{:=, :, goto, if, else} ß ß LB {beg, end, l 1, l 2,..., }.

Σχετικά έγγραφα

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #


2 SFI

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

v w = v = pr w v = v cos(v,w) = v w

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

p din,j = p tot,j p stat = ρ 2 v2 j,

Ανώτερα Μαθηματικά ΙI

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

Προσομοίωση Δημιουργία τυχαίων αριθμών

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 11: SPLINES. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

ACTA ASTRONOMICA SINICA Mar., 2014 : P148; ÞÁ : A. ³ ÚÇ, Re Os Ir Mo Ru Pt Rh Â.

Εφαρμοσμένα Μαθηματικά

Ανώτερα Μαθηματικά ΙI

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 10: Μέθοδος Ελάχιστων Τετραγώνων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 7: Προσεγγιστική Λύση Εξισώσεων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº

MODEL RESEARCH BASED ON LIQUID/SOLID TWO PHANSE FLOWS IN METALLURGY STIRRED TUBULAR REACTOR

½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ

EXPERIMENTAL RESEARCH ON MELTING SURFACE BEHAVIOR IN MOLD UNDER COMPOUND MAGNETIC FIELD

Τεχνικές βασισμένες στα Δίκτυα Αναμονής Εισαγωγικά Επιχειρησιακοί νόμοι

Δυναμικοί τύποι δεδομένων

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

Δυναμική διαχείριση μνήμης

» LIGO (

Delta Inconel 718 δ» ¼

Συνεδριο Δημιουργων ΕΛ/ΛΑΚ 2009

S i L L I OUT. i IN =i S. i C. i D + V V OUT

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

SIMULATION RESEARCH ON THE DECISION-MAKING MECHANISM OF REGIONAL FOREST CARBON SEQUESTRATION OPERATION BASED ON MULTI-AGENT SYSTEM

f a o gy s m a l nalg d co h n to h e y o m ia lalg e br coh the oogy lagebr

ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

v[m/s] U[mV] 2,2 3,8 6,2 8,1 9,7 12,0 13,8 14,2 14,6 14,9

(subtree) (ancestors)

Déformation et quantification par groupoïde des variétés toriques

DtN ² *1) May, 2016 MATHEMATICA NUMERICA SINICA Vol.38, No.2. ˱ Helmholtz µå ű Dirichlet-to-Neumann. u = g, Γ, (1.1) r iku = o(r 1 2 ), r,

MICROSEGREGATION OF SOLUTE ELEMENTS IN SOLIDIFYING MUSHY ZONE OF STEEL AND ITS EFFECT ON LONGITUDINAL SURFACE CRACKS OF CONTINUOUS CASTING STRAND

Ó³ Ÿ , º 3(180).. 313Ä320

Å/ ÅÃ... YD/ kod

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

H Witten- ¾. 1956, Payne-póyla Weinberger [15] Ó ĐË È : (1) λ k+1 λ r 4. λ r. (2) n k. λ k , Yang [19] ÅĐ «Yang ¾. (λ k+1 λ r )λ r 1+ 4 ) 1

Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ±

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Î Ò È Ö Ó Ì ÈË Ì Ñ ØÙ Ò ÈÖÓÑÓ Ó Ë Ù

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 4: Διανυσματικές Συναρτήσεις μιας Μεταβλητής. Αθανάσιος Μπράτσος

Morganναδώσειμίαεναλλακτικήμέθοδο,αποδεικνύονταςπρώταότιηευθείαπουδιχοτομεί κάθεταμίαχορδήπεριέχειτοκέντροτουκύκλου. Παρ όλααυτά,καιαυτήημέθοδοςέχει

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

Κληρονομικότητα. ΙωάννηςΓºΤσ ούλος

Ανώτερα Μαθηματικά ΙI

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

Blowup of regular solutions for radial relativistic Euler equations with damping

MULTISCALE SIMULATION OF NANOINDENTATION ON Al THIN FILM

ZZ (*) 4l. H γ γ. Covered by LEP GeV

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

N i. D i (x) = 1 N i. D(x, x ik ). (3, 1), (3, 0.9), (3, 0.8), (3, 0.8) (4, 0), (4, 0.1), (4, 0.2). k=1. j=1

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

arxiv: v1 [math.dg] 3 Sep 2007

Editorís Talk. Advisor. Editorial team. Thank

Ρένα Ρώσση-Ζα ρη, Ðñþôç Ýêäïóç: Ιανουάριος 2010, αντίτυπα ÉSBN

Reverse Ball-Barthe inequality

ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ

Ανώτερα Μαθηματικά ΙI

ΟπτικόςΠρογραμματισ μός. ΙωάννηςΓºΤσ ούλος

BEHAVIOUR AND MECHANISM OF STRAIN HARDEN- ING FOR DUAL PHASE STEEL DP1180 UNDER HIGH STRAIN RATE DEFORMATION

ƒê,.. ± É,.. Ëμ μ. ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ. ² μ Ê ² ² ±É Î É μ

tan(2α) = 2tanα 1 tan 2 α

Ó³ Ÿ , º 4(181).. 501Ä510

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA HIGH STRENGTH LOW ALLOY STEEL

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä1350 ˆ ˆ Š -3

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

Αρχείασ την Â Ú. ΙωάννηςΓºΤσ ούλος

ACTA MATHEMATICAE APPLICATAE SINICA Sep., ( MR (2000) Õ È 32C17; 32F07; 35G30; 53C55

WAFER LEVEL ELECTRODEPOSION OF Fe Ni NOVEL UBM FILMS

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο. Επίδοση Υπολογιστικών Συστημάτων. Α.-Γ. Σταφυλοπάτης.

+ m ev 2 e 2. 4πε 0 r.

STRUCTURE AND MAGNETIC BEHAVIOR OF Zn 1 x Co x O CRYSTAL POWDERS PREPARED BY SOL GEL TECHNIQUE

'A Ï apple ÁÈ ÛÙÔÈ Â ÔÈapple Ï , ,96 ÓÔÏÔ , ,96 ÓÔÏÔ ÌË Î ÎÏÔÊÔÚÔ ÓÙˆÓ , ,99

NUMERICAL SIMULATION OF WELDING RESIDUAL STRESSES IN A MULTI PASS BUTT WELDED JOINT OF AUSTENITIC STAINLESS STEEL USING VARIABLE LENGTH HEAT SOURCE

Š Šˆ ATLAS: ˆ ˆŸ ˆ Šˆ, Œ ˆ Œ ˆ.. ƒê ±μ,. ƒ ² Ï ², ƒ.. Š ± ²,. Œ. Ò,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. Ê ±μ Î,.. ±μ,. Œ. μ

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

ÅÊ NEAR (Near-Earth Asteroid Rendezvous) Hayabusa

Transcript:

Ù ¼ 2 Ô ØÙ ½ ÅÜ À Û ÐÄ Ñ Ñ À ³ Û À ³À ÆÀ 21 Ñ Ó Ï Ó±Ï ¹ ÐÄ Ý± ß Ð F ß Ð G B = (F, P) Ó±Ï Ó Ð WFF B B Ê Ð T B WFF B Ã Ó Ð QFF B À Ï Ð Ó±Ï ß È WFF B Ó È T B Ê 211 º Ó ± È Ó±Ï ¹ È Ñг Ó³ Ó³ ³ Ç Ó±Ï ½ ÁÂ Ð ß ß AX {:=, :, goto, if, else} ß ß LB {beg, end, l 1, l 2,, } ÐÄ B = (F, P) à РV ÄÙ (B, V ) È Â³ Ç Á l 1 : (x 1,, x n ) := (t 1,, t n ) goto l 2 l 1 : if (e) goto l 2 else goto l 3 l 1, l 2, l 3 LB ß l 1 end, t 1,, t n T B Þ n i=1 V ar(t i) V, e QFF B Þ V ar(e) V, x 1,, x n V ÞË 1 i < j n, x i x j

ß ß³ÆÄÙ ß ß»³ ßÄÙ Definition 21 à (B, V ) Û T ½ Ê È beg ¾ È end ½ ³ È end ŠȾ Ã È À½ ÐÄ B = (F, P) à РV (B, V ) È Ð L (B,V ) L B ) Ð Ã Ð V L(B,V «¹ È À º»ÐÂ ß Ãº» ß «À º» ú» V ÃĐ Ð Σ = {σ σ(x) D, x V } À º» ß V ÃĐ Ð LB Σ ¹ Ë«ÐÄ B Ó I ÐÄ Ç t (l i, σ i ) t (l i+1, σ i+1 ) Þ ÁÓ³ß t l i : (v 1,, v n ) := (t 1,, t n ) goto l i+1 Þ σ i+1 = σ i [v 1 /I(t 1 )(σ i )] [v n /I(t n )(σ i )] t l i : (if (e) goto l else goto l σ i+1 = σ i Þ σ i = I e l i+1 = l l i+1 = l ÐÄÈ T B Ó I ÄÙÈ À º» ¹ À T Á (l i, σ i ) T (l i+1, σ i+1 ) Þ ÁÓ³ß Ç t T (l i, σ i ) t (l i+1, σ i+1 ) «Ð ÇÞ (l i, σ i ) = (l i+1, σ i+1 ) ÀÎÊ ² º»«Ð ØÙ ÜÙ Í T T Í

Þ [(l i, σ i )] i 0 ÀÅ (l 0, σ 0 )(l 1, σ 1 )(l 2, σ 2 ) È T Ó º» LB Σ Ó Å [(l i, σ i )] i 0 l 0 = beg ÞË Ø i 0, (l i, σ i ) (l i+1, σ i+1 ) È T º ú» σ 0 º» Ð {(l, σ) (beg, σ 0 ) (l, σ)} º ú» σ ² Þ σ (beg, σ) (end, σ ) º Ó ± º º» ² º» À ² ϕ T º º» ψ Ë T ² º» ÑÐ ϕ ³ ÛÊ ψ ³ Ê T ËĐ ϕ ψ ÄÙ º ú» ϕ Ú ² ² ú» ψ T ËĐ ϕ ψ ÄÙ º ú» ϕ ² Þ² ú» ψ ϕ(σ) ((beg, σ) (end, σ ) ψ(σ )) ϕ(σ) ((beg, σ) (end, σ ) ψ(σ )) T ËĐ ϕ ψ = I {ϕ}t {ψ} = I [ϕ]t[ψ] Å ±µ È ÇÝ (B, V ) I

212 ÊÎ Ï º Ó ± ³Õ Ó±Ï ¹ Ñ Ñ Ð ³ Ð ÐÄ B = (F, P) Á Ð ß {:=, ;, if, then, else, fi, while, do, od, ǫ} Definition 22 Ä B = (F, P) É Ê V à (B, V ) Û ÆË Ì Ð Ã¼Â Ô Ê S Ù Ô T Ù S ::= ǫ T; ǫ T ::= x := t T; T if e then T else T fi while e do T od Ô x V t T B B Û Ö V ar(t) V e QFF B Ã Å Ö V ar(e) V ÐÄ B = (F, P) à РV (B, V ) ³Õ Ð L (B,V ) ÜÙØÙ ß Á ³ ǫ Í «¹ À º»Ð ú» ú» V ÃĐ Ð Σ = {σ σ(x) D, x V } À º» V ÃĐ Ð L (B,V ) Σ

¹ Ë«Ó ÙĐ Đ B ÐÄ B Ó I À º» ÚÕ À (L (B,V ) Σ)2 Ó» (S 0, σ 0 ) (S 1, σ 1 ) Þ ÁÓÊ S 0 S 1 σ 1 x := t; S S σ 0 [x/i(t)(σ 0 )] if (e) then S else S fi; S σ 0 = I e S; S σ 0 if (e) then S else S fi; S σ 0 = I e S ; S σ 0 while e do S od; S σ 0 = I e S; while (e) do S od; S σ 0 while e do S od; S σ 0 = I e S σ 0 ǫ ǫ σ 0 ÓÊ ² º»«Þ [(S i, σ i )] i 0 ÀÅ (S 0, σ 0 )(S 1, σ ) (S 2, σ 2 ) T Ó º» L (B,V ) Σ) Ó Å [(S i, σ i )] i 0 S 0 = T ÞË Ø i 0, (S i, σ i ) (S i+1, σ i+1 ) T º ú» σ 0 º» Ð {(T, σ) (T, σ 0 ) (T, σ)} T º ú» σ ² Þ σ (T, σ) (ǫ, σ ) º Ó ± ϕ T º º» ψ Ë T ² º» ÑÐ T ËĐ ϕ ψ ÄÙ Á ϕ(σ) ((T, σ) (ǫ, σ ) ψ(σ )) ϕ(σ) ((T, σ) (ǫ, σ ) ψ(σ ))

Å ±µ ³Õ ÇÝ (B, V ) I 213 «(FTS) º Ó ± FTS Ó±Ï ¹ FTS ¹ ÚÕ À ÑÐÂ Ñ ¼ À Åܺ Ó±Ï ½ ß Õ Á {, :=} ÐÄ B = (F, P) à РV ÄÙ (B, V ) Ú p (v 1, v 2,, v n ) := (e 1, e 2,, e n ) p QFF B Ó Ã Ó Þ V ar(p) V v 1, v 2,, v n V e 1, e 2,, e n T B B Ê Þ n i=1 V ar(e i) V Ó ÚÕ À ӻŠDefinition 23 à (B, V ) Û FTS Ð ÃÁ ¾ (T, Θ) Ô T (B, V ) ÛÕ Ê Θ QFF B ß Ð Ã Å Ö V ar(θ) V B ÄÄÚÕÀ ß Ý± ß ß ÜÙ Ã σ ÄÀ Ã Ó º» Û Ò³ σ º» º» Ð Σ Á B I = (D, I 0 ) ÖºÐÄ ¹ À º» V ÃĐ Ð Σ = {σ σ(x) D, x V }

¹ Ë«ÚÕ ϕ (v 1, v 2,, v n ) := (e 1, e 2,, e n ) º» σ Þ σ = I ϕ t ϕ (v 1, v 2,, v n ) := (e 1, e 2,, e n ) Ó ÚÕ Þ σ σ t t º» σ Þ σ = σ[v 1 /I(e 1 )(σ)] [v n /I(e n )(σ)] Þ σ σ º» σ ÚÕ t Þ σ t σ º» σ ÚÕÞ σ = σ Þ [σ i ] i 0 ÀÅ σ 0 σ 1 σ 2 σ 3 Ó±ÚÕÀ (T, Θ) Ó º» Σ Ó Å [σ i ] i 0 σ 0 = I Θ ÞË Ø i 0, σ i σ i+1 ¹ Þ σ σ t T σ σ t º» Ð A º» Ð rh(a) {σ σ σ, σ A} À º» Ð rh(θ) {σ σ σ, σ = I Θ} Ú º Ó ± ÐÄÓ º»Ó ϕ À ϕ Þ À º»Æ ϕ σ rh(θ)σ = I ϕ Æ º Ó ± ÐÄÓ Â º»Ó ϕ, ψ À ÉÝ (ϕ, ψ) Þ À Úк» ϕ «Ðº» ψ

Å ±µ Ó±ÚÕÀ ÇÝ (B, V ) I 22 Kripke Ê FTS À º» À I ¹ Ä º» º» À Ð Đ À º Ú 221 Kripke Ê (KS) FTS»Ï º» Σ ¼Äº» À Ñ Ðº» ÚÕ À À º º» º Ú Definition 24 à Kripke ÆÐ ÃÚ ¾ S,, I Ô S ¹ Ê S S S Û «Õ Ç I S ß¹ Ð Í Þ s s s s ÚÕ (s, s ) Þ [s i ] n i=0 Ð Å s 0 s 1 s 2 s n Kripke ³Õ Ð É» S Ð Å [s i ] n i=0 Ë Ø 0 i n 1, s i s i+1 Kripke ³Õ É» S Å [s i ] i 0 Ë Ø i 0, s i s i+1 Kripke ³Õ Kripke ³Õ É» [s i ] i 0 s 0 I ¹ Þ ¾Á¼ Å º» Ð A º» Ð rh(a) {σ σ σ, σ A} À º» Ð rh(i) Ú À Þº» Ð À A Þ À º»Æ A rh(i) A Ë º» Ð A Þ À º» A rh(i) A º Ú

Æ ĐÄ ÐÄÓ º» Ð S 0 S ÄÙ error state(q) q S 0 À S 0 Á S S 0 º» Ä S S 0 º» À S 0 start() { W = A = {}; for each initial state s, if (s is not in A) { add s to W; dfs(); } } dfs() { q = last element from W; add q to A; if (error state(q)) report( reachable ); else for each successor state s of q if (s is not in A) { add s to W; dfs(); } delete q from W; } ĐÄ²Û ÍÈ ÐÄÓ Kripke ³Õ Ó º» q 0 error state(q)=true Þ q = q 0 reachable Þ º» Kripke ³Õ º» È Æ º Ú º» 222 Ì KS Đ KS ËĐÀ ÛĐ KS Þº» Ã Ú Ð ½ Ä Þ Ä ÖÞ ³Õ º» Ó º» ÀÀÙ ÄÄÙ Ê º» º Ú Definition 25 Ä Ã±ºÑ Ê AP à AP Û È KS Ð Ã ¾ S,, I, L

Ô S,, I Kripke Æ L : S 2 AP ¹ Ê AP Ð Ü Ð Ó ³Õ L(s) s ¹Ð s» л p s Þ p L(s) º Ï Ó Ï» Ð AP ¹Ð Ó Ð L AP Þ Ï Ó ÐÄÓ AP ß Kripke ³Õ S,, I, L Ó º» s S ϕ L AP M, s = ϕ ÄÙ Á M, s = ϕ Þ M, s = p p AP Þ p L(s) M, s = ψ M, s = ψ M, s = ψ 0 ψ 1 M, s = ψ 0 «M, s = ψ 1 M, s = ψ 0 ψ 1 M, s = ψ 0 Þ M, s = ψ 1 M, s = ψ 0 ψ 1 M, s = ψ 0 M, s = ψ 1 M, s = ψ 0 ψ 1 M, s = ψ 0 Þ M, s = ψ 1 Ó Ó ËÝĐÓ º» Ð ϕ ËÝĐº» Ð {s M, s = ϕ} Þ [[ϕ]] º» Ð {s M, s = ϕ} Ú À ÞÓ À ϕ Þ À º»Æ ϕ s rh(i)(m, s = ϕ) rh(i) [[ϕ]] error state(q) M, s = ϕ «q [[ϕ]] Ì KS «KS FTS KS FTS KS º» Î FTS Ã Đ Ä ÐÄ B = (V, F, P) FTS (T, Θ) ÐÄ B I V = {v 1,, v n } ÞÇ v v Đ ± º» Î v 1 v 2 v n Þ n º» (a 1,, a n ) a 1,, a n v 1,, v n ÚÕ Ð FTS ÚÕ t T σ σ t ((σ(v 1 ), σ(v 2 ),, σ(v n )), (σ (v 1 ), σ (v 2 ),, σ (v n ))) º º» Ð I Ѿ Θ ÄÙ σ = I Θ (σ(v 1 ), σ(v 2 ),, σ(v n )) I Ë Ã v {a 1,, a v } Õ v {p 1,, p v } v = a 1, v = a 2,, v = a v ËÝ ÓÊ

p v,a v = a ÄÙ L Á p xi,a L((x 1,, x n )) Þ x i = a Ð ÐÓ» Ð AP ß Kripke ³Õ M (T,Θ) = S,, I, L Ê ²Û ÐÄ B = (V, F, P) FTS (T, Θ) B I = (D, I 0 ) D Ð Ð 1 σ 0 σ 1 (T, Θ) Ó Þ s 0 s 1 M (T,Θ) Ó Þ σ i (x) = a Þ p x,a L(s i ) 2 s 0 s 1 M (T,Θ) Ó Þ σ 0 σ 1 (T, Θ) Ó Þ σ i (x) = a Þ p x,a L(s i ) Šл ±µ n! ÇÝ Kripke ³Õ 0 n 5 * ± Ì KS ß KS Ê º» Ë º» Ó Definition 26 Ä Ã±ºÑ Ê AP à AP Û È KS Ð Ã ¾ S,, I, L Ô S,, I Kripke Æ L : S L AP ¹ Ê Ñ Å Ê Ü ÐÄÓ AP ß Kripke ³Õ S,, I, L Ó º» s S ϕ L AP M, s = ϕ Þ L(s) ϕ Ú À º»Æ ϕ ϕ L AP Þ À À ϕ L AP Þ ϕ º» ϕ: s rh(i)(l(s) ϕ) ϕ: s rh(i)(l(s) ϕ) º Ú 23 Ì Â Kripke ³Õ Ñ º» º» ¹ À Å º»Ï Ä Å Ò À Ó

º ¼Å Æ ¼Å Æ Ó ½ Ó Å ½ Å ¼Å Æ Û ½ ÑÅ 231 Ì «(LTS) Definition 27 à ÈÕ Ð Ã ¾ Σ, S,, I Ô Σ È Ê S ¹ Ê S Σ S Ð Ã È Õ Ç I ß¹ º ¼Å Æ Þ s a s s s a ÚÕ (s, a, s ) LTS Ó º» S Ó Å [s i ] i 0 s 0 I ÞË Ø i 0, a Σ s i a si+1 ¼Ç LTS Ó ½ º» Σ Ó Å ω = [a i ] i 0 LTS Ó π = [s i ] i 0 a i+1 Ë Ø i 0, s i si+1 π ³½ ω Ó Ð Ì «KS LTS º» ÅÓ Definition 28 Ä Ã±ºÑ Ê AP à AP Û ÈÕ ÆÐ ÃÆ ¾ Σ, S,, I, L Ô Σ, S,, I Ð Ã ÈÕ L : S 2 AP ¹ AP Ð Ü º ¼Å Æ 232 ω»â ËĐ LTS Í Ñ º»ÚÕ À º» Ž À Ó Ð ÄÒ¹ À ÑË ÓÄÅ ¼Ó º» ¹ À Ð º»Å ÑÐ Ö ¼ Ð º»Å Ñ ³Õ LTS ½ ÄÙ ω ¼ÅÆ

º Ú B uchi»â Ù ÂÄÙ ÐÓ B uchi ¼ÅÆ Definition 29 à B uchi» ÏÐ ÃÆ ¾ Σ, S,, I, F Ô Σ, S,, I Ð Ã ÈÕ F S» Ï ¹ ß B = Σ, S,, I, F B uchi ¼ÅÆ B ½ ßÚÕÀ Σ, S,, I ÄÙ inf(π) ÅÌ»Ä π º» Ð B π = [s i ] i 0 Þ ß¼Ç inf(π) F B ß Σ Ó ½ ω = [a i ] i 0 Þ ω B ½ Ð B L(B) º Ú Å Æ ĐÄ ÐÄÓ ω ¼ÅÆ Â ω ¼ÅÆ ÚÕ À ÝÁ Ú º º» Õ ÝÁ ÐÓ Ã Р¼ÅÆ º» ÐÆ ÐÔ ÄÒÞ ÏË Á  ¹ÐÝÁ Í Þ accept(q) q F º»  ܽ Èß Ä

start() { W = A = B = {}; for each initial state s I, if (s is not in A) { add s to W; dfs1(); } } dfs1() { q = last element from W; add q to A; for each successor state s of q if (s is not in A) { add s to W; dfs1(); } if (accept(q)) { add q to B; dfs2(); } delete q from W; } dfs2() { q = last element from B; for each successor state s of q if (s is in W) report( nonempty ); if (s is not in B) { add s to B; dfs2(); } } ĐÄ²Û ÍÈ ÐÄÓ B uchi ¼ÅÆ nonempty Þ ¼ÅÆ ³Ò (1) (2) B uchi ¼ÅÆ È Æ ± B uchi»â Ä Ö Ì B uchi ¼ÅÆ ÄÙ º» Ð º» Ð º Ú Definition 210 à B uchi» ÏÐ ÃÆ ¾ Σ, S,, I, F Ô Σ, S,, I Ð Ã ÈÕ F 2 S» Ï ¹ Ê ß B = Σ, S,, I, F B uchi ¼ÅÆ B ½ ßÚÕÀ Σ, S,, I B π = [s i ] i 0 Þ Ë¹Ð f F inf(π) f

º Ú ± B uchi»â B uchi»â ÐÄ B uchi ¼ÅÆ B = Σ, S,, I, {f 1,, f n } ÄÙ n(s, i) = if (i = n) then 0; else if (s f i+1 ) then i + 1; else i S = S {0,, n} = {(s, i), a, (s, n(s, i)) (s, a, s ), i {0,, n}} I = I {0} F = S {n} ÄÙ B uchi ¼ÅÆ B = Σ, S,, I, F L(B ) = L(B) B uchi ¼ÅÆ B uchi ¼ÅÆ Óл À Đ ¼ÅÆ Å ÁÄÙ B uchi ¼ÅÆ ÐÄ B uchi ¼ÅÆ B 1 = Σ, S 1, 1, I 1, F 1, B 2 = Σ, S 2, 2, I 2, F 2 Þ S 1 S 2 = F = {f S 2 f F 1 } {f S 1 f F 2 } ÄÙ B 1 B 2 = Σ, S 1 S 2, 1 2, I 1 I 2, F L(B 1 B 2 ) = L(B 1 ) L(B 2 ) ÐÄ B uchi ¼ÅÆ B 1 = Σ, S 1, 1, I 1, F 1, B 2 = Σ, S 2, 2, I 2, F 2 Þ S 1 S 2 = = {((q 1, q 2 ), a, (q 1, q 2)) (q 1, a, q 1) 1, (q 2, a, q 2) 2 } F = {f S 2 f F 1 } {S 1 f f F 2 } ÄÙ B 1 B 2 = Σ, S 1 S 2,, I 1 I 2, F L(B 1 B 2 ) = L(B 1 ) L(B 2 ) Å Ó ¼Î B uchi ¼ÅÆ Î L(A B) = L(A B) Þ A B A B Î Î ¼Î B uchi ¼ÅÆ Î L(A B) = L(A B) Þ A B A B Î ± B uchi»â À Ø ÉÖ Kripke Ê B uchi ¼ÅÆ Kripke ³Õ Ä Å Ð Ú Kripke ³ Õ ½ ÓÕ Kripke ³Õ Definition 211 ÃÅÓ Kripke ÆÐ à ¾ S,, I, F Ô S,, I Ð Ã Kripke Æ F 2 S ÅÓ Kripke Æ ¹ Ê

ÓÕ Kripke ³Õ S,, I, F Ó Kripke ³Õ S,, I Ó Ó ÓÕ Kripke ³Õ π = [s i ] i 0 ÓÕ Þ Ë¹Ð f F inf(π) f º Ú B uchi ¼ÅÆ B uchi ¼ÅÆ Ó³ B uchi ¼ÅÆ ½ «Ë Ó «ÄÙ Streett ¼ÅÆ Rabin ¼ÅÆ«Muller ¼ÅÆ º Ú Streett»Â Definition 212 à Streett» ÏÐ ÃÆ ¾ Σ, S,, I, F Ô Σ, S,, I Ð Ã ÈÕ F 2 S 2 S» Ï ¹ Ê ß B = Σ, S,, I, F Streett ¼ÅÆ B ½ ßÚÕÀ Σ, S,, I B π = [s i ] i 0 Þ Ë¹Ð (f, g) F Rabin»Â inf(π) f inf(π) g Rabin ¼ÅÆ ³Õ Streett ¼ÅÆ ÓÐ Þ Streett ¼ÅÆ Ç ÐÄÓ Rabin ¼ÅÆ B = Σ, S,, I, F B π = [s i ] i 0 Þ (f, g) F Muller»Â inf(π) f inf(π) g = Definition 213 à Muller» ÏÐ ÃÆ ¾ Σ, S,, I, F Ô Σ, S,, I Õ F 2 S» Ï ¹ Ê ß B = Σ, S,, I, F Muller ¼ÅÆ B ½ ßÚÕÀ Σ, S,, I B π = [s i ] i 0 Þ inf(π) F

Õ È B uchi ¼ÅÆ B uchi ¼Å Æ Streett ¼ÅÆ Rabin ¼ÅÆ Muller ¼ÅÆ Ç ÞÆ Å ÐÄÓ Muller ¼ÅÆ Õ Ó B uchi ¼ÅÆ B uchi ¼ÅÆ Muller ¼ÅÆ Ç À ± B uchi»â ¼ÅÆ Æ º» Ð Ò ÄÙ ÚÕ Đ ĐÚÕ B uchi ¼ÅÆ ĐÚÕ B uchi ¼ÅÆ Ó ¾ ÄÙ ĐÚÕ B uchi ¼ÅÆ Definition 214 Î Õ B uchi» ÏÐ ÃÆ ¾ S, Σ,, I, F Ô Σ, S,, I Ð Ã ÈÕ F 2 Ð Õ Ê ß Þ [(s i, a i+1, s i+1 )] i 0 (s 0, a 1, s 1 )(s 1, a 2, s 2 )(s 2, a 3, s 3 ) ÄÙ inf([(s i, a i+1, s i+1 )] i 0 ) ÅÌ»Ä [(s i, a i+1, s i+1 )] i 0 ÚÕ Ð B = Σ, S,, I, F ĐÚÕ B uchi ¼ÅÆ B ½ ßÚÕÀ Σ, S,, I B π = [s i ] i 0 Þ Ë¹Ð i 0 a i+1 Σ (s i, a i+1, s i+1 ) Þ˹Рf F ᬀ inf([(s i, a i+1, s i+1 )] i 0 ) f Ó ½ [a i ] i 0 Þ Ë Ý [s i ] i 0 Þ˹Рf F inf([(s i, a i+1, s i+1 )] i 0 ) f À ± B uchi»â B uchi»â ÄÙ ÐÄ ĐÚÕ B uchi ¼ÅÆ B = Σ, S,, I, F

n(s, a, s, i) = if (i = n) then 0; else if ((s, a, s ) f i+1 ) then i + 1; else i S = S {0,, n} = {(s, i), a, (s, n(s, a, s, i)) (s, a, s ), i {0,, n}} I = I {0} F = S {n} ÄÙ B uchi ¼ÅÆ B = Σ, S,, I, F L(B ) = L(B) B uchi ¼ÅÆ Ò Õ Ç Đ ÚÕ B uchi ¼ÅÆ ĐÚÕ B uchi ¼ÅÆ B uchi ¼ÅÆ ÓÐ º Ú 233 ÛÁ»Â ÅÛÁ»Â ω- ¼ÅÆ ÚÕÀ ÄÙÄ ¼ÅÆ Ò ËÚÕÀ Ä ¼ÅÆ Ä ¼ÅÆ Ä ¼ÅÆ º º» ÐÓ Þ ÚÕ À ÁÅ (s, a, s ), (s, a, s ) s = s ÐÄÓ ½ Ë Ä ¼ÅÆ Ð Ò Ñ Ð Ó Õ Ä Muller ¼ÅÆ Ä Muller ¼ÅÆÇ Ä B uchi ¼ÅÆ ³Ò 234 Ì Â ßÚÕÀ Å º» ÐÌ ÆÓ º» Ë ÚÕÀ Ó ³ ÆÌ º» Ð ÚÕÀ Ó º³Õ º Ú Ì «(ATS) Definition 215 Ã È Õ Ð Ã ¾ Σ, S,, I Ô Σ Ê S ¹ Ê S Σ 2 S È Õ Ç I ß¹ Ê ¼Ç ÜÀ ÐÄÓ Σ Å± ½ ω = a 0 a 1 a 2 ß ÚÕÀ ω Ó º» S Ó r r(0) r Ѳ  r(i) r À i ²Â Ð child(x) ²Â x»²â Ð Þ (x, a) Ð {y (x, a, y) } r Á

r(0) I x r(i) À i Ó ²Â child(x) (x, a i ) (x, a i ) ÅÜ x л²Â º» S Ó r ß ÚÕÀ Σ, S,, I Ó Þ Ó Σ Å± ½ ω = a 0 a 1 a 2 r ß ÚÕÀ ω Ó º Ú A Ð Ì «KS ATS º» ÅÓ Definition 216 Ä Ã±ºÑ Ê AP à AP Û È Õ Ð ÃÆ ¾ Σ, S,, I, L Ô Σ, S,, I Ð Ã È Õ L : S 2 AP ¹ AP Ð Ü º Ų B uchi»â Definition 217 à B uchi» ÏÐ ÃÆ ¾ Σ, S,, I, F Ô Σ, S,, I Ð Ã È Õ F S» Ï ¹ ß B = Σ, S,, I, F Ó B uchi ¼ÅÆ B ½ ß ÚÕÀ Σ, S,, I B Ó r Þ r ¹Ð É» ρ Õ inf(ρ) F B ½ Σ Ó Å±½ ω = [a i ] i 0 Ë B Þ ω B uchi ¼ÅÆ B uchi ¼ÅÆ Ç 24 Ý»Â Í «Ä Ö ÚÕÅ ±É Å Ñ ±

º Ú Å Ã Ó X ± à РQ à Р±Ó Ð Φ(X) Á л φ ::= x c c x φ φ φ x X ± à c Q Ã Ó ± v Ó X R ݱ Þ v + t ˹Рx X v (x) = v(x) + t ± v Þ t v ˹Рx X v (x) = t v(x) ± v Þ [Y t]v ˹Рx X \ Y v (x) = v(x) Ë ¹Ð x Y v (x) = t ± v 241 Ý «(TTS) Definition 218 ÃÝ Õ Ð ÃÆ ¾ Σ, S, C,, I Ô Σ ¼Ò S ¹ Ê C Ý Ê S Σ 2 C Φ(C) S Õ Ç I S ß¹ Ê «¹ V = C R ± Ð Ó À º» S V Ó Ý ¼Ç ÜÀ Ó ½ Σ R Å Ù Ò (σ, τ) = ([σ i ] i 1, [τ i ] i 1 ) Σ ω R ω τ ˹Рi, τ i+1 > τ i ÞË Ø t R i, τ i > t Ð Û Ñ τ i+1 > τ i τ i+1 τ i ÄÙ τ 0 = 0 ÚÕÀ Σ, S, C,, I ½ (σ, τ) = [(σ i, τ i )] i 1 (Σ R) ω Ó º» S V Ó Å [(s i, v i )] i 0 s 0 I, ˹Рx C,v 0 (x) = 0, Ë Ø i 0 λ C, ϕ Φ(C) (s i, σ i+1, λ, ϕ, s i+1 ) Þ (v i + τ i+1 τ i ) ϕ, v i+1 = [λ 0](v i + τ i+1 τ i )

S V Ó Å r ÚÕÀ Σ, S, C,, I Ó Þ Ó ½ (σ, τ) r ÚÕÀ (σ, τ) Ó ÚÕÀ º» È PSPACE º Ú º ÚÕÀ 242 Ý B uchi»â (TA) Definition 219 ÃÝ B uchi» ÏÐ Ã ¾ Σ, S, C,, I, F Ô Σ, S, C,, I Æ ÃÝ Õ F S» Ï ¹ ß B uchi ¼ÅÆ B = Σ, S, C,, I, F Ó ½ (σ, τ) B r = (s, v) Þ inf(r) F inf(r) ÅÌ»Ä r º» Ð ßÝ ¼Ç Ó ½ (σ, τ) B ³ (σ, τ) B ½ Ð B L(B) ¼ÅÆ ¼Å Æ È PSPACE º ¼ÅÆ 1 º ¼ÅÆ 2 Å ÐĐ Ìų «ß ÑÐ ß Ô Ì Đ Ì Đ Ì Þ ±È 1 Ì ±È ÎĐ 10 Đ ±È ÎĐ 10, µöì Đ ¾±È 30 Ó ß Ó Ì Đ ±È ĐÓ 243 «ÚÕÀ ÚÕÀ Ó³ ¹ X = {x 1,, x n } ± à РΦ(X) X Ð (X) : X (R n R) Óݱ Ð X = { x 1,, x n }

Definition 220 ÃÍ Õ Ð Ã ¾ Σ, S, X,, I, flow Ô Σ ¼Ò S ¹ Ê X Þ Ê S Σ (X) Φ(X) S Õ Ç I S (2 R ) n ß¹ Ê flow : S Φ(X X) ù Û Ã Ë ²Đ «¹ ͹ À V = X R Ã Ð Ó À º» S V Ó Ù Þ v V (v(x 1 ),, v(x n )) R n Ë δ R 0 Þ (s, v) δ (s, v ) v Á Ó Ý± f : [0, δ] R n Ó± ḟ : (0, δ) R n f(0) = v, f(δ) = v Þ ζ (0, δ)flow(s)[x/f(ζ)][ẋ/ḟ(ζ)] = true Þ (s, v) σ (s, v ) (s, v ) Á (s, σ, λ, ϕ, s ) Þ {z 1,, z n } = dom(λ) v ϕ Þ v = v[z 1 /λ(z 1 )(v)] [z k /λ(z k )(v)] Ý ¼Ç ÜÀ Ó ½ Σ R Å ÚÕÀ Σ, S, X,, I, flow ½ (σ, τ) = [(σ i, τ i )] i 1 (Σ R) ω Ó º» S V Ó Å [(s i, v i )] i 0 (s 0, v 0 ) I ÞË Ø i 0 v i (s i, v i ) τi+1 τi (s i, v i ) Þ (s i, v i (s )δi+1 i+1, v i+1 ) S V Ó Å r ÚÕÀ Σ, S, X,, I, flow Ó Þ Ó ½ (σ, τ) r ÚÕÀ (σ, τ) Ó º ²È 25 Petri Petri ¾Â Ï Ñ Ð ¹ ÚÕ Á ¹ ÚÕ ÐË ¹ ÚÕ ÚÕ ¹ ÚÕ» º Ú Definition 221 à Petri Ð Ã ¾ P, T, F, M 0 Ô P Ê T Õ Ê F (P T) (T P) Ê M 0 : P N ß¹ Ô N»Ø Ê

«¹ Ó À º» P N Ó Ý± ˹Р¹ Ó ÄÙ p(t) = {p P (p, t) F } p (t) = {p P (t, p) F } ÚÕ t T º» M Þ p p(t), M(p) 1 Þ M t M t T º» M Þ p P M (p) = M(p) α 0 (p, t) + α 1 (p, t) α 0 (p, t) = 1 Þ p p(t) α 1 (p, t) = 1 Þ p p (t) º Ú º Ð Ú Petri º» È ÐÄ Þ EXPSPACE Ó Petri P, T, F, M 0 k µ Þ Ë ¹Ð º» M Ð p PM(p) k 1 µ Petri ³ Petri Petri º» È PSPACE Šе A B C D Ó Ì E Þ Petri ÁÛ A Æ a B Æ b C Þ a b Æ c D Þ a c Ô d E Ì Ô d 26 «À Þ Ì Û Û Ðº» º»Ú Õ º»ÚÕ Û º Ú 261 Definition 222 Ä Ã S, N Ô S ¼Ò N»Ø à S, N m m S, N Рõ N i=0 { x 1,, x i x i S} º» Å ÐÄ σ m S, N σ(m) N i=0 { x 1,, x i x i S} º» º» Ð Σ

Þ m S, N m Ç Ð ACT(m) = {m?s s S} {m!s s S} C = {m 1,, m n } Ð C Ç Ð ACT(C) = ACT(m 1 ) ACT(m n ) {ǫ} Þ ËĐ x = x 1,, x n ÄÙ x = n, x s = x 1,, x n, s, HEAD(x) = x 1, TAIL(x) = x 2,, x n ÐÄÓ º» σ Ó m S, N ÁÓÊ a ACT(m) {ǫ} a = ǫ a = m!s Þ σ(m) < N Þ s S a = m?s Þ σ(m) > 0 Þ s = HEAD(σ(m)) ÐÄ σ Σ,m S, N,a ACT(m) Þ σ a σ a σ Þ a = ǫ σ = σ a = m!s σ = σ[m/σ(m) s] a = m?s σ = σ[m/tail(σ(m))] 262 Definition 223 à Рà ¾ Q, C,, q 0 Ô Q ¹ Ê C Ê Q {ACT(C) {ǫ}} Q È Õ Ç q 0 Q ß¹ «¹ ÐÄÓ Q, C,, q 0 À º»  (s, σ) s Q º» σ Σ º» ÚÕ (q, a, q ) (s, σ) Þ q = s Þ a σ C = {m 1,, m k } Ó Q Σ Ó Å [(z i, σ i )] i 0 z 0 = q 0, σ 0 (m 1 ) = = σ 0 (m k ) = ÞË Ø i 0, (q, a, q ) (q, a, q ) (z i, σ i ) z i+1 = q Þ σ i a σi+1

263 «Definition 224 à {P 1,, P n } Ð P 1 = Q 1, C 1, 1, q 10,, P n = Q n, C n, n, q n0 ¾ Ê Ô Q 1,, Q n Ê «¹ ÄÙ S 1 S n = {{s 1,, s n } s 1 S 1,, s n S n } À À º» Ð (Q 1 Q n ) Σ Ó ÚÕ (q, a, q ) 1 n º» (Q, σ) Þ q Q Þ a σ C 1 C n = {m 1,, m k } Ó (Q 1 Q n ) Σ Ó Å [(z i, σ i )] i 0 z 0 = {q 0,, q n }, σ 0 (m 1 ) = = σ 0 (m k ) = ÞË Ø i 0, (q, a, q ) 1 n (q, a, q ) (z i, σ i ) z i+1 = (z i \ {q}) {q } Þ σ i a σi+1 ÃĐº ÐÄ P 1 = Q 1, C 1, 1, q 10, P 2 = Q 2, C 2, 2, q 20 Þ Q 1 Q 2 = P 1 P 2 ÄÙ Á P 1 P 2 = Q 1 Q 2, C 1 C 2,, {q 10, q 20 } = {({q 1, q 2 }, a, {q 1, q 2 }) (q 1, a, q 1) 1 } {({q 1, q 2 }, a, {q 1, q 2}) (q 2, a, q 2) 2 } Ï» ³ÐË Ë º Ú º Ú 1 º Ú 2 Å ÐÄ P 1,, P n P = P 1 P n P Ð À {P 1,, P n } ÐÇ Ùµ m {0, 1, 2,, n} Þ [n] {0, 1, 2,, n} Ë m ÇĐ Þ B m = Q, M,, q 0 Ä Q = {q 0, q 1, q 2,, q n, r 0, r 1, r 2,, r n } M = {m i, m o m i, m o {0, 1, 2,, n, r}, 1 } = {(q k, m i?j, q j ) k, j [n]} {(q k, m i?r, r k ) k [n]} {(r k, m o!k, q k ) k [n]}

m 1, m 2  {0, 1, 2,, n} à c {0, 1, 2,, n}, k m 1, m 2 Ä B m1, B m2 Á ÚÕ Þ ÚÕ Ð Ä (q, c?m 1, q ) {(q, c?k, q 1k ) k [n]} {(q 1k, m i 1!k, q ) k [n]} (q, c!m 1, q ) {(q, m i 1!r, q 1 )} {(q 1, m o 1?k, q 1k ) k [n]} {(q 1k, c!k, q ) k [n]} (q, m 1 := k, q ) {(q, m i 1!k, q )} (q, m 1 := m 2, q ) {(q, m i 2!r, q 1 )} {(q 1, m o 2?k, q 1k ) k [n]} {(q 1k, m i 1!k, q ) k [n]} Ð Ä Ã Û À Ð Ã Þ Ý À º Ð Ã ¼ÅÆ 27 Ò Ñ À Ð Ó±Ú ÕÀ [Pel01] Kripke ³Õ Ðżů [CGP99] Petri Æ [NW96] ¼Å Æ [Var97, AHK97] ¼ÅÆ [AD94] ¼ÅÆ [Henzinger96] Krikpe ³Õ ¼ÅÆ À [Hol90] [AD94] Rajeev Alur and David L Dill A Theory of Timed Automata Theor Comput Sci 126(2): 183-235 (1994) [AHK97] Rajeev Alur, Thomas A Henzinger and Orna Kupferman Alternating-Time Temporal Logic COMPOS 1997: 23-60 [Hol90] Gerard J Holzmann Design and Validation of Computer Protocols Prentice Hall, 1990 [CGP99] E Clark, O Grumberg and D Peled Model Checking MIT press, 1999 [Henzinger96] Thomas A Henzinger The Theory of Hybrid Automata LICS 1996: 278-292 [Pel01] Doron A Peled Software Reliability Methods Springer- Verlag 2001 [NW96] Mogens Nielsen and Glynn Winskel Petri Nets and Bisimulation Theor Comput Sci 153(1&2): 211-244 (1996) [Var97] Moshe Y Vardi Alternating Automata: Unifying Truth and Validity Checking for Temporal Logics CADE 1997: 191-206