =0
50 51 D(t) =A/(1 + t 2 /t 2 0) α/2 A D osc (t) D(t) D(t) d t 0 [ exp(d/ξ)] d α α α = c 1 / ln(c 2 W ) α = ξ ln 2 ξ 1/ ln(w ) N f(k) =c/1.8 N 1/2 N
51 52 J,J z T 1 1 J ξ ln(j 1 ) 6ξ 10 J /J J (1 10) 5µ 1 100µ 1 /J 1 (0.5 5) 10 3 J /J
52 53
53 54 1/2 H = ij JS + i S j + ij J σ + i σ j + i J z S z i σ z i + h.c S σ XY J J J z J 0 σ S {σ i } ±J z
54 55 J!" J #" J! J J J J J J z S J σ J N =20 Stot z = σtot z =0 σ J =1.0 J z 10.0 J J S ent = ρ A log ρ A = ρ B log ρ B A B D
55 56 N =8 Sent J =1.0 J =0.01 J z = 10.0 J =1.0 J =0.001 J z = 10.0 J =1.0 J = J z = 10.0 Fractional Polarization k =1 k =2 Time (1/J) Time (1/J) Time (1/J) Time (1/J) N = 16 Fractional Polarization Sent k =1 J =1.0 J =0.01 J z = 10.0 S-chain!!-chain" J =1.0 J =0.001 J z = 10.0 J =1.0 J = J z = 10.0 Time (1/J) Time (1/J) Time (1/J) N = 8 S z tot = σ z tot =0 k =1 S σ k =2 t int t d N = 16 k =1
56 57 ˆF = j Sz j e i2πj/l Sj z σj z k D k =1 k ˆF k k ˆF k k ˆF ˆF, k D D k N =8 J =10 2, 10 3, 10 4 J S ent t 1/J t 1/J J t 1/J J t int t>t int t>t d t int t d J S ent
57 58 t int 1/J t int 1/J 2 J, J J z t int J z t int J J S t d J z /J 2 J 2 /J z S t d D k=1 k =2 t e L k =1/L e Dk2t t d L 2 /D D J 2 /J z N =16 e 8 J t int t d
58 59 Sent J int J SPL quasi MBL thermal t L 2 /D t e L Short chain thermal t L 2 /D J d J 2 /J z SPL t e L Long chain 1/J 1/J int t (1/J) 1/J d 1/J 1/J int 1/J d t (1/J) ρ N = 8 N = 12 N = 16 d ρ/dw W/J S ent 1/J t>t int =1/J int J t>t d =1/J d D J 2 /J z S ent e L L 2 N
59 Sent J independent J 2 Time (1/J) t int J J 2 J L 2 t d 1/Dk 2 L 2 J =10 2 t int t d J J =10 5 S ent t d σ σ J
60 61 H W = i b z i S z i + i b z i σ z i b, b W H W ρ ψ = 1 N N i ψ Si+1 z Si z ψ H W ( ) N d ρ dw c. W/J d ρ dw N H T = H + H W J =1.0 J =0.01 J z = <W < N =8, N =16 ρ ψ J/3 ρ H W
61 62 H h = ij JS i S j + ij J σ i σ j + i J z S z i σ z i. J 0 t int 1/J J S J 2 J S ent J S σ JJ /J z 1/t d J 2 /J z
62 63
63 64 ẑ Θ 0, Φ 0 {X, Y, Z} ij {X, Y } H dd = 1 κ 2 i j R 3 ij [ ] d i d j 3(d i ˆR ij )(d j ˆR ij ), κ 1/4πɛ 0 µ 0 /4π R ij d i d j 0 ±1 ẑ
64 65 ±1 0 Ω + Ω Ω +, Ω 0 B = α( 1 + β 1 ) D = α ( β ) α =Ω + / Ω αβ =Ω / Ω Ω = Ω 2 + Ω + 2 E 0 = Ω 2 / E B = + Ω 2 / E D = d R 0 κd 2 /R0 3 Ω 2 / D 0 B 0 D B 0 a i = B 0 i n i = a i a i H B = ij t ij a i a j + 1 V ij n i n j, 2 i j t ij = B i 0 j H dd 0 i B j t ii = j i ( 0 i0 j H dd 0 i 0 j B i 0 j H dd B i 0 j ) V ij = B i B j H dd B i B j + 0 i 0 j H dd 0 i 0 j B i 0 j H dd B i 0 j 0 i B j H dd 0 i B j N i = i a i a i κd 2 /R0 3 H dd H B
65 66 J =1 Ω (r) Ω + (r) Ω ± δ J = 1 l p l t l t l W (p l) β π/n κ =1,i j t ij = d2 01 R 3 [ χ i (q 0 + [q 2 ]σ x + [q 2 ]σ y )χ j ], t ii = j i 2 q 0 R 3 (d0 d B i (d 0 ) 2 ), V ij =2 q 0 R 3 [ d B i d B j d 0 d B i d 0 d B j +(d 0 ) 2], d 0 d B ẑ 0 B d χ i = α i (1,β i ) T i q 0 = 1(1 2 3cos2 (Φ Φ 0 )sin 2 (Θ 0 )) q 2 = 3[cos(Φ Φ 2 0)cosΘ 0 i sin(φ Φ 0 )] 2 σ (R, Φ) R ij ij R Φ q 0 q 2 d B i
66 67 π/n (Θ 0, Φ 0 )=(sin 1 ( 2/3),π/4) q 0 =0 ˆX Ŷ H dd d + i d+ j d i d j d ± = (d x ± id y )/ 2 t ˆX ij = d2 01 χ R0 3 i tŷij = d2 01 χ R0 3 i [ 1 2 σx [ 1 2 σx σy 3 2 σy ] ] χ j, χ j. β =Ω /Ω + β β B 1 1 β Φ=π/4 W (p) = p t ij l Ψ l =arg[w (p l )] = arg[t 2 l t 2 l ] t l t l θ l =arg(t l ) θ l =arg(t l )= θ l+1 Ψ l =2θ l 2θ l+1 π/n θ l+1 = η l π η 2N β θ l β l+1 β l = sin( π 3 η + l π 2N ) sin( π 3 + η l π 2N ),
67 68 4N β 1 π/n t ij H B β = β 1,β 2 β 1 β 2 β 1 β 2 d B i ±1
68 69 β = β 1,β 2 Ψ, Ψ g 1 g 2 /R 3 β 2 β 1 c = 1 4π dkx dk y ( kx ˆd ky ˆd) ˆd H(k) = d(k) σ + f(k) ẑ H m = BJ 2 d z E + H D, B J d z ẑ E H D J =1 J, M E M J 0 ±1 ±1
69 70 d 1 d B i = d 1 V ij = 2 q 0 R 3 (d0 d 1 ) 2. V ij /t ij (d 0 d 1 ) 2 /d Ω H B N ν
70 71 (Θ 0, Φ 0 )=(0.46, 0.42) β 1 =3.6e 2.69i β 2 =5.8e 5.63i 1/27R 0 > 10 S(R, 0) = n(r)n(0) ν = 1/2 (Θ 0, Φ 0 )=(0.66,π/4) β 1 = 2.82e iφ 1 β 2 = 4.84e iφ 2 (d 0 d 1 ) 2 /d ĝ 1 ĝ 2 N s = 24 2π θ 1 4π θ 2
71 72 c = 1 ν =1/2 (d 0 d 1 ) 2 /d S(R, 0) = n(r)n(0) N s =32 ĝ 1 ĝ 2 φ 1 = φ 2 =0.1 k 2 =0,k 1 =0, 2π/3, 4π/3 ĝ 2 N s =24 ĝ 2
72 73
73 74 E H m = BJ 2 d z E E 0, 0 J =1 1, 1 1, 0 1, 1 J ẑ J, m E
74 75 φ {X, Y } ẑ Θ 0 Φ 0 {x, y, z} {X, Y, Z} J =0, 1 0, 0 M J = N s = 24 Θ 0 E =0 J =1
75 76 J =1 e 1 e 2 M H r = [ e 1 (Ω 1 1, 1 +Ω 2 1, 0 )+ e 2 (Ω 3 1, 0 +Ω 4 1, 1 )+ ] Ω i = 1 Ω(Ω 2 Ω 4 1, 1 Ω 1 Ω 4 1, 0 +Ω 1 Ω 3 1, 1 ) Ω H dd = 1 κ 2 i j R 3 ij [ ] d i d j 3(d i ˆR ij )(d j ˆR ij ), κ =1/(4πɛ 0 ) R ij i j d i d j d R 0 d κd 2 /R0 3 Ω i {, } 2B a i = i j i t ij = i j H dd i j
76 77 V ij = i j H dd i j + i j H dd i j i j H dd i j i j H dd i j H B = ij t ij a i a j + 1 V ij n i n j, 2 i j N = i a i a i t ii {a, b, A, B} J =1 a i t ij V ij g 1 g 2 C = 1 f 11.5 J =1 ν ν =1/2 N s =44 Θ 0 =cos 1 (1/ 3) ν =1/2
77 78 a b A B J =1 φ g 1 g 2 f 11.5 C = 1 {Θ 0, Φ 0 } = {0.68, 5.83} σ xy = 1 2π F (θx,θ y )dθ x dθ y = 0.5 {θ x,θ y } F (θ x,θ y )= ( Ψ θ y Ψ θ x Ψ θ x Ψ θ y ) ν =1/2 Q torus = ( N uc +1 N b N uc+1 2N b ) ( Nuc 1 N b N uc+1 2N b ) Nuc = N s /2 N b ν =1/2 Θ 0
78 79 σ xy ν =1/2 ν =1/2
79 d µ e 1 e 2 J,m = 2, ±2 v =41 (3) 1 Σ +
80 81 ν = 1/2 ν =1/2 N s = 24 N b =6 1/(3R 0 ) 3 (k x,k y )=(0, 0) (k x,k y )=( π, 0) ν =1/2 k x,k y N s = 16 N s = 44 N b =5 36 Q torus µ = E Nb +1 E Nb E Nb N b ν =1/2 ν =1/2 de/dθ 0 Θ 0 de/dθ 0 E =0.4 8
81 82 H lattice H hf Ω i H lattice H hf H hf 1 =160 E = B/d 0.5 Ω i E 1,0 E 1,1 M H lattice H hf Ω i
82 83
83 84 (a) (b) E b " η η " BCS ψ BCS E b r < ξ η η r ξ r r<ξ
84 85 r ξ H 0 =,σ ɛ c,σ c,σ + [c c + c c ]. ψ BCS J E b = 1 (πjsn 0/2) 2 β2 = 1 1+(πJSN 0 /2) 2 1+β 2 N 0 tan(δ) β = πjsn 0 /2 E b = cos(2δ) E b δ
85 86 T K exp ( 1/JN 0 ) T K β 1/ ln( /T K ) 1 φ sh ( ) 1 e /ξ sin(2δ) r ξ r<ξ η η η η r L r R ẑ H int = J σ d σ[s L f( L )c σ( )c σ ( )+S R f( R )c σ( )c σ ( )], S L(R) f( ) H int = J σ d d σ[s L e i( )r L f, + S R e i( )r R f, ]c σ, c σ, f
86 87 Ψ =(c,,c, ) H 0 = d Ψ [ɛ τ z + τ x ]Ψ τ H int = J d d Ψ [S Le i( )r L f, + S R e i( )r R f, ]Ψ + E 0 E 0 = J d f, [S L + S R ] H T = H 0 + H int d n = d (u n, ψ, + v n, ψ, ) H T = ε n d nd n 1 ε n = 2 n n n E tot = 1 ε n = E V n ε n (d nd n 1 2 ). dɛ ɛ δρ(ɛ) E V δρ(ɛ) I(r) I(r) =E, tot E, tot = 1 2 dɛ ɛ [δρ, (ɛ) δρ, (ɛ)]. δρ(ɛ) = 1 { [G π, (z) G(0) (z)]} z = ɛ + i0 + G (0) (z) =[z (ɛ τ z + τ x )] 1 G, (z)
87 88 T G, (z) =G (0) (z)+g(0) (z)t, G(0) (z), T, T T δρ(ɛ) = 1 π { [G(0) (z)t, G(0) (z)]} = 1 π { [JSΠ(1 JSG) 1 ]} Π G S 4 4 Π ll (z) = G ll (z) = d G (0) (z)g(0) (z)ei ( l l ) d G (0) (z)ei ( l l ) S ll = S l δ ll τ 0. τ 0 l l {L, R} J 1 [JSΠ(1 JSG) 1 ] [J 2 SΠSG] I( ) = E fβ 2 π(k f r) cos(2k fr)e 2r 3 ξ F1 [ 2r ξ ] + β2 (k f r) 2 sin2 (k f r)e 2r ξ F2 [ 2r ξ ]. k f r = L R
88 89 Interaction (khz) 400! 0! -400! 100! 150! R (nm) J YSR! RKKY E b ! E f = 11.7 k f = N 0 = 35 3 ξ =1.6µ J YSR E b 10 2 J YSR r ξ F 1 [α] =α dxe α( x ) F 0 2 [α] = 2 π x ) dx e α( 0 (x 2 +1) 1/r 2 /E f r E f /( k f ) ξ I( ) e 2r ξ O(J 2 )
89 90 J E b 0 η ɛ ɛ 0 [G, (z)] E b F (E b ) [1 SG(E b )] = 0. k f r 1 η η/e b F (E b )+η F (E b )=0
90 91 1 β η = 1 cos 2 (k f r) 1 β 2(k f e 2r r) 2 ξ. F (E b )+η F (E b )+ 1 2 η2 F (E b )+ 1 6 η3 F (E b )=0 η = 2 cos(k f r) (k f r) 2 e 2r ξ β 1 I(r) J YSR = η η E b 0 β 1 J YSR η J YSR = 1 cos 2 (k f r) 2r 1 β 2(k f r) 2 e ξ, 1 1 β U(r)c L, c R, U(r) =cos(k fr)/(k f r) 2E b β E b J YSR J YSR k f r> 1 1 β > ξ r.
91 92 r ξ J YSR r λ f ξ ξ / k f ξ J YSR = η η 1 r 2 β J YSR J YSR J YSR >J RKKY r J YSR
92 93 2 T K I I T K
93 94 ɛ = E b E b E b
94 95 ( /T K ) c S =1/2 /T K > ( /T K ) c S G =1/2 /T K < ( /T K ) c S G =0 H BCS = dk [ ξ (2π) 3 k c kσ c kσ + ( c k c k + h.c.)] σ 1/2 S 1 S 2 H int = J 2 S 1ψ 1σ ψ 1 + J 2 S 2ψ 2σ ψ 2. ψ 1 ψ 2 H T = H BCS + H int T K
95 96 H T P S 2 =0 SU c (2) Q x =(Q + + Q )/2 Q y =(Q + Q )/2i Q z = 1 dk 2 σ (c (2π) 3 kσ c kσ 1) 2 Q+ = dk c (2π) 3 k c π k Q = ( Q +) 0 U c (1) Q P S Q S 0 S =0 P = Q =0 T 0 S =1 P =+ Q =0 D + D S =1/2 P = ± Q =1 S 2 Q =2 P = π
96 97 (S, Q, P ) S 0 (0, 0, ) T 0 (1, 0, +) D ± ( 1, 1, ±) 2 S 2 (0, 2, ) /T K /T K 1 S S = sin(k F R) k F R R = R 1 R 2 k F S D ± I I J I/T K
97 98 S = 0.1 I/T K /T K S =1 S =1/2 S =0 S 2 S 0 /T K T 0 I<0 S 0 I>0 I T K, =0 S 2 I, T K Q =0 Q =2 S 0 S 2 =0 =0
98 99 /T K I/T K = 0.58 S = 0.1 S 2 D + T 0 S 0 T 0 I eff = E S0 E T0 I T K T K ω T K S =0 S =1/2 T K I 0 D + T K S =0 S =0 D ± /T K D ± D + S =1 1/2 /T K
99 100 S 2 φ ( ) 1 e /ζ sin(2δ) E = 1 β2 1+β 2 ζ β tan(δ) =JSN 0 π/2 N 0 T k F R β E sh =0 I <0 I >0 F 1 S 1 σψ 1 T 0 D + D 4
100 101 (a) 1.0 Esh/ Esh/ (b) I<0 I>0 Molecular Doublet Mol. Triplet Molecular Doublet Triplet Kondo Mol. Singlet β k F R 4.1 Kondo Singlet k F R 2.6 k F R 4.1 β = JNSπ/2 β 0.86 β 1.3 k F R Pb =1.55 T 20 mk T 0 S 0 E = hν S 0 S 0 D ± E S 0 di/dv S 0 T 0
101 102 T 0 D + D T 0 S 0 hν = E (D +,S 2 ) (D +,T 0 ) S 2 S 0
102 103
103 104 g κ
104 105 1/2 H = H 0 + H H 0 = N 1 i=1 κ(s+ i S i+1 + S i S+ i+1 ) H = g(s 0 + S1 + S + N+1 S N + ) S ± = S x ± is y S = σ / 2 σ =1 g κ H c i = e iπ i 1 0 S + j S j S i H 0 H 0 = N 1 i=1 κ(c i c i+1 + c i c i+1 ) f k = 1 N jkπ A j=1 sin N+1 c j k =1,,N A =(N+1 2 )1/2 H 0 = N k=1 E kf k f k E k =2κ cos kπ N+1 t k = g A H = N t k (c 0f k +( 1) k 1 c N+1 f k + ), k=1 kπ sin N N+1 k = z (N +1)/2 H t z g/a
105 106 g κ κ a b k = z g κ/ N E z E z±1 κ/n ( 1) z 1 c N+1 H eff = t z (c 0f z + c N+1 f z + ) H eff τ = π 2tz U eff = e iτh eff =( 1) f z f z (1 (c 0 + c N+1 )(c 0 + c N+1 )) {(1,c 0,c N+1,c 0c N+1 ) 00 0,N+1} U fermi eff =( 1) n 0+n N+1 +n z ( 1) n 0n N+1 0,N+1, n θ = f θ f θ H eff
106 107 0,N+1 =( 1) n 0n N+1 Φ i =(α + β ) 0 (α + β ) N+1 Ψ M,nz Ψ M = N j=1 S+ j S j n z N Φ f =( 0,j N+1,j ) 0,N+1 0,N+1 Φ i j=1 a a = a a = a a a b a b b b b F = i=1,2,3 [σi E(σ i )]
107 108 E e ikτ K N N H = i,j K i,js + i S j ɛ =1 F g/κ g κ ɛ ( ) 2 5 t k k z 3 E k [1 + ( 1) k+z cos(e k τ)] z = N+1 2 ( ) 10 t 2 k k z 3 E k N κ ɛ 0 g τ τ N t z t z κ/n τ 1/t z N/κ N N N E =0 H = (S0 z + SN+1 z ) N
108 109 =E k t k E =0 g L g R g L g R τ N/g
109 110 N =7 g/κ ɛ 0 = 10 3 τ 1/κ
110 111 g
111 112 T 1
112 113 L =12 N 1 H = κσi x σi+1 x + i=1 N i=1 Bσ z i κ B σi x σ ± i =(σi x ± iσ y i )/2 c i = σ+ i e iπ i 1 j=1 σ+ j σ j N 1 H JW = κ(c i c i+1 + c i c i+1 c ic i+1 c ic i+1 ) i=1 N B(c i c i c i c i ) i=1
113 114 H JW φ A φ φ =(c 1,c 2,...,c N,c 1,c 2,...,c N )T A ɛ ɛ Λ= 0 0 ɛ ɛ 2 ψ ψaψ T =Λ ±ɛ k d k = ψ 2k 1,j φ j d k = ψ 2k,jφ j k =1,,N H JW = N ɛ k (d k d k d k d k ), k=1 d ɛ k κ 2 + B 2 2Bκcos q k q k = kπ/(n +1) 0 N +1 g B H = g(σ x 0σ x 1 + σ x Nσ x N+1)+B (σ z 0 + σ z N+1).
114 115 H JW = g(c 0c 1 + c 0c 1 + c 1c 0 c 0 c 1 ) g(c N c N+1 + c N c N+1 + c N+1 c N c N c N+1 ) + B (c 0c 0 c 0 c 0 + c N+1 c N+1 c N+1 c N+1 ). B = ɛ z d z c i = N k=1 (ψt ) i,2k 1 d k + N k=1 (ψt ) i,2k d k c 1 c N d gψ 2z 1,1 = gψ 2z 1,N B, ɛ z ɛ z±1 H eff ɛ z (d zd z d z d z)+ɛ z (c 0c 0 c 0 c 0)+ɛ z (c N+1 c N+1 c N+1 c N+1 ) gψ 2z 1,1 (c 0d z + d zc 0 ) gψ 2z 1,N (c N+1 d z + d zc N+1 ). B<κ
115 116 g t "E g t "E >> gt (1) (2) g τ = π 2gψ2z 1,1 U eff = e iτh eff =( 1) n z ( 1) (c 0 +c N+1 )(c 0+c N+1 )/2 = ( 1) nz (1 (c 0 + c N+1 )(c 0 + c N+1 )), n z = d zd z U eff Ψ={ Ω,c 0 Ω,c N+1 Ω,c 0c N+1 Ω } Ω c 0 c N U eff Ψ=( 1) n z Ψ e iπ i 1 j=1 σ+ j σ j 2 =
116 117 a b = a b = a b a b 0
117 118 0 (QR) 1 2 N-1 N N+1 (QR) 0 N +1 X F = [ σ i E(σ i ) ], i=x,y,z E H = g(σ + 0 σ 1 + σ + N σ N+1 + )+ N 1 i=1 κ(σ+ i σ i+1 + ) U H t =2τ ρ DS ch
118 119 F DS = = = i=x,y,z i=x,y,z i=x,y,z [ σ i 0U(σ i 0 ρ DS ch )U ] [ U σ i 0U(σ i 0 ρ DS ch ) ] [ σ i 0(t)(σ i 0 ρ DS ch ) ], σ i 0(t) M = e ikt K (N +2) (N +2) H = N+1 i,j=0 K ijc i c j c m = i n K mnc n c m (t) = n M mnc n σ + 0 (t) =U σ + 0 U = U c 0U = i M 0ic i = i M 0iσ + i e iπσ+ l σ l, l<i σ0(t) z = 2c 0(t)c 0 (t) 1= 1+2 M0iM 0j c i c j ij = 1+2 M0iM 0j σ + i σ j e iπσ+ l σ l, ij i<l<j c 0 F DS σ ± =(σ x ± iσ y )/2 [σ0(t)(σ x 0 x ρ ch )] = [ (σ 0 + (t)+σ0 (t))((σ σ0 ) ρ ch ) ] σ 0 + (t)(σ0 ρ ch ) σ0 (t)(σ 0 + ρ ch ) i =0
119 120 [ σ + 0 (t)(σ0 ρ ch ) ] [ = ( ] M0iσ + i e iπσ+ l σ l )(σ 0 ρ ch ) i l<i = [ ] M00σ 0 + σ0 ρ ch = M 00. [ σ 0 (t)(σ + 0 ρ ch ) ] = M 00 σ z [σ0(t)(σ z 0 z ρ ch )] = [ σ0 z ρ ch ] [ + (2 ] M0iM 0j σ + i σ j e iπσ+ l σ l )(σ z 0 ρ ch ) ij i<l<j = [ 2M 00M 00 σ + 0 σ 0 σ z 0 ρ ch ] =2 M00 2, i = j i = j =0 [σ z 0]=0 F DS = (M 00 + M 00 + M 00 2 ). N +1 0 F SS = i=x,y,z [ σ i 0(t)(ρ SS ch σ i N+1) ],
120 121 ρ SS ch {0,,N} F SS σ x 0(t) = c 0(t)+c 0 (t) = i M 0ic i + M 0ic i = i i 1 [{ (M 0i )σi x + (M 0i )σ y i } ( σl z )]. l=0 i N +1 [σ x 0(t)(ρ ch σ x N+1)] = 2 (M 0,N+1 ) [ρ SS ch N ( σl z )]. l=0 σ y σ z [σ z 0(t)(ρ SS ch σz N+1 )] = 2 M 0,N+1 2 F SS = [2 (M 0,N+1) [ρ SS ch N ( σl z )] + M 0,N+1 2 ). l=0 F SS =1 M 0,N+1 =1 [ρ SS N ch l=0 ( σz l )] =1 P = N l=0 ( σz l ) = a b = a b {0 a, 0 b, 1,,N,(N +1) b, (N +1) a } U b {0 b, 1,,N,(N +1) b } U a
121 122 {0 a, 1,,N,(N +1) a } U = U b U a F enc = i=x,y,z [ σ i N+1(t)(σ i 0 ρ PP ch ρ N+1 ) ]. ρ PP ch {1,,N} σi 0 0 ρ N+1 (N +1) 0a,N+1 a 0b,N+1 b = P 2 = H Ua U a H Ua H Ua = g(c 0 a e iπn 0 b c 1 + c N eiπn (N+1) b c (N+1)a + ) F enc = 1 6 (2 M 0,N+1 2 [ M 2 0,N+1 M 0,0 M N+1,N+1 ] + M 0,N i M N+1,i M i,0 2 ) M
122 123 1/r 3 H B = N ωa i a i + i=1 N 1 i=1 κ(a i a i+1 + a i+1 a i). b k = 1 A A = (N +1)/2 k =1,,N H = k (ω + ɛ k)b k b k j sin jkπ N+1 a j ɛ k =2κcos( kπ ) N+1 H B = g(a 0a 1 + a N a N+1 + )+ω (a 0a 0 + a N+1 a N+1) g ω a 1 a N b k H B + H B = N t k (a 0b k +( 1) k 1 a N+1 b k + ) k=1 + ω (a 0a 0 + a N+1 a N+1)+ N (ω + ɛ k )b k b k, t k =(g/a)sin[kπ/(n +1)] b z ω = ω + ɛ z t z ɛ z ɛ z±1 H B eff = 2t z (η 0b z + b zη 0 ) η 0 =1/ 2(a 0 + a N+1 ) k=1
123 124 ξ ± =1/ 2(η 0 ± b z ) H B eff = 2t z (ξ +ξ + + ξ ξ ). H B eff τ B = π/( 2t z ) U B eff = e ihb eff τ B =( 1) ξ + ξ + ( 1) ξ ξ (U B eff ) ξ ± (U B eff )= ξ ± a 0 a N+1 a 0 (τ) (U B eff) a 0 (U B eff) = a N+1, a N+1 (τ) (U B eff) a N+1 (U B eff) = a 0, 0 1 a N+1 (τ) =M N+1,0 a 0 + ɛa ɛ ɛ =1 M N+1,0 2 g 2 a ɛ a i i =1,...,N +1 N +1 n N+1 (τ) =(1 ɛ) n 0 + ɛ n ɛ n i = a i a i n ɛ kt/ω > 1 g g ω/(kt)
124 Number of States T1 NV (units of ms) T1 NV (units of s) Participation Ratio Number of States Participation Ratio Number of States Participation Ratio Number of States Participation Ratio N = 11 T 1 d = 10 κ = 50 σ d σ d g L g R N = 51 N = 51 κ = 50
125 126 g g T 1 ɛ = L k z(g 2 ψ k,l 2 + g 2 R 2 k ψ k,r 2 2 k )+N t T 1, g L(R) ψ k,l(r) k z k N t T 1 N
126 127 g L g R t z = g L ψ z,l = g R ψ z,r t = π/ 2t z ɛ = k z ( ψk,l 2 gl 2 2 k + ψ ) z,l 2 ψ k,r 2 Nπ + ψ z,r 2 2 k 2T1 g L ψ z,l, ( g L = Nπ 3 2 2T 1 ψ z,l k z ψ k,l 2 2 k ) + ψ 1 z,l 2 ψ k,r 2. ψ z,r 2 2 k 1/ T 1 10
127 128 {J i } J κ =1 g 0.7 T 1 N =11 N =51 1 ɛ 200 N =51 T 1
128 129 N PR = 1 N i=1 ψ i 4 N PR O(N) N PR N N PR σ κ σ κ 0.5κ < 2/3 T 1 5 gψ κ/n g = g M (N) κ N +2
129 130 g/κ N 1/6 N > 90% N = 100 J i = 1 2 (i +1)(N +1 i) H = N i=0 N+1 J i (σ + i σ i+1 + h.c.)+ i=0 h 2 σz i, h H = ij K ijc i c j K ij = J i δ j,i+1 + J j δ i,j+1 + hδ i,j H = N+1 k=0 ω kf k f k ω k = k + h N+1 2 c i (t) = j M ij(t)c i (0) h = N+1 t =2π M(2π) = 2 c i (2π) =c i (0) {J i } J i = J N i ψ H ψ ik =( 1) N+1+k ψ N+1 i,k
130 131 h = 3 (N +1) t = π 2 M ij = k ψ N+1 i,k ψ jk = δ N+1 i,j. {0, 1,...N} [ρ SS ch P ]=1 M 0,N+1 =1 F SS =1 h = 3(N +1) U 2 P = ( i) N+1 UP 2 = ( 1) N+1 F SS = [2 M 0,N+1 + M 0,N+1 2 ), F enc = [2 M 0,N+1 2 M 2 0,N+1 M 0,0 M N+1,N+1 + M 0,N i M N+1,i M i,0 2 ]. M 0,N+1 1 J i = 2 1 (i +1)(N +1 i) g κ J 0 = J N = g J 1 = J 2 =... = J N 1 = κ g/κ
131 132 1/T 1 M 0,N+1 1 N =2, 3 J i = 1 2 (i +1)(N +1 i) N>3 g = g M (N) ω k k N+1 2 h =0 F enc g M N 1/6 τ N 1/r 3 e iπ i 1 j=1 σ+ j σ j
132 133 XX N =12 90% N =10 98%
133 134 1/2 H N = γ e B S γn B I + A S z I z + A (S x I x + S y I y ), S 1/2 I A = A = N 1 H N = κ Si z Si+1 z + i=1 N (ω 0 + δ i )Si z, i=1 κ ω 0 δ i a 1 H eff = κsi z Si+1 z + JSNV z (Sa z + Sb z )+ i=1 N 1 i=b κs z i S z i+1, J a b
134 135 a)! 5-1%3-"617'01-"8234"53'. "!!!"#$%&'( "!!!!!!!!!!!! /&0010"(234 "!!!!)*"+,+-.( " b) J 9" 3 " % " * "!" c) - - N (1,N) (2,N 1) N +1 Q = H CP H CP Q M Q L Q M Q L
135 136 U eff = e ih eff T /2 S x NV e ih eff T /2 S x NV = e iκ S z i Sz i+1 T U local = e ih eff T e iκ S z i Sz i+1 T = e ijsz NV (Sz a+s z b )T κ(t + T )=2πm m U local N N th (N 1) st N +1 Q n+1 =( H i CP i ) n+1 U local Q M
136 137 Magnetic field gradient : Nitrogen impurity : Two-qubit NV Register Q L Q M Q L U directed = e ijsz NV Sz N T b H med = J(S z NV 1 + S z NV 2 )S z N b,
137 138 NV 1 NV 2 N b Q M ( H i CP i ) n+1
138 139!"#$%&'()'*+#,-+%%&.'/-0",-1-2'!3/4'51,& '! "! "! "! #! "! $!!!! " "!!!! # #!!!! = %!! " 678'929%&: '! Q k m U p (k )! Q k #! 678'929%&: '! $ A B X U p = X 1 x π CP X 1 CP CP Q k =( H CP) k U (k) p = Q k U pq k n n +1 k = n 1 U swap = HU (k) p H XU (k) p Z HU (k) p H, X x Z z π
139 140
140 141 1/r 2 A B a R
141 142 %! $ " # A B a R λ Ω
142 143 1/r 6 1/2 H = 2 σi z + Ω 2 i σi x + i i<j C p r i r j p P i P j. Ω C p P i = =(1+σ z i )/2 m s =0 m s =1 H AB = i C p r A r i P p A P C p i + r B r i P p B P i. σa z σz B a R =[ζ(p)(p +1)C p / ] 1/p Ω=0
143 144 R max p r (r) p r (r) =n exp( nr) n R max = n 1 log N N = C p (a R R max ) p, L L A B E int = E E E + E, E αβ α A β B E int b 2 /L b
144 145 ε ε ε 1 + ε 2 ε 1 ε 2 ε 1 =exp[ 2 G t g/( λ)] G t g λ ε 1 =exp( c G t g / ) c G 1/L α = c G / = α 0 /L ε 2 = ε 2 (γt g ) γ t g ε 2 =1 exp[ (γt g ) δ ] (γt g ) δ δ
145 146 γ L γ = γ 0 L/L 0 γ 0 L 0 L 0 a R ε =exp( α 0 /Lt g )+(γ 0 L/L 0 t g ) δ. t opt α γ t opt = δl log[l 0 α 0 /(L 2 γ 0 )]/α 0 ε = ( δ L2 γ 0 log L ) δ 0α 0. L 0 α 0 L 2 γ 0 1/L 2 N a b ψ A,B =( A,B + A,B )/ 2
146 147 ψ SC = i i Ω(t) = ( ) Ω 0 sin 2 8t/t0 1+16t 2 /t 2 0 (t) = 0 [1 5exp( 4t/t 0 )], t 0 t = t 0 t π = π /E int π H H t g =2t 0 + t π F = ρ 2 AB ρ AB A B G t 0 F =1 cexp( d G t 0 ) c d ρ AB
147 F G t 0 G t 0 N = 34 t 0 Ω 0 p =3 C 3 = 100Ω 0 a 3 0 =2.3Ω 0 b =3a t 0 L/ a R F = 1 2 [1 c exp( d Gt 0 )] { 1+exp [ (γ 0 L/ a R t g ) 3]} δ =3 β t 0 G E int t 0 A B
148 149 S p =6 p =3 n =43 γ 0 = 10 KHz F =0.95 Ω 0 =2π 3.2 MHz 0 =2π 7 MHz C 3 n 3 =2π 320 MHz a =1µm γ 0 = 100 Hz Ω 0 =2π 80 KHz 0 =2π 170 KHz a =2nm T 2 m s =+1 m s = 1 T 1
149 150 γ 0
150 151 r a S =1 W
151 152 W 2.87 m s = 1 m s =1 m Ω m 0 1 H r = NΩ( 0 W +h.c.) 0 m s =0 W W = i.... N i NΩ/ H r = J W W J = NΩ 2 / m J J V dd W
152 153 m m>1 0 W Ω ext V dd J V dd Ω ext N =100 r =20nm m s =0, 1 σ α V ij = ( ) 1 3cos 2 µ 2 ϑ ij r i r j 3 { 1 4 [ 1+σ (i) z ][ 1+σ (j) z ] (i) σ + σ (j) } σ (i) σ (j) +, r i µ ϑ ij r i r j H = /2 i σ(i) z +Ω i σ(i) x + i<j V ij 0 m s =1 W H eff = N c µ 2 R 3 ( 1 q, 0 0 q,w +h.c.),
153 154 N c W 1 q, 0 m s =1 0 R =100nm m 2 m =3 φ ( N 2 N c = i...0 N φ ), i N c N Ω h 100 MHz N c 70 N Ω N c > 50 N c N c Ω NΩ/
154 155 N c Ω=0 Ω=h 110 MHz N c 70 = h 4 GHz) N c Ω 1 q, 0 m s =1 p q π t π R H eff R r V c t π 1/R 3
155 156 m s = 1 p q t π 600 µs V c 1/R 3 N N W N T 2 i W [ p W = p T2 1 W σ (i) z W 2] = 4 ( N p T ), N p T2 N
156 157 N T 2 W T eff 2 T 1 m s =1 m s =0 W m s =1 m s =0 p 1 0 T 1 p 0 1 T 1 p 1 0 T 1 0 m s =0 W 0 p W 0 = p T σ (i) 1 W 2 = p T1 1 0 N, N T W m s =1 T p 0 1 T 1 N p 0 1 T 1 T 1 T 2 T 1 /N T 2
157 158 R = 100 nm W T 2 T 1 1 T 1
158 159 t g t π T 1 /N T 2 ε =1 exp[ (4t π /T eff 2 ) 3 ] ε =10 2 T eff 2 =11ms 0 1 W W W 100 khz m s =1 A 2.14 MHz 14 N N N t π =70µs ε =10 2 T eff 2 =700µs ε =10 4 T eff 2 =3ms W
159 160
160 161
161 162
162 163 I =1/2 S =1 B Ω MW 0 e 1 e Ω RF 1 e t e n π 1 e n e τ π/2 n e e n n e S =1 0 e
163 164 0 e 1 e I =1/2 15 H e,n = 0 S 2 z + µ e BS z + µ n BI z + AS z I z, 0 =2.87 µ e = 2.8 µ n = 0.43 A =3.0 ẑ n e
164 165 0 e I z B z, µ 10µ
165 166 B z (y) = db z dy y + B z,0
166 167 6B;m`2 93, h?2 `+?Bi2+im`2 7Q` im`2 i2 [m MimK +QKTmi2`X U V irq@ /BK2MbBQM H?B2` `+?B+ H H iib+2 HHQrBM; 7Q` H2M;i?@b+ H2 # b2/ +QMi`QH- r?b+? 2M #H2b 7mHHv T ` H@ H2H QT2` ibqmbx i i?2 HQr2bi H2p2H- BM/BpB/m H TH [m2ii2b `2 QmiHBM2/ BM ;`2v M/ 2 +? +QMi BMb bbm;h2 +QKTmi ibqm H Lo `2;Bbi2`X i i?2 b2+qm/ H2p2H Q7?B2` `+?v- bmt2`@th [m2ii2- QmiHBM2/ BM r?bi2-2m+qkt bb2b H iib+2 Q7 TH [m2ii2bc 2 +? bmt2`@th [m2ii2 Bb b2t ` i2hv K MBTmH i2/ #v KB+`Q@bQH2MQB/ +QM}M2/ KB+`Qr p2 }2H/bX AM Q`/2` iq HHQr 7Q` [m MimK BM7Q`K ibqm i` Mb@ 72` +`Qbb #QmM/ `B2b Q7 bmt2`@th [m2ii2b- i?2`2 2tBbib /m H bmt2`@th [m2ii2 H iib+2 QmiHBM2/ BM `2/X U#V h?2 b+?2k ib+ Lo `2;Bbi2` BKTH Mi ibqm rbi?bm bmt2`@th [m2ii2x hrq `Qrb Q7 BM/B@ pb/m H TH [m2ii2b rbi?bm bmt2`@th [m2ii2 `2 b?qrmx Lo `2;Bbi2`b- +QMbBbiBM; Q7 M 2H2+i`QMB+ U;`22MV M/ Mm+H2 ` Uv2HHQrV btbm `2 /2TB+i2/ rbi?bm bi ;;2`2/ mt@bhqtbm; `` v r?b+? Bb `Qr@ `2T2iBiBp2X AM/BpB/m H `Qrb rbi?bm bbm;h2 TH [m2ii2 `2 bt2+b}2/ #v M BMi2;2` n rbi? n = 1 #2BM; i?2 #QiiQK `Qr M/ n = M #2BM; i?2 iqt `QrX hq +?B2p2 bi ;;2`2/ bi`m+im`2- r2 bt2+@ B7v mmb[m2 BKTH Mi ibqm `Qr rbi?bm 2 +? TH [m2ii2 r?2`2bm bbm;h2 BKTm`BiB2b `2 BKTH Mi2/ M/ bm#b2[m2mihv MM2 H2/X 6Q` ;Bp2M `Qr Q7 TH [m2ii2b- i?2 BKTH Mi ibqm `Qr +Q``2bTQM/BM; iq i?2 H27i@KQbi TH [m2ii2 Bb M 4 R- r?bh2 i?2 TH [m2ii2 iq i?2 BKK2/B i2 `B;?i? b BKTH Mi ibqm `Qr M 4 kc i?bb T ii2`m +QMiBMm2b mmibh i?2 }M H TH [m2ii2 BM ;Bp2M `Qr- r?b+? #v +QMbi`m+iBQM? b i?2?b;?2bi BKTH Mi ibqm `Qr MmK#2`X h?2 BKTH Mi ibqm T`Q+2bb Bb `2T2 i2/ 7Q` 2 +? `Qr Q7 TH [m2ii2b rbi?bm i?2 bmt2`@th [m2ii2 M/ +`2 i2b M `` v Q7 Lo `2;Bbi2`b- r?b+? 2 +? Q++mTv mmb[m2 `Qr BM i?2 bmt2`@th [m2ii2x abm+2 2 +? Lo `2;Bbi2` Q++mTB2b mmb[m2 `Qr rbi?bm i?2 bmt2`@th [m2ii2- i?2 K ;M2iB+ }2H/ ;` /B2Mi BM i?2 y /B`2+iBQM HHQrb 7Q` BM/BpB/m H bt2+i`qb+qtb+ //`2bbBM; Q7 bbm;h2 `2;Bbi2`bX *Q?2`2Mi +QmTHBM; Q7 bt ib HHv b2t ` i2/ Lo `2;Bbi2`b BM /D +2Mi TH [m2ii2b Bb K2/B i2/ #v / `F btbm +? BM / i #mb U.a*"V M/ Bb b+?2k ib+ HHv `2T`2b2Mi2/ #v i?2 +m`p2/ HBM2 +QMM2+iBM; BM/BpB/m H `2;Bbi2`bX h?2 b2+qm/ BKTH Mi ibqm bi2t +Q``2bTQM/b iq i?2 +`2 ibqm Q7 i?2b2?q`bxqmi H M/ p2`ib+ H / `F btbm +? BMbX R98
167 168 1/2 H int =4κSzS 1 z 2 + (ω 0 + δ i )Sz, i κ ω 0 δ i H drive = i=1,2 2Ω isx i cos[(ω 0 + δ i )t] (x, y, z) (z, y, x) i=1,2 H int = κ(s + 1 S 2 + S 1 S + 2 )+Ω 1 S 1 z +Ω 2 S 2 z. H int Ω 1 Ω 2 κ Ω 1 Ω 2 κ Ω 1 Ω 2 H int = i κ(s+ i S i+1 + S i S+ i+1 )+ i Ω isz i
168 169 κ 1/2 κ i,i+1 Ω i Ω i+1 H FFST = g(s + NV 1 S 1 N 1 + S + NV 2 S N + )+ i=1 κ(s + i S i+1 + S i S+ i+1 )
169 170 Ω i Ω j g κ g Ω
170 171 H FFST g B z (y)
171 172 N = T1 NV N = T1 NV T N 1 T N T NV 1
172 173 p SS err N(p SS off + p adia + p dip + p SS T 1 + p SS T 2). ( ) p SS off Ω 2 i g Ω i g p adia ( ) κ 2 p dip Ω i p SS T 1 T 1 p SS T 2 N N N p FFST err p FFST off + p fermi + p g + p FFST T 1 + p FFST T 2. p SS err p FFST err p fermi g/ N κ/n ( g/ N κ/n )2 p g g p SS err t FFST
173 174 T NV T 1 T 1 10 T 1 50 ɛ 1.4%
174 175
175 176 g H = ( ) Ω( ) Ω N S N x +4κS NV z S N z, Ω Ω N B = D = B + 2Ω 0 0 2Ω B Ω H = D D ( + 2Ω2 ) Ω2 1 2 Ω N( + N + N ) +2κ( B D + D B )( + N + N + ), ± N = N ± 2 N S N x 2κ { ( + D + D + ) 2Ω ( D + D ) } ( + N N + N + N ). { D, } g κ Ω
176 177 κ + κ 2 / 2 0 (α + β ) (α + β D ) π D D D Ω D
177 178
178 179
179 180 1/2
180 181 6B;m`2 8R, a+?2k ib+ `2T`2b2Mi ibqm Q7 iqtqhq;b+ HHv T`Qi2+i2/ bi i2 i` Mb72` h?2 ;`2v /`QTH2i `2T`2b2Mib k. `` v Q7 BMi2` +ibm; btbmb imm2/ BMiQ i?2 *ag" T? b2x Zm MimK btbm@`2;bbi2`b +QKTQb2/ Q7 i` Mb72` [m#bi U;`22MV M/ K2KQ`v [m#bi U;QH/V `2 `` M;2/ `QmM/ i?2 2/;2 Q7 i?2 k. /`QTH2i M/ +QmTHBM; #2ir22M i?2k Q++m`b i?`qm;? i?2 +?B` H 2/;2 KQ/2X URV "v K T@ TBM; i?2 [m MimK BM7Q`K ibqm QMiQ 72`KBQMB+ r p2@t +F2i U#Hm2V i` p2hbm; HQM; i?2 2/;2- i?2 [m MimK bi i2 + M #2 i` Mb72``2/ iq `2KQi2 `2;Bbi2`X h?2 r p2t +F2i i` p2hb QMHv BM i?2 /B`2+@ ibqm Q7 i?2 #Hm2 ``Qrc i?bb +?B` HBiv T`2p2Mib KQ/2 HQ+ HBx ibqm M/ /2bi`m+iBp2 # +Fb+ ii2`bm;x i bt2+b}2/ ibk2 i i?2 `2KQi2 `2;Bbi2` HQ+ ibqm- i?2 +QmTHBM; Bb im`m2/ QM M/ i?2 r p2t +F2i Bb + Tim`2/ UkVX :Bp2M M M+BHH `v K2KQ`v [m#bi M/ HQ+ H `2;Bbi2` K MBTmH ibqmb- irq@[m#bi ; i2 UjV + M #2 T2`7Q`K2/ #27Q`2 i?2 [m MimK bi i2 Bb i` Mb72``2/ # +F iq i?2 Q`B;BM H `2;Bbi2` M/ biq`2/ U9@8VX h?bb HHQrb 7Q` mmbp2`b H +QKTmi ibqm #2ir22M i?2 K2KQ`v [m#bib Q7 bt ib HHv b2t ` i2/ `2;Bbi2`bX?QM2v+QK# H iib+2 b /2TB+i2/ BM 6B;X 8k (jkd)x h?2 bbq+b i2/ > KBHiQMB M M im` HHv ;2M2` HBx2b i?2 EBi 2p KQ/2H (jrn) M/ 72 im`2b +?B` H btbm HB[mB/ ;`QmM/ bi i2 U*aG" T? b2vh0 = 1! x x 1! y y 1! z z κσi σj + κσi σj + κσi σj, 2 x,x! 2 y,y! 2 z,z! links links UdXRV links r?2`2 1σ `2 S mhb btbm QT2` iq`b U! = 1VX h?2 KQ/2H K v #2 bqhp2/ #v BMi`Q/m+BM; 7Qm` J DQ` M QT2` iq`b- {γ 0, γ 1, γ 2, γ 3 } 7Q` 2 +? btbm- b b?qrm b+?2k ib+ HHv BM 6B;X 8k M/ #v `2T`2b2MiBM; i?2 btbm H;2#` b, σ x = iγ 1 γ 0 - σ y = iγ 2 γ 0 - σ z = iγ 3 γ 0 (jk8- jkd)x h?2 J DQ` M QT2` iq`b `2 >2`KBiB M M/ b ibb7v i?2 bi M/ `/ MiB+QKKmi ibqm `2H ibqm {γ l, γ m } = 2δlm X h?2 >BH#2`i bt +2 bbq+b i2/ rbi? i?2 T?vbB+ H btbm Bb irq@/bk2mbbqm H bm#bt +2 Q7 i?2 2ti2M/2/ 7Qm`@/BK2MbBQM H J DQ` M >BH#2`i bt +2c i?mb- r2 Kmbi BKTQb2 i?2 ; m;2 T`QD2+iBQM- P = 1+D 2 r?2`2 D = γ 1 γ 2 γ 3 γ 0 (jk8)x R8N
181 182 H γ = i 4 κ i,j Û i,j γ 0 i γ 0 j, Ûi,j = iγ α i γ α j α ij ij Ûi,j Û i,j Ûl,m {U i,j = ±1} {U i,j } γ 0 U i,j 2 w(p) = ij p U i,j p p ij U i,j =+1 γ 0 π/2 w(p) =+1 π π/2 π/2 w(p) = 1 v Q κ i,j Q k,i(iu i,j )Q k,j = δ kk ɛ k H γ = 1 N/2 2 k= N/2 ɛ kc k c k c k = 1 2 j Q k,jγj 0 N k
182 183 ɛ k = ɛ k c k = c k k>0 H γ = k>0 ɛ k (c k c k 1 2 ), c k c k b U i,j H T = H 0 + H int H int L R H int = S 2 (σz L + σ z R)+g L σ β L σβ a + g R σ η R ση b. S β,η g L g R
183 184 Ûi,j γ 0 i π π/2 U ij w(p) = 1
184 185 a b H int = S 2 (iγl 3γ0 L + iγ3 R γ0 R )+g LγL 1γ1 aγl 0γ0 a + g R γr 1 γ1 b γ0 R γ0 b σ x σ x U i,j U L,a U R,b H T = H + H int = k>0 ɛ k (c k c k 1 2 ) + S (c L c L 1 2 )+ S(c R c R 1 2 ) g L U L,a (c L + c L ) i 2 ( k Q k,ac k + k Q k,a c k ) g R U R,b (c R + c R ) i 2 ( k Q k,bc k + k Q k,b c k ), c L,R =1/2(γL,R 0 iγ L,R 3 ) c L,R =1/2(γ L,R 0 + iγ L,R 3 ) σ z
185 186 L R S > 0 g L,g R < S c k S k ɛ k H eff = i g L Q k,a c L 2 c k i g R Q k,b c R 2 c k + h.c. τ ɛ κ/l l τ l/κ
186 y k y a = π b =0.46κ 0.14κ 0.17κ S g L (t) g L (t) = vf(t), dt t f(t ) 2 f(t) v g R (t) S l
187 188 T N v n p e v/t n p π N v π ξ a a π
188 189 v H p H T H p H e = v dp 2π pc pc p = v dx γ(x)(i )γ(x),
189 190 c p = c p {c k } p {γ(x),γ(y)} = δ(x y) c p H e = λ dx γ(x)(i )γ(x)(i ) 2 γ(x)(i ) 3 γ(x), λ Γ int p ɛ p k B T Γ int p Γ int p λ2 p 13 + λ2 p 11 T 2 + O(T 4 ). v v κ λ κ( κ κ )2 a 7 Γ int p κ2 S ( κ κ )4 (ap) 14 S = vp p<1/a Γ dec p σ α i Γ dec p S(ω)
190 191 e d/ξ d i S(ω 0 ) e ω 0/k B T ω 0 =2 v S l Γ dec p e S/k B T + le V /k B T. S(ω) 1 ω 2 +1/t 2 c t c Γ dec p 1/ 2 v v 1/t c
191 192 e S/k B T S l
192 193 L R R L
193 194
194 195
195 196 N ρ = i ρ i ρ i Q = { +,, + i, i, 0, 1 } ρ F tol ρ i M i
196 197 F i =1/ Q ρ i Tr[ρ i M i (ρ i )] p h = 1 Q Tr[P acc M(ρ)] 1 e ND(F exp F tol ), ρ Q Q = Q N P acc M = i M i F exp =1/N i F i D F tol F tol N F tol N F tol N (2F tol 1)N 2F tol 1 p d = 1 Q ρ Q Tr [ P 2 acct (ρ) ] e ND(2F tol 1 2/3), T 2F tol 1 > 2/3 5/6
197 198 a b original qticket:... cloned qticket:... F tol N " 1 " 2 " 3 minimum overlap " N #2 F tol N " 1 " 2 " 3 " N #1 " N 1" " N #2 " N #1 " N "# +" 0" " Z challenge questions " X F tol F tol N (2F tol 1)N Ftol cv = 1+1/ 2 2
198 199 X Z { 0, +, 0,, 1, +, 1,, +, 0,, 0, +, 1,, 1 }. n r n r 2 X Z Ftol cv r n F exp >Ftol cv n
199 200 r p cv h ( rd(fexp F cv 1 e )) n tol. F cv tol > 1+1/ / Ftol cv p cv d ( ) 2 v ( 2 1/2+e rd(f tol 1+1/ 2 2 )) n, v F dishonest <F tol <F exp
200 201, 0 0, + 1, + 0, + 0, + +, 1, 0 1, + Z X 0, 0 0, 1 1, 1 0, 1, + +,, + +, n = 4 r =2 8 F tol =3/4 F tol =3/4 F tol > 1/2+1/ 8
201 202 c
202 203 c (c+1)(c+2) X 1,...,X n {0, 1} δ i S {1,...,n} Pr [ i S X ] i i S δ i Pr[ n X i γn] e nd(γ δ) i=1 δ := n 1 N i=1 δ i γ δ γ 1 D(p q) =p ln p q +(1 p)ln 1 p 1 q (X =1)=p (X =1)=q
203 204 P ρ acc N F tol ρ = N i=1 ρ i 0 F tol 1 P ρ acc = N ( bi ρ i + b i ρ i ). b: b 1 F tol N i=1 b {0, 1} N N b 1 = N i=1 b i b i =1 b i ρ i = ρ i b 1 F tol N 1 b M i F i F exp =1/N i F i F exp >F tol p v 1 e ND(F tol F exp). X =(X 1,...,X N ) Pr[ X = b]= 1 Q = N i=1 [ Tr M(ρ) ρ Q N ( bi ρ i + b ) ] i ρ i i=1 1 Tr [ M i (ρ i )(b i ρ i + 6 b i ρ i ) ] ρ i Q
204 205 X i Pr[X i ]=F i 1 Q ρ Q Tr[P accm(ρ)] ρ = Pr[ N i=1 X i F tol N] L 1 µ
205 206 (a) (c) (b) (d) ±1 { +1, 1 } S =1 m s =0, ±1 E B ( =1) H NV =(D 0 + d E z )S 2 z + µ B g s S B d [ Ex (S x S y + S y S x )+E y (S 2 x S 2 y) ],
206 207 D 0 /2π 2.88 g s 2 µ B d d ±1 B = g s µ B B z / E ±1 E = E 0 (a + a ) a ω m E 0 ±1 0 = B ω m D 0 ±1 0 H i = g ( σ + i a + a σ i ) σ ± i = ±1 i 1 i g J z = 1 2 i 1 i 1 1 i 1 J ± = J x ± ij y = i σ± i H = ω m a a + B J z + g ( a J + aj + ), g
207 L w, h ( ) 1/2 g 2π 180 L 3 w GHz, ρe ρ E (L, w, h) =(1, 0.1, 0.1) µ ω m /2π 1 g/2π 1 g e /2π 10 T 2 η = g2 T 2 γ n th γ = ω m /Q n th =(e ω m/k B T 1) 1 T Q =10 6 T 2 =10 T =4 η 0.8 g = B ω m H ( ) e R He R R = g a J aj + (g/ ) 2 H eff = ω m a a + ( B + λa a ) J z + λ 2 J +J, λ =2g 2 / J + J = J 2 J 2 z + J z J
208 209 J 2 z ψ 0 x J x ψ 0 = J ψ 0 J 2 y = J 2 z = J/2 J 2 z z J z J 2 min = 1 2 ( V + V 2 + V 2 yz ξ 2 = 2J J min 2 J x 2, ) V ± = J 2 y ± J 2 z Vyz = J y J z + J z J y /2 ξ 2 < 1 H eff [ ρ = i λ 2 J z 2 + ( B + λa a ) ] J z,ρ + 1 D[σ 2T z]ρ i 2 +Γ γ ( n th +1)D[J ]+Γ γ n th D[J + ], i D[c]ρ = cρc 1 2 ( c cρ + ρc c ) T 1 2 λ/2 B T 1
209 210 Γ γ = γg 2 / 2 n = a a n ψ 0 N =100 n th T 1 2 Γ γ ξ 2 Γ γ T 2 N J 1 n th 1 ξ 2 4Γ γ n th Jλ 2 t + t T 2. t ξ 2 opt 2 Jη, t opt = T 2 / Jη J ξopt 2 J 2/3 n = a a J z
210 ξ (a) 10 n th = J λt ξ 2 opt 0.1 (b) N N N N = 100 T 2 = 10 n th n th =1 T 2 =1 ω m /2π =1 g/2π =1 Q = 10 6 T 2 H int (t) =λj z f(t)δn(t). f(t) J z J z π δn(t) =n(t) n n
211 212 n S n (ω) = dte iωt δn(t)δn(0) J + (t) = e χ e iµ(jz 1/2) J + (0), J 2 +(t) J + (t)j z (t) χ µ dω χ = λ 2 F (ωτ) 2π µ = λ 2 dω 2π ω 2 Sn (ω), K(ωτ) A ω 2 n (ω), S n (ω) =(S n (ω)+s n ( ω)) /2 A n (ω) =(S n (ω) S n ( ω)) /2 F (ωτ) = ω2 dte iωt f(t) 2 τ 2 π K(ωτ) µ F K F M =4 S n (ω) =2γ n th ( n th +1)/(ω 2 + γ 2 ) ω =0 χ 0 (t) = 1λ2 n 2 2 th t2 n th 1 T2 2/λ n th t = t opt n th > J M π
212 213 t χ th λ 2 γ n 2 th t3 /M 2 Γ γ T 1 2 M n th γt2 ω dr = ω m + δ S n (ω) ω = ±δ n dr n th n dr ( n th +1) n dr t/m =2π/δ π χ dr ( λ δ ) 2 ndr n th γt µ λ2 δ n drt n dr n th χ th Γ γ n dr M =4 g J eff <J J 1 g i i g i/ i g2 i i g2 i / i g4 i g i
213 214 Sn(ω) f (t) t/τ F (ωτ) ξ (a) 0.1 (b) K (ωτ) δ 0 δ ω J λt ξ 2 min (c) F K M =4 f(t) M =4 n th = 10 n dr = 10 3, , 10 6 n th = 50, 10 M =4 g/2π =1 T 2 = 10 N = 100 ω m /2π =1 Q = 10 6 n dr (1, 0.1, 0.1) µ N N eff 100 η 1 H int = λ ( σ 1 + σ2 +h.c. )
214 215 4
215 216 σ y Q = ν/ ν ν ν ν
216 217 Excitation Laser Si Photodiode Diamond Film Bragg Mirror Microwave Line µ > 0 ±
217 218 H gs =(D gs + d σ z )S 2 z + gµ b S B + d σ x (S x S y + S y S x )+d σ y (S 2 x S 2 y) d, C 3v D gs µ b S k k = {x, y, z} σ D gs S z ω 0 ±1 ω D gs ω D gs B 1 =2b 1 cos(2πωt)ˆx H gs V = e 2πiωtS2 z H gs =(D gs + d σ z ω)s 2 z + gµ b B z S z + gµ b b 1 S x
218 219 ρ = 1 i [H gs,ρ]+ k L k ρl k 1 2 L k L kρ 1 2 ρl k L k ρ L k r k I Ω=gµ b b 1 =D gs ω F (I,Ω, ) = γρ ss 22 + γ2 κ+γ ρss 33 ρ ss 22 ρ ss 33 F σ y (τ) = πQ (S/N) τ τ S/N C 1
219 A V 3 E 3 A I D es γ orbital states electron spin sublevels D gs κ λ 1 E 1 A1 S B 9.5 x 105 I 0 9 F(!) (photons/sec) C ν Detuning from resonance,! (Hz) 3 E 3 A 1 E 1 A I γ κ λ S z 0 ±1 C 1 T2 =88 σ y (τ) = τ 1/2 Q S/N
220 221 D gs T δω δωt T 1 T T c T c T c T 2 m f =0 π T T 2 π ) 2 x ) τ π x τ π ) 2 x θ ) φ θ φ t p θ = gµ b b 1 t p Ω 1 gµ b b 1 (D gs Ω),gµ b B z
221 222 U echo = e i π 2 Sx e i(δωs2 z +bs z )τ e i π 2 Sx e i π 2 Sx e i π 2 Sx e i(δωs2 z +bs z )τ e i π 2 Sx = WW W W = e i π 2 Sx e i(δωs2 z +bs z)τ e i π 2 Sx = e i(δω ˆX bs y )τ, W W = e i π 2 S x e i(δωs2 z +bs z )τ e i π 2 S x = e i(δω ˆX+bS y)τ, ˆX ˆX = [ ˆX,S y ]=0 W W U echo = e 2i(D gs Ω)τ ˆX ˆX 0 π 4 ˆx U 45 = e i π 4 S y U 45 0 = 1 2 ( 0 i + + ±1 S z U echo U 45 0 = 1 ( ) ie iδωτ + + e iδωτ 0. 2 Sz 2 δν S z B A S z I z π/2 π/4 S z
222 223 Optical Pumping Z π π π 4 T T 4 TF } S 2 z X Y S z S z S 2 z S z S 2 z Sz 2 2T S z ψ 0 = m s =0 U echo ψ f = U echo U 45 ψ 0 = 1 2 sin(φ) cos(φ)( ) φ =(D gs ω)t = δωt ˆM ˆM = a b ( ) a b ˆM
223 224 ψ f δω ω 0 = 1 ω 0 ˆM ˆM / ω ˆM 2 = ˆM 2 ˆM 2 2a 3b ˆM M τ = M T δω ω 0 M = ξ D gs Tτ ξ 5 b 0 a λ/γ T = T 2 1 D gs =2870 δω/ω 0 = / τ 0.2% N 1/ N N µ 3 3 1/ N / τ / τ 100µ 1 2 σ pulsed y / τ
224 225 T 1/2 2T e (2T/T 2) n n 3 T 2 T e n =1 2 S/N T e D gs 1µ
225 226 T 2, 10 20µ D gs dd gs /dt = 74.2(7) dd gs /dt 100 dd gs /dt =100 D gs dd gs /dt 75 dd gs /dt
226 227 δ D gs V ij S i S j = κ 2 3ˆri ˆr j δ ij r 3 S i S j S i κ a r (1) = aŷ r (2) = 3a ˆx a 2 2ŷ r(3) = 3a a ˆx 2 2ŷ H = V ij S i S j = 3κ 4a 3 (S2 z 2/3). ɛ kl H = S i S j V ij = κ 2 ( ) 3ˆr i ˆr j δ ij ɛ r k r 3 kl ˆr l S i S j = 3κ 2a 3 [ 3 4 (ɛ xx + ɛ yy )(S 2 z 2/3) (ɛ xx ɛ yy )(S 2 x S 2 y) (ɛ xy + ɛ yx )(S x S y + S y S x ) 1 2 ɛ zx(s x S z + S z S x ) 1 2 ɛ zy(s y S z + S z S y )]. α = 3 4 (ɛ xx + ɛ yy ) 3κ 2a 3 3κ 4a 3 a =2.38 α = 4.32(ɛ xx + ɛ yy ) =2.88
227 228 (a) "(T) (b) area A!d, Ed Diamond 1 Diamond 2 "0 clock 1 clock 2 (c)!1, E1 clamp1 Diamond clamp2 z T0 T!2, E2 Pz=Fz/A=Y! #T dd gs /dt η 1,2 E 1,2 ɛ xx = ɛ yy = ɛ zz dd gs dt ( ) =( ) 15, 1K 5 δ 3 ddgs dt
228 229 E 1 η c1 E 2 η c2 <η c1 T ɛ 1,2 η d (1 + η c1,2 E c1,2 /E d ) T T T 0 ω 0 T T
229 230 ω 1 (T ) = ω 0 + β 1 T ω 2 (T ) = ω 0 + β 2 T β 1,2 = dɛ dd gs dt dɛ = η d (1 + η c1,2 E c1,2 /E d )(dd gs /dɛ) τ =0 T 0 T 0 t φ 1,2 (t) =ω 0 t + t 0 β 1,2 T (t )dt ± φ 0, φ 0 = ξ t/ T 2,N φ(t) =φ 2 (t) φ 1 (t) = t 0 β 1,2 T (t )dt ± 2 φ 0 β 1,2 β 2 β 1 φ 1 (t) φ 2 (t) t φ 1(t) = φ 1 (t) β 1 T (t )dt 0 ( t ) = φ 1 (t) β 1,2 T (t )dt 0 = φ 1 (t) β 1 β 1,2 ( φ(t) 2 φ 0 ). β 1 β 1,2 t t ω 1 ω 1 = = ( ξ β1 (1+2 T2 NtD gs β 1,2 ) 2 ) 1/2 ( ) ( ( ) ) 2 1/2 ω β ω T =T 0 β 1,2
230 231 D ZFS (khz) (a) (b) (c) Brass Tungsten khz, 6.92 mk Temperature (mk) D ZFS (khz) T=5 mk T=10 mk Position (mm) diamond d clamp D gs β 1,2 β 1 ν beat 10 Q 10 6 D gs β 1,2 η d (1 + η c1,2 E c1,2 /E d )/( 75 T 0.01 dd gs /dt
231 232 D gs σ ɛ F ijkl S i S j ɛ kl F Sz 2 (D gs + A 1 (ɛ xx + ɛ yy )+A 2 ɛ zz )(S 2 z 2/3) A 1 A 2 ɛ xx = ɛ yy = ɛ zz dd gs /dt =2A 1 + A 2 T T 0 L d L = L d η d T P = E d L d /L = E d ε d = E d Tη d L T 0.01K
232 233 Al + ion clock Ensemble NV Echo (0.01ppb x 1mm 3 ) TXCO Commercial Rb Single NV Echo Rb Chip Clock Ensemble NV CW SAW Oscillator Allan Deviation after 1s averaging Single NV CW / f N 2
233 234 σ y = τ 1/2 9 /
234 m s =0 m s = ±1 d /dt = (2π)77 / N
235 236 " #!!"#$%&'( )%*%&+( Temperatureaccuracy Kelvin CdSe QD SThM Nano Diamond Raman Liquid crystal Infrared Green FluorescentProtein Seebeck! "!! "!,-./0'( )%*%&+( #! " " ProjectedNano Diamond Bulk Diamond Sensor size um ±1 0 (T ) δ
236 237! 1.1 " !"#$!" "!" Normalized fluorescence population τ (us) T ( o C) 2τ 50 2π 2τ = 250 µ 2τ = 50 µ 2τ 2τ m s =0 m s = 1 η = C d /dt 1 T Nt, T t C T C /
237 238 ω 1 2 ( 0 + B ) B = 1 2 ( ) τ 2π +1 1 τ ± % τ η =(9± 1.8) / 2τ =250µ δt =1.8 ± 0.3 2τ (2d /dt 2τ) 1 2τ < 2τ 1 µ
238 239 N 500 = nm 2.5
239 240 " # Normalized fluorescence data max. slope meas. freq. y ( µm) ! $ " #!"#$ % & ω (GHz) x ( µm)! 4 $ off AU Fit on AU Fit " theory NV data T (K) T (K) 5! # $ % & laser power ( µw) distance ( µm) µ
240 ± 0.1 µ 0.8 µ δt =(44± 10) T (r) = Q 4πκr Q κ r 72 ± µ 1 T =( 20 ± 50)
241 µ 0.5 ± µ 3.9 ± µ /
242 243 y ( µm) " x ( µm) # $ +$'()*!"#$$$$$$$!"%$$$$$$$$!#$$$$$$$$%$$$$$$$$$#$$$$$$$$"%$$$$$$$"#!" &'()#$!"$ &'()#$ &'()#%!"%!"#$$$$$$$!"%$$$$$$$$!#$$$$$$$$%$$$$$$$$$#$$$$$$$$"%$$$$$$$"# & '()* T K Pos 1 Pos 2 y ( µm) &'()! T (K) !"#$ Au Fluorescence (kcps) *#+#$%-. /#+#,15#3,1%#4 y ( µm) !"% *#+#$%,-. /#+# 60 /#+#012#3,1$# x ( µm) x ( µm) /
243 µ 5 =2.87 f 1,2 f (ω )+ f ω ω f 3,4 f (ω + )+ f ω ω+ ( ) δω + δb + δt d dt ( ) δω δb + δt d dt δt = δω (f 1 + f 2 ) (f 3 + f 4 ) d /dt (f 1 f 2 )+(f 3 f 4 ), ω ± δω δb
244 245 C 0.03 δt σ δt = σ/(c d dt 2τ) c 2τ t<30 s t η = δt t m 1 δt = N 1 ΣN i=1 (T i mp i ) 2 T i P i σ (δt) =δt 1 2 Γ 2 (n/2) Γ( ) N 1 Γ 2 ((n 1)/2)
245 246 9 / 250 µ 13 T 1 / µ / n 200 µ B µ 50 µ
246 247 2
247 248 S 1,S 2 R H 12 = ɛ 1 S z 1 + ɛ 2 S z 2 + t 12 (S + 1 S 2 + S 1 S + 2 )+V 12 S z 1S z 2 ɛ i W t 12,V 12 R R t 12,V 12 ɛ i W t 12 = = S z =0 δ a = ɛ 1 ɛ 2 δ a t a = t 12 τ α a, S z =0
248 249 (a), (b) r 1 r =, =, t R 2 = (c) a δ a + δ b + V ab,,, δ b δ a V δ ab a δ b V ab, = 3 r 3 r 4 4 b, (δ a + δ b )+V ab R 1 S 1 S 2 a S 3 S 4 b t a,t b H ab H a = δ a τ z a + t a τ x a τ x a V 12 S z 1S z 2 S z =0 a =12 b =34 R 1 R 2 t(r 2 ) ɛ i W a b S z a =0 S z b =0 H ab = δ a τ z a + t a τ x a + δ b τ z b + t b τ x b + V ab τ z a τ z b V ab = V 13 V 14 V 23 + V 24 τa z = S1 z = S2 z H ab H ab
249 250 R 1,R 2 V ab 0 t a/b 0 τ z δ a/b t a/b t 2 a + δ 2 a, t 2 b + δ2 b V ab t a t b µ α µ z H ab τ µ O(1) τ x τ z H = H ab + H cd + H int = ab µ z ab + cd µ z cd + V αβ µ α abµ β cd, α,β {x,z} H int = V ac τ z a τ z c + V ad τ z a τ z d + V bcτ z b τ z c + V bd τ z b τ z d µ V (r) 1/r 1/r 3
250 251 V (r) 1/r β V ab = V 13 V 14 V 23 + V 24 ( 1 = 1 ) ( ) R β 13 R β 14 R β 24 R β 23 ( ) ( ) 1 = R 2 + r 4 r β R r 3 r 1 β R 2 + r 3 r 2 1 β R 2 + r 4 r 2 β 1 ( ) β 2r3 r 1 +2r 4 r 2 2r 4 r 1 2r 3 r 2 R2 1. R β 2 R R β+2 2 R 1 <R 2 /2 R 2 1 R ij V ab = V 13 V 14 V 23 + V 24 a b V ab R 2 1/R 5 2 V ab N 2 (R 1,R 2 ) V/R β 2 VR 2 1/R β+2 2
251 252 R 1 R 2 N 2 (R 1,R 2 ) (n 1 (R 1 )R2) d VR2 1/R β+2 2 t/r1 α R d (β+2) 2, n 1 = ρn 1 n 1 (R 1 )R d 2 R 2 2R 2 VR2 1 /Rβ+2 2 t/r1 α R 1 R 2 d>β+2 R 2 V (R 2 ) t(r 1 ) V (R 2 ) t(r 1 ) R2 1 /Rβ+2 2 1/R1 α 1/10 R 2 R α+2 β+2 1 N 2 (R 1,R 2 ) R1 d+2 (R α+2 β+2 1 ) d (β+2) α+2 d α+d β+2 = R1. d> α(β+2) α+β+4
252 253 N 3 (R 1,R 2,R 3 ) (n 2 (R 1,R 2 )R d 3) Ṽ/Rβ 3 Ṽ/R β 2 =(n 2 (R 1,R 2 )R3) d ṼR2 1/R β+2 3 ṼR1/R 2 β+2 2 = R 2d α+2 1 R d 2 R d β 2 3 n 2 = n 1 N 2 R 3 R 1,R 2 R 1 R 2 R 3 d>(β +2)/2 R 1 R (β+2)/(α+2) 2 R 2 R 3 N 3 V σ z α>β+4 R 1 R 2 R 3 α>β R 2 R 1 R β+2/α+2 2 R 1 R β/α 2 R <R 2 R 2 O(1) R 1 R <R 2
253 254 R N 2 (R 1, R) ρn 1 (R 1 ) R d R d α 1 R d. O(1) R R α/d 1 1 R 2 V (R 2 ) t(r 1 ) R >R 2 R = R 2 R 1 R = R 2 V R <R 2 R 2 R R 2 R α/d 1 1 R α β 1 d c = αβ α+β d< αβ α+β R 2 O(1) N 2 (R 2 ) 1 R 2
254 255 R 2 N 2 (R 1,R 2 ) R 2 α = β R 1 R 2 R 2 N 2 (R 2 ) 1 1 N 2 (R 2 )=ρ 2 R 2d β 2 V W = R2d β2 = 1 W ρ 2 V = 1 1 ρ 2 a β 0 W V/a β 0 D = W V/a β 0 ρ 1/a d 0 R 2 a 0 D 1/(2d β), d = β =3 R 2 a 0 3 D d =2 R 2 a 0 D α = β =3 d c =1.5 D>1 d c α = β =3 d z i d z j
255 256 i<j d z i d z j r 3 ij = i<j (d s i + d a i σ z i )(d s j + d a j σ z j ) r 3 ij = i<j (d s ) 2 r 3 ij + i<j d a d s (σ z rij 3 i + σj z )+ i<j (d a ) 2 σ z rij 3 i σj z, d z = d s + d a d z = d a d s ɛ i = i j d a d s i ɛ rij 3 i = j i d a d s Q rij 3 j = ν da d s a 3 0 l lat 1 ν l 3 Q j =1 0 δɛ 2 i = ɛ2 i ɛ i 2 ɛ 2 i = ( )( d a d s d j i k i Q a d s rij 3 j Q rik 3 k ) Q j Q k = νδ jk + ν 2 (1 δ jk ) ( ) 2 [ ɛ 2 i = (ν ν 2 ) 1 l lat + ( ν ) 1 2 l 6 l lat ] l 3 d a d s a 3 0 W = ɛ ɛ 2i = 2i ɛ i 2 = da d s (ν ν a 3 2 ) 1 0 l, 6 l lat ν 1 W ν da d s ρ ν/a 3 0 W = da d s (ν ν a 2 ) 1 3 l lat 0 l 6 a N 2 (R 2 )=ρ 2 R 2d β 2 V W = R2d 32 = 1 W ρ 2 V = 1 1 ρ 2 a 3 0 d a d s (ν ν a 2 ) 3 l lat 0 V/a l 6.
256 257 V (d a ) 2 ( d s 1 R 2 a 0 (ν ν d a ν 2 ) ) 1 2d l 6 l lat ν 1 ( ) 1/3 d d =3 R 2 s a0 d a / ν d =2 R 2 ds d a a 0 /ν 3/2
257 258 H B = ij t ija i a j i j V ijn i n j X Y (Θ 0, Φ 0 ) = s 1, 1 + v 1, 1 + w 1, 0 s =Ω 2 Ω 4 / Ω v =Ω 1 Ω 3 / Ω w = Ω 1 Ω 4 / Ω i j R =(R, θ, φ) {x, y, z} H = 1 6 4πɛ 0 R 3 2 ( 1) q C q(θ, 2 φ)tq 2 (d (i), d (j) ), q= 2 C k q (θ, φ) k z q T 2 2 ( ) T±2(d 2 (i), d (j) )=d (i) ± d (j) ± T±1(d 2 (i), d (j) )= d (i) z d (j) ± + d (i) ± d (j) z / 2
258 259 ( T0 2 (d (i), d (j) )= d (i) d (j) + +2d (i) z d (j) z ) + d (i) + d (j) / 6 d ± = (d x ± id y )/ 2 1, 0 1, ±1 T 2 ±1 t ij i j T 2 0 i j = 2 3 [d2 00w i w j 1 2 d2 01(v i v j + s i s j )], i j T 2 +2 i j = d 2 01(v i s j ), i j T 2 2 i j = d 2 01(s i v j ), d 00 = 1, 0 d z 0, 0 d 01 = 1, ±1 d ± 0, 0 t ij V ij V ij = i j H dd i j + i j H dd i j i j H dd i j i j H dd i j i d i = d 1 ( s i 2 + v i 2 )+µ 0 w i 2 d 1 = 1, ±1 d z 1, ±1 µ 0 = 1, 0 d z 1, 0 1, 0 V ij
259 260 ij d i j d z d z (d +d + d d + ) i j = d 2 0, i j d z d z (d +d + d d + ) i j = d i d 0, i j d z d z (d +d + d d + ) i j = d 0 d j, i j d z d z (d +d + d d + ) i j = d i d j 1 2 µ2 01(s i wi w j s j + w i vi v j wj + ) i j d + d + i j = µ 2 01(s i wi w j vj + w i vi s j wj ), i j d d i j = µ 2 01(w i s i v j wj + v i wi w j s j), d 0 = 0, 0 d z 0, 0 µ 01 = 1, ±1 d ± 1, 0 1, 0 1, ±1 H dd t ii = j i ( i j H dd i j i j H dd i j ) t ii 2B {a, b, A, B} a A b B t ij V ij g 1, g 2 w t ij V ij a A b B g 2 w a/b = w A/B w a/b = w A/B
260 I 1 =4 I 2 =3/2 H Q , ±1 T±2 2 H dd Ω M H hf {a, b, A, B} A H hf A = a H hf a = B H hf B = b H hf b 10 3
261 262 A B t ii E(R, t) =E(R)e iωt + ˆX H lattice = E(R) α(ω)e(r) E(R) = E(R) p β p(r)e p e p α(ω) H lattice = E 2 (R) [ 2α α 3 +(α α ) p C 2 pγ p ] α α γ 0 = β 0 2 1/3 γ ±1 =1/ 3(β0β ± β β 0 ) γ ±2 = 2/3β β ± [ ] H lattice = E 2 2α α (R) +(α α ) 0, 0 C0 2 0, 0 γ 0 3 H lattice = E 2 (R)[ 2α α 3 +(α α ){γ 0 ( s 2 1, 1 C 2 0 1, 1 + v 2 1, 1 C 2 0 1, 1 + w 2 1, 0 C 2 0 1, 0 )+γ 2 sv 1, 1 C 2 2 1, 1 + γ 2 s v 1, 1 C 2 2 1, 1 }]. δe = H lattice H lattice A B {s, v, w} t ii
262 263 σ + π σ γ ±2 γ ±1 =E 1,0 E 1,1 H lattice ˆx ŷ ẑ λ 0 {a, b, A, B} λ L = R 0 λ 0 λ L λ L k ˆX Ŷ λ L k ( ˆX ± Ŷ ) 2λ L ˆk ẑ Ω 2 Ω 3 Ω 1 =Ω 4 =0 Ω 1 =Ω 4 Ω 2 =Ω 3 =0 M Θ 0 =0.68, Φ 0 =5.83
263 264 k x k y Θ 0 =0.05 E 32 Θ 0 =1.05 E 28 Θ 0 =0.68 E 36 Θ 0 =0.25 E 40 {θ a,θ b,φ a,φ b,α a,α b,γ a,γ b } = {0.53, 0.97, 1.36, 3.49, 2.84, 2.03, 4.26, 3.84} s i =sin(α i )sin(θ i ) v i =sin(α i )cos(θ i )e iφ i w i =cos(α i )e iγ i ν =1/2 N s =24 {Θ 0, Φ 0,θ a,θ b,φ a,φ b,α a,α b,γ a,γ b } = {0.65, 3.68, 2.4, 2.97, 6.06, 4.1, 0.97, 2.74, 3.44, 1.74} f 7 A B a b γ A = π + γ a γ B = π + γ b w a/b = w A/B E 8 ν =1/2 Θ 0
264 Θ 0 A B d 00 = d 01 1, ±1 s i s i d 00 /d 01 v i v i d 00 /d 01 (0, 0) ( π, 0) E < 4 A B
Topology, Localization, and Quantum Information in Atomic, Molecular and Optical Systems
Topology, Localization, and Quantum Information in Atomic, Molecular and Optical Systems The Harvard community has made this article openly available. Please share how this access benefits you. Your story
A Classical Perspective on Non-Diffractive Disorder
A Classical Perspective on Non-Diffractive Disorder The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Accessed Citable
C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,
1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
Solutions - Chapter 4
Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]
Ax = b. 7x = 21. x = 21 7 = 3.
3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Note: Please use the actual date you accessed this material in your citation.
MIT OpenCourseWare http://ocw.mit.edu 6.03/ESD.03J Electromagnetics and Applications, Fall 005 Please use the following citation format: Markus Zahn, 6.03/ESD.03J Electromagnetics and Applications, Fall
Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen
Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation date: GF F GF F SLE GF F D Ĉ = C { } Ĉ \ D D D = {z : z < 1} f : D D D D = D D, D = D D f f : D D
m i N 1 F i = j i F ij + F x
N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)
! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.
! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$
Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design
Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH
k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)
F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2
F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =
!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).
1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
W τ R W j N H = 2 F obj b q N F aug F obj b q Ψ F aug Ψ ( ) ϱ t + + p = 0 = 0 Ω f = Γ Γ b ϱ = (, t) = (, t) Ω f Γ b ( ) ϱ t + + p = V max 4 3 2 1 0-1 -2-3 -4-4 -3-2 -1 0 1 2 3 4 x 4 x 1 V mn V max
Diamond platforms for nanoscale photonics and metrology
Diamond platforms for nanoscale photonics and metrology The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Accessed Citable
u(x, y) =f(x, y) Ω=(0, 1) (0, 1)
u(x, y) =f(x, y) Ω=(0, 1) (0, 1) u(x, y) =g(x, y) Γ=δΩ ={0, 1} {0, 1} Ω Ω Ω h Ω h h ˆ Ω ˆ u v = fv Ω u = f in Ω v V H 1 (Ω) V V h V h ψ 1,ψ 2,...,ψ N, ˆ ˆ u v = Ω Ω fv v V ˆ ˆ u v = Ω ˆ ˆ u ψ i = Ω Ω Ω
SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS
Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTAL INFORMATION Fully Automated Total Metals and Chromium
Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =
C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9
(... )..!, ".. (! ) # - $ % % $ & % 2007
(! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-
Derivation of Optical-Bloch Equations
Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be
!"#$ % &# &%#'()(! $ * +
,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα
MICROMASTER Vector MIDIMASTER Vector
s MICROMASTER Vector MIDIMASTER Vector... 2 1.... 4 2. -MICROMASTER VECTOR... 5 3. -MIDIMASTER VECTOR... 16 4.... 24 5.... 28 6.... 32 7.... 54 8.... 56 9.... 61 Siemens plc 1998 G85139-H1751-U553B 1.
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
φ(t) TE 0 φ(z) φ(z) φ(z) φ(z) η(λ) G(z,λ) λ φ(z) η(λ) η(λ) = t CIGS 0 G(z,λ)φ(z)dz t CIGS η(λ) φ(z) 0 z
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Answers to practice exercises
Answers to practice exercises Chapter Exercise (Page 5). 9 kg 2. 479 mm. 66 4. 565 5. 225 6. 26 7. 07,70 8. 4 9. 487 0. 70872. $5, Exercise 2 (Page 6). (a) 468 (b) 868 2. (a) 827 (b) 458. (a) 86 kg (b)
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
J J l 2 J T l 1 J T J T l 2 l 1 J J l 1 c 0 J J J J J l 2 l 2 J J J T J T l 1 J J T J T J T J {e n } n N {e n } n N x X {λ n } n N R x = λ n e n {e n } n N {e n : n N} e n 0 n N k 1, k 2,..., k n N λ
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
Lecture 21: Scattering and FGR
ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p
Teor imov r. ta matem. statist. Vip. 94, 2016, stor
eor imov r. ta matem. statist. Vip. 94, 6, stor. 93 5 Abstract. e article is devoted to models of financial markets wit stocastic volatility, wic is defined by a functional of Ornstein-Ulenbeck process
ITU-R P (2012/02) &' (
ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS
... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK
RS-3C WIWM050 014.1.9 P1 :8... 1... 014.0.1 1 A... 014.0. 1... RS-3C()...01.08.03 A.. RS-3C()...01.08.03 3... RS-3C()... 003.11.5 4... RS-3C ()... 00.10.01 5... RS-3C().008.07.16 5 A.. RS-3C().0 1.08.
ϕ n n n n = 1,..., N n n {X I, Y I } {X r, Y r } (x c, y c ) q r = x a y a θ X r = [x r, y r, θ r ] X I = [x I, y I, θ I ] X I = R(θ)X r R(θ) R(θ) = cosθ sinθ 0 sinθ cosθ 0 0 0 1 Ẋ I = R(θ)Ẋr y r ẏa r
Jeux d inondation dans les graphes
Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488
Defects in Hard-Sphere Colloidal Crystals
Defects in Hard-Sphere Colloidal Crystals The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Accessed Citable Link Terms
ITU-R P (2012/02)
ITU-R P.56- (0/0 P ITU-R P.56- ii.. (IPR (ITU-T/ITU-R/ISO/IEC.ITU-R ttp://www.itu.int/itu-r/go/patents/en. (ttp://www.itu.int/publ/r-rec/en ( ( BO BR BS BT F M P RA RS S SA SF SM SNG TF V 0.ITU-R ITU 0..(ITU
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής
ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.
Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics
Supporting Information (SI) Heterobimetallic Pd-Sn Catalysis: Michael Addition Reaction with C-, N-, -, S- Nucleophiles and In-situ Diagnostics Debjit Das, a Sanjay Pratihar a,b and Sujit Roy c * a rganometallics
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques
Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques Raphael Chenouard, Patrick Sébastian, Laurent Granvilliers To cite this version: Raphael
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
Microscopie photothermique et endommagement laser
Microscopie photothermique et endommagement laser Annelise During To cite this version: Annelise During. Microscopie photothermique et endommagement laser. Physique Atomique [physics.atom-ph]. Université
r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t
r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs
a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)
Errata (Includes critical corrections only for the 1 st & 2 nd reprint)
Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y
On the Galois Group of Linear Difference-Differential Equations
On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts
γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000
Gradient Descent for Optimization Problems With Sparse Solutions
Gradient Descent for Optimization Problems With Sparse Solutions The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Chen,
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr st t t t Ø t q s ss P r s P 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t P r røs r Łs t r t t Ø t q s r Ø r t t r t q t rs tø
Geodesic paths for quantum many-body systems
Geodesic paths for quantum many-body systems Michael Tomka, Tiago Souza, Steve Rosenberg, and Anatoli Polkovnikov Department of Physics Boston University Group: Condensed Matter Theory June 6, 2016 Workshop:
!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8
ITU-R P (2009/10)
ITU-R.45-4 (9/) % # GHz,!"# $$ # ITU-R.45-4.. (IR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.tu.t/itu-r/go/patets/e. (http://www.tu.t/publ/r-rec/e ) () ( ) BO BR BS BT F M RA S RS SA SF SM SNG TF V.ITU-R
ITU-R P (2012/02) khz 150
(0/0) khz 0 P ii (IPR) (ITU-T/ITU-R/ISO/IEC) ITU-R http://www.itu.int/itu-r/go/patents/en http://www.itu.int/publ/r-rec/en BO BR BS BT F M P RA RS S SA SF SM SNG TF V ITU-R 0 ITU 0 (ITU) khz 0 (0-009-00-003-00-994-990)
The effect of curcumin on the stability of Aβ. dimers
The effect of curcumin on the stability of Aβ dimers Li Na Zhao, See-Wing Chiu, Jérôme Benoit, Lock Yue Chew,, and Yuguang Mu, School of Physical and Mathematical Sciences, Nanyang Technological University,
Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.
II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs
CMOS Technology for Computer Architects
CMOS Technology for Computer Architects Iakovos Mavroidis Giorgos Passas Manolis Katevenis Lecture 13: On chip SRAM Technology FORTH ICS / EURECCA & UoC GREECE ABC A A E F A BCDAECF A AB C DE ABCDAECF
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)
ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,
Development and Verification of Multi-Level Sub- Meshing Techniques of PEEC to Model High- Speed Power and Ground Plane-Pairs of PFBS
Rose-Hulman Institute of Technology Rose-Hulman Scholar Graduate Theses - Electrical and Computer Engineering Graduate Theses Spring 5-2015 Development and Verification of Multi-Level Sub- Meshing Techniques
Markov chains model reduction
Markov chains model reduction C. Landim Seminar on Stochastic Processes 216 Department of Mathematics University of Maryland, College Park, MD C. Landim Markov chains model reduction March 17, 216 1 /
wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:
3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,
a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
! " #! $ %&! '( #)!' * +#, " -! %&! "!! ! " #$ % # " &' &'... ()* ( +, # ' -. + &', - + &' / # ' -. + &' (, % # , 2**.
! " #! $ %&! '( #)!' * +#, " -! %&! "!!! " #$ % # " &' &'... ()* ( +, # ' -. + &', - + &' / 0123 4 # ' -. + &' (, % #. -5 0126, 2**., 2, + &' %., 0, $!, 3,. 7 8 ', $$, 9, # / 3:*,*2;
ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
μ μ dω I ν S da cos θ da λ λ Γ α/β MJ Capítulo 1 % βpic ɛ Eridani V ega β P ic F ormalhaut 10 9 15% 70 Virgem 47 Ursa Maior Debris Disk Debris Disk μ 90% L ac = GM M ac R L ac R M M ac L J T
f RF f LO f RF ±f LO Ιδανικός μείκτης RF Είσοδος f RF f RF ± f LO IF Έξοδος f LO LO Είσοδος f RF f LO (ω RF t) (ω LO t) = 1 2 [(ω RF + ω LO )t + (ω RF ω LO )t] RF LO IF f RF ± f LO 0 180 +1 RF IF 1 LO
Between Square and Circle
DOCTORAL T H E SIS Between Square and Circle A Study on the Behaviour of Polygonal Steel Profiles Under Compression Panagiotis Manoleas Steel Structures Printed by Luleå University of Technology, Graphic
! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"
! "#" "" $ "%& ' %$(%&!"#$ % &'(!!")!*!&+,! %$( -.$'!" /01&$23& &4+ $$ /$ & & / ( #(&4&4!"#$ %40 &'(!"!!&+ 5,! %$( - &$ $$$".$'!" 4(02&$ 4 067 4 $$*&(089 - (0:;
Multi-GPU numerical simulation of electromagnetic waves
Multi-GPU numerical simulation of electromagnetic waves Philippe Helluy, Thomas Strub To cite this version: Philippe Helluy, Thomas Strub. Multi-GPU numerical simulation of electromagnetic waves. ESAIM:
6.4 Superposition of Linear Plane Progressive Waves
.0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Cable Systems - Postive/Negative Seq Impedance
Cable Systems - Postive/Negative Seq Impedance Nomenclature: GMD GMR - geometrical mead distance between conductors; depends on construction of the T-line or cable feeder - geometric mean raduius of conductor
Hartree-Fock Theory. Solving electronic structure problem on computers
Hartree-Foc Theory Solving electronic structure problem on computers Hartree product of non-interacting electrons mean field molecular orbitals expectations values one and two electron operators Pauli
Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine
SIEMENS Squirrel Cage Induction Standard Three-phase Motors
- SIEMENS Squirrel Cage Induction Standard Three-phase Motors 2 pole 3000 rpm 50Hz Rated current Power Efficiency Rated Ratio Noise Output Frame Speed Weight 3V 400V 415V factor Class 0%Load 75%Load torque
An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 An experimental and theoretical study of the gas phase kinetics of atomic chlorine
!"! #!"!!$ #$! %!"&' & (%!' #!% #" *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2!
# $ #$ % (% # )*%%# )# )$ % # * *$ * #,##%#)#% *-. )#/###%. )#/.0 )#/.* $,)# )#/ * % $ % # %# )$ #,# # %# ## )$# 11 #2 #**##%% $#%34 5 # %## * 6 7(%#)%%%, #, # ## # *% #$# 8# )####, 7 9%%# 0 * #,, :;
())*+,-./0-1+*)*2, *67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3*
! " # $ $ %&&' % $ $! " # ())*+,-./0-1+*)*2,-3-4050+*67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* *),+-30 *5 35(2(),+-./0 30 *,0+ 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3* *3*+-830-+-2?< +(*2,-30+
Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines
Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the
l 1 p r i = ρ ij α j + w i j=1 ρ ij λ α j j p w i p α j = 1, α j 0, j = 1,..., p j=1 R B B B m j [ρ 1j, ρ 2j,..., ρ Bj ] T = }{{} α + [,,..., ] R B p p α [α 1,..., α p ] [w 1,..., w p ] M m 1 m 2,
HONDA. Έτος κατασκευής
Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V
m 1, m 2 F 12, F 21 F12 = F 21
m 1, m 2 F 12, F 21 F12 = F 21 r 1, r 2 r = r 1 r 2 = r 1 r 2 ê r = rê r F 12 = f(r)ê r F 21 = f(r)ê r f(r) f(r) < 0 f(r) > 0 m 1 r1 = f(r)ê r m 2 r2 = f(r)ê r r = r 1 r 2 r 1 = 1 m 1 f(r)ê r r 2 = 1 m
Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 006.. 3, º 1(130).. 7Ä16 Š 530.145 ˆ ƒ ˆ ˆŒ ˆŸ Š ƒ.. ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê É μ ² Ö Ó μ μ Ö μ μ²õ μ É μ ÌÉ ±ÊÎ É ² ³ É μ - Î ±μ μ ÊÌ ±μ Ëμ ³ μ- ±² μ ÒÌ ³μ ²ÖÌ Ê ±. ³ É ÔÉμ μ μ μ Ö, Ö ²ÖÖ Ó ±μ³
First Sensor Quad APD Data Sheet Part Description QA TO Order #
Responsivity (/W) First Sensor Quad PD Data Sheet Features Description pplication Pulsed 16 nm laser detection RoHS 211/65/EU Light source positioning Laser alignment ø mm total active area Segmented in
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Variational Wavefunction for the Helium Atom
Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer
!"!# ""$ %%"" %$" &" %" "!'! " #$!
" "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(
1) Abstract (To be organized as: background, aim, workpackages, expected results) (300 words max) Το όριο λέξεων θα είναι ελαστικό.
UΓενικές Επισημάνσεις 1. Παρακάτω θα βρείτε απαντήσεις του Υπουργείου, σχετικά με τη συμπλήρωση της ηλεκτρονικής φόρμας. Διευκρινίζεται ότι στα περισσότερα θέματα οι απαντήσεις ήταν προφορικές (τηλεφωνικά),