Η επίδραση της κοινωνικής διάστασης των ρομπότ στη σχολική επίδοση



Σχετικά έγγραφα
Σχεδίαση µε τη χρήση Η/Υ

Στοιχεία από τη Γεωμετρία του χώρου (αναλυτικά στο βιβλίο: Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου)

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΑΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

4.1 ΕΥΘΕΙΕΣ ΚΑΙ ΕΠΙΠΕ Α ΣΤΟ ΧΩΡΟ

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ

ΕΞΙΣΩΣΗ ΣΦΑΙΡΑΣ. είναι όλοι ίσοι και επιπλέον δεν υπάρχουν οι όροι xy, yz, zx. Γενικά µια εξίσωση της µορφής: 0 + Β + Α.

Τεχνολογίες Πληροφορίας & Επικοινωνιών στην Εκπαίδευση (ΤΠΕ-Ε)

Π Α Ν Ο Ρ Α Μ Α Κ Ω Ν Ι Κ Ω Ν Τ Ο Μ Ω Ν - (ΘΕΤΙΚΗ - ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ) Β ΛΥ Κ Ε Ι Ο Υ σελίδα 1 ΕΙΔΙΚΕΣ ΠΕΡΙΠΤΩΣΕΙΣ C 1

Περιέχει τα κεφάλαια: Στατικός Ηλεκτρισµός Συνεχές ηλεκτρικό ρεύµα Ηλεκτροµαγνητισµός Μηχανικές ταλαντώσεις

Η Διαδραστική Τηλεδιάσκεψη στο Σύγχρονο Σχολείο: Πλαίσιο Διδακτικού Σχεδιασμού

Εικονική πραγματικότητα και εκπαίδευση: Εκπαιδευτικά εικονικά περιβάλλοντα και κόσμοι

ΣΗΜΕΙΩΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Μέρος Δ. Καθ. Π. Κάπρος ΕΜΠ 2012

Τεχνολογία στην Εκπαίδευση Εισαγωγή. Χαρίκλεια Τσαλαπάτα 24/9/2012

Νέες τεχνολογίες. στην εκπαίδευση. ΜΑΡΙΑ Γ. ΧΑΤΖΟΠΟΥΛΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΣ ΠΕ02 M.Ed. ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ

ΕΛΑΣΤΙΚΟΤΗΤΑ. ε = = Η ελαστικότητα ζήτησης

ΑΥΤΟΤΕΛΕΙΣ ΔΙΔΑΚΤΙΚΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ

Εικονικά Περιβάλλοντα Μάθησης για Παιδιά με Αυτισμό: Επισκόπηση Πεδίου και Προτάσεις Σχεδιασμού

Μεταπτυχιακή Διπλωματική Εργασία. Κ. Αλεξανδρής Αν. Καθηγητής, ΤΕΦΑΑ, ΑΠΘ

1) Ηλεκτρικό πεδίο φορτισμένου φύλλου απείρων διαστάσεων

[Ολοκληρωτική μορφή του νόμου του Gauss στο κενό ή τον αέρα]

Επανέλεγχος ηλεκτρικής εγκατάστασης

Μοντέλο και Πιλοτική Έρευνα Αξιολόγησης του Πληροφοριακού Συστήματος «Ψηφιακό Σχολείο»

Νόμος του Gauss 1. Ηλεκτρική Ροή ( πλήθος δυναμικών γραμμών). είναι διάνυσμα μέτρου Α και κατεύθυνσης κάθετης στην επιφάνεια. Στην γενική περίπτωση:

Εννοιολογική χαρτογράφηση. Τ. Α. Μικρόπουλος

Εισαγωγή στο παιδαγωγικό πλαίσιο της τεχνολογικά υποστηριζόμενης ενσώματης μάθησης στην ειδική και στην ενιαία εκπαίδευση

Αντεστραμμένη Διδασκαλία (flipped classroom) και Τεχνητή Νοημοσύνη (Α.Ι.) στην εκπαίδευση

Η ΔΥΝΑΜΙΚΗ ΤΗΣ ΟΜΑΔΑΣ ΝΙΚΟΛΑΟΣ ΡΕΛΛΟΣ

Επικοινωνιών στην Εκπαίδευση. Τεχνολογίες Πληροφορίας & (ΤΠΕ-Ε)

Τίτλος μαθήματος: Παιδιά με ειδικές ανάγκες: Διδασκαλία και μάθηση

Τίτλος Εργασίας Εκπαιδευτικού Σεναρίου

Εκπαιδευτική Ρομποτική: Το παράδειγμα του αυτόματου συστήματος διαχείρισης νερού

6 η ΕΡΓΑΣΙΑ. Ημερομηνία Παράδοσης: 1/7/2007

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

Μαθηματι ά ατεύθυνσης

Εκµάθηση προµαθηµατικών εννοιών για ΑµεΑ στο φάσµα του Αυτισµού µε το λογισµικό LT125-ThinkingMind

ΔΙΑΤΑΡΑΧΗ ΑΥΤΙΣΤΙΚΟΥ ΦΑΣΜΑΤΟΣ: Βασικε ς πληροφορι ες

Χρήση Νέων Τεχνολογιών στην Εκπαίδευση και την Κατάρτιση Ηλεκτρονική Μάθηση Χαράλαμπος Βρασίδας

19 & 20 Μαΐου 2018, Τεχνόπολη Δήμου Αθηναίων Βασίλειος Σ. Βερύκιος

T.E.I. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ

ΜΑΘΗΤΕΣ ΜΕ ΧΡΟΝΙΑ ΝΟΣΗΜΑΤΑ ΚΑΙ Η ΔΙΑΜΟΡΦΩΣΗ ΤΩΝ ΚΟΙΝΩΝΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΤΗΣ ΣΥΝΕΚΠΑΙΔΕΥΣΗΣ ΣΤΟ ΕΛΛΗΝΙΚΟ ΣΧΟΛΕΙΟ

Η Βουλή των Αντιπροσώπων ψηφίζει ως ακολούθως:

Συνοπτική Παρουσίαση Σεναρίου

Μάθηµα Γραµµές Μεταφοράς Κυµατοδηγοί & Οπτικές Ίνες Καθ. Θωµάς Σφηκόπουλος Κυµατοδηγοί - Μάθηµα 9o

Σχολική Μουσική Εκπαίδευση: αρχές, στόχοι, δραστηριότητες. Ζωή Διονυσίου

ΚΕΦΑΛΑΙΟ 12 Ο ΣΤΟΙΧΕΙΑ ΓΕΩΜΕΤΡΙΑΣ ΤΟΥ ΧΩΡΟΥ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ

2. ΑΡΙΘΜΗΤΙΚΗ ΕΥΡΕΣΗ ΡΙΖΩΝ ΜΗ

Εφαρμογές Εξ Αποστάσεως Εκπαίδευσης στην Πρωτοβάθμια Εκπαίδευση. Ευαγγελία Μανούσου Εκπαιδευτικός, Υποψήφια διδάκτωρ στο Ανοικτό Πανεπιστήμιο

ΛΕΙΤΟΥΡΓΙΚΟΤΗΤΑΣ ΑΤΟΜΩΝ ΜΕ ΒΑΡΙΑ ΝΟΗΤΙΚΗ ΥΣΤΕΡΗΣΗ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΣΥΜΠΕΡΙΦΟΡΑΣ ΠΟΥ ΜΕΝΟΥΝ ΣΕ ΟΙΚΟΤΡΟΦΕΙΟ ΣΤΗΝ ΚΟΙΝΟΤΗΤΑ.

Εφαρµογή Συστήµατος ιαχείρισης Περιεχοµένου Μάθησης για το Μάθηµα ΤΠΕ- Πληροφορική στο Γυµνάσιο

Διάλεξη 6: Εξ Αποστάσεως Εκπαίδευση μέσω Τηλεδιάσκεψης σε Περιβάλλον Δημοτικού Σχολείου

160 Επιστημών Εκπαίδευσης στην Προσχολική Ηλικία Θράκης (Αλεξανδρούπολη)

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

Οι Γνώσεις των Παιδαγωγών Προσχολικής Εκπαίδευσης, Σχετικά με τα Χαρακτηριστικά του Αυτισμού, και η Σημασία Αυτών.

Η ΑΥΞΗΣΗ ΤΗΣ ΛΕΙΤΟΥΡΓΙΚΟΤΗΤΑΣ ΣΕ ΑΤΟΜΑ ΜΕ ΝΟΗΤΙΚΗ ΥΣΤΕΡΗΣΗ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΣΥΜΠΕΡΙΦΟΡΑΣ: ΜΙΑ ΕΡΕΥΝΑ ΔΡΑΣΗΣ. Γεωργία Γκαντώνα¹ & Νικόλαος Παρίτσης²

x όπου Ε είναι η ολική ενέργεια ανά µονάδα µάζας και Η είναι η ολική ενθαλπία για τις οποίες ισχύει

Η διδασκαλία της θεωρίας της εξέλιξης στη δευτεροβάθμια εκπαίδευση

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 18 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ

"Η ΕΚΠΑΙΔΕΥΤΙΚΗ ΡΟΜΠΟΤΙΚΗ ΣΑΝ ΠΡΟΠΤΥΧΙΑΚΟ ΜΑΘΗΜΑ ΣΕ ΦΟΙΤΗΤΕΣ ΤΟΥ Π.Τ.Δ.Ε ΣΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ".

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 3 Ευθεία - Επίπεδο ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ/

Η Μηχανική Μάθηση στο Σχολείο: Μια Προσέγγιση για την Εισαγωγή της Ενισχυτικής Μάθησης στην Τάξη

«Βιωματικό εργαστήριο: Μια μέλισσα στην τάξη μας»

αριθμητή και παρονομαστή επί γ + δi. Οι γνωστές αλγεβρικές ταυτότητες ισχύουν όπως και στους πραγματικούς.

ΕΝΟΤΗΤΑ Β.2.1. Συμμετρία ως προς άξονα

Φωτεινή Πολυχρόνη Επίκουρη Καθηγήτρια Πανεπιστήμιο Αθηνών Γιώτα Δημητροπούλου Λέκτορας Πανεπιστήμιο Ιωαννίνων

Φροντιστήριο 2 ο : Εισαγωγή στον διανυσµατικό λογισµό

ΕΚΠΑΙΔΕΥΣΗ ΓΙΑ ΤΟ ΠΕΡΙΒΑΛΛΟΝ & ΤΗΝ ΑΕΙΦΟΡΙΑ

Προσβάσιμο υλικό για μαθητές με αυτισμό

Κοινωνιο-γνωστικές παράμετροι της σχολικής ζωής

RAMCIP Ρομποτικός οικιακός βοηθός για ηλικιωμένους με ΗΝΔ

Why We All Need an AIDS Vaccine? : Overcome the Challenges of Developing an AIDS Vaccine in Japan

«Εκπαιδευτική Ρομποτική σε Σχολικό Περιβάλλον»

Α' Εξάμηνο. Β' Εξάμηνο ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΚΑΙ ΚΟΙΝΩΝΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2019 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2019

Μεταγνωστικές δεξιότητες στα πλαίσια ανάπτυξης συνθετικών εργασιών

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Α ΒΑΘΜΟΥ

Οικονοµετρία Ι..Σηµειώσεις ικ. Τσερκέζου.

Γνωστικά εργαλεία, ψηφιακές τεχνολογίες, εκπαίδευση και κατάρτιση

Διάγραμμα Μαθήματος. Σελίδα1 5

ΦΥΣΙΚΑ Ε & Στ ΣΤΕΛΙΟΣ ΚΡΑΣΣΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ

Το πρόγραμμα PETALL. Πανευρωπαϊκές Δραστηριότητες για την Εκμάθηση Γλωσσών Πρόταση διεξαγωγής σεμιναρίου σε εθνικό επίπεδο.

ΠΡΟΣΑΡΜΟΣΤΙΚΑ ΠΕΡΙΒΑΛΛΟΝΤΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΜΑΘΗΣΗΣ ΝΟUS, ΙΝΣΤΙΤΟΥΤΟ ΨΗΦΙΑΚΗΣ ΜΑΘΗΣΗΣ & ΕΠΙΚΟΙΝΩΝΙΑΣ, ΧΑΤΖΑΡΑ ΚΩΝΣΤΑΝΤΙΝΑ

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ Ι ΑΚΤΙΚΗ ΠΡΑΞΗ

Σύγχρονος χορός: Ιστορία, εκπαίδευση, σύνθεση και χορογραφία

Τροχιές μάθησης. learning trajectories. Διδάσκων: Κωνσταντίνος Π. Χρήστου. Παιδαγωγικό Τµήµα Νηπιαγωγών. επ. Κωνσταντίνος Π.

ΔΙΔΑΣΚΑΛΙΑ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΘΕΣΗΣ ΣΕ ΤΕΤΡΑΓΩΝΙΣΜΕΝΟ ΧΑΡΤΙ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΩΝ ΠΕΡΙΠΑΤΗΤΩΝ ΕΔΑΦΟΥΣ (BEE-BOT ΚΑΙ PRO-BOT) ΣΤΗ Β ΔΗΜΟΤΙΚΟΥ Μπλούχου Στεφανία

Οι στάσεις των εκπαιδευτικών Δημοτικής Εκπαίδευσης προς το μάθημα των μαθηματικών. Αννίβα Ευρυδίκη Ανοικτό Πανεπιστήμιο Κύπρου

ΡΕΥΜΑΤΑ, ΝΟΜΟΣ ΤΟΥ OHM

Σχεδιάζοντας Διαδραστικά Εκπαιδευτικά Παιχνίδια Βασισµένα στο Kinect για Παιδιά µε Δυσπραξία. Σ. Ρετάλης, Μ. Μπολουδάκης,

710 -Μάθηση - Απόδοση. Κινητικής Συμπεριφοράς: Προετοιμασία

Θέµατα αξιολόγησης εκπαιδευτικού λογισµικού

Οπτικές Δεξιότητες για το σχολείο

«STORI» Stages of Recovery Instrument. Andresen, R., Caputi, P., & Oades, L., 2006 (μτφ. Ζήνδρος Ι., Μήλιου Α. & Παπανικολοπούλου Π.

Πολιτιστικό Πρόγραμμα. «Μαθητικό Διαδικτυακό Ραδιόφωνο» Σχ. έτος Υπεύθυνος Εκπαιδευτικός: Μπακόπουλος Νικόλαος ΠΕ19

Χρήση Υπολογιστή στο Σπίτι από Έφηβους Μαθητές και Μαθήτριες

ΠΡΟΣ: Οι Υπουργοί Εσωτερικών, Αποκέντρωσης και Ηλεκτρονικής Διακυβέρνησης Παιδείας, Δια Βίου Μάθησης και Θρησκευμάτων

Άξονες περιγραφής σεναρίου για το ανοικτό θέμα του κλάδου ΠΕ02

Οι εννοιολογικοί χάρτες και οι εφαρμογές τους στη διδασκαλία με τη βοήθεια της τεχνολογίας

Υπολογισμός γεωστροφικών ρευμάτων με τη χρήση δεδομένων από CTD. Σύγκριση με αποτελέσματα από A.D.C.P. & Drifters.

6.3 Η ΣΥΝΑΡΤΗΣΗ f(x) = αx + β

ΝΗΠΙΑΓΩΓΕΙΟ ΚΟΙΝΩΝΙΚΗΣ ΜΕΡΙΜΝΑΣ ΑΓΙΩΝ ΟΜΟΛΟΓΗΤΩΝ

Διάγραμμα Μαθήματος. Κωδικός Μαθήματος Τίτλος Μαθήματος Πιστωτικές Μονάδες ECTS EDUG-552 Εφαρμογές της Τεχνολογίας στην Ειδική Εκπαίδευση

Transcript:

Η πίδαση της κοινωνικής διάστασης των ομπότ στη σχολική πίδοση Νικόλαος Φαχαντίδης 1, Τιανταφυλλίδου Πολυξένη 2 nfaxanti@uowm.gr, jennypg30@yahoo.gr 1 Τμήμα Μηχανικών Πληοφοικής και Τηλπικοινωνιών, Παν. Δυτ. Μακ. 2 Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδυσης, Παν. Δυτ. Μακ. Πίληψη Στην παούσα γασία διυνάται η πίδοση μαθητών και μαθητιών της Γ τάξης δημοτικού σχολίου, στη δημιουγία κιμένου σ συγκκιμένο γνωστικό αντικίμνο, μτά από μια πωτότυπη κπαιδυτική παέμβαση, στην οποία «συμμτίχ» και ένα ομπότ. Η γασία βασίζται σ έυνς σχτικά μ τα Ρομπότ Κοινωνικής Αωγής (Socially Assistive Robots) και μλτά την πίδαση νός ομπότ στην κοινωνική διάσταση της τάξης και τις συνέπις στην ποσπάθια και πιμέλια των μαθητών. Στο ομπότ δόθηκ κατάλληλη μοφή και λιτουγίς, ώστ να ντάσσται στην νότητα του μαθήματος. Η ίδια διδακτική νότητα παγματοποιήθηκ σ τέσσα τμήματα, μ διαφοτικό βαθμό συμμτοχής του ομπότ. Σ όλα τα τμήματα ζητήθηκ η ανάπτυξη γαπτού κιμένου, σχτικού μ την νότητα. Τα γαπτά των μαθητών ξτάστηκαν ως πος την οθογαφία, το πιχόμνο, την έκφαση και τη μοφή. Σύμφωνα μ την παατήηση και τις απόψις των μαθητών, η αλληλπίδαση μ το ομπότ πηάζι τη διάθση και την ποσπάθιά τους, νώ νδιαφέον ύημα θωίται η συσχέτιση και μ την ποιότητα των γαπτών, που δημιούγησαν οι μαθητές. Λέξις κλιδιά: κπαιδυτική ομποτική, ομποτική κοινωνικής αωγής, αλληλπίδαση ανθώπου ομπότ, socially assistive robot, educational robot Εισαγωγή Στο πλαίσιο της κπαιδυτικής τχνολογίας ντάσσται και η χήση του ομπότ, ως μέσο υποστήιξης πιβαλλόντων ανακαλυπτικής και διυνητικής μάθησης. Η Ρομποτική Κοινωνικής Αωγής (ΡΚΑ) (Socially Assistive Robotics) ίναι πόσφατος κλάδος έυνας, μ αντικίμνο μλέτης όχι τη φυσική παφή του ανθώπου μ τα ομπότ, αλλά την νίσχυση κοινωνικών δξιοτήτων, στάσων και γνώσων του ανθώπου μέσα από κατάλληλη συνύπαξη/αλληλπίδαση μ τα ομπότ. Ο όος ΡΚΑ, αφοά τομέα της Ρομποτικής Κοινωνικής Αλληλπίδασης και ισήχθη (Feil Seifer & Mataric, 2005) για να πιγάψι φαμογές, στις οποίς η κοινωνική αλληλπίδαση μ το ομπότ στοχύι στην πίτυξη συγκκιμένων στόχων, όπως κοινωνικές δξιότητς για άτομα μ αναπτυξιακές διατααχές Αυτισμού ή κινητικές δξιότητς για άτομα μ κινητικά ποβλήματα λόγω γκφαλικού. Πέα από τις βασικές δυνατότητς της κίνησης και της αυτόνομης δάσης νός ομπότ, το πδίο της ΡΚΑ έχι πικντωθί στη χήση της φυσικής υλοποίησης του ομπότ για την πικοινωνία και την αλληλπίδαση μ τους χήστς μ έναν κοινωνικό και υχάιστο τόπο. Έτσι, η ΡΚΑ, κτός των άλλων, στοχύι στην παοχή βοήθιας στους χήστς μέσω, κυίως, της κοινωνικής αλληλπίδασης μ αυτούς και όχι τόσο μέσω της φυσικής. Η μλέτη της αλληλπίδασης ανθώπου-ομπότ ίναι μια πιοχή έυνας, η οποία συγκντώνι ένα υύ φάσμα πιστημών, συμπιλαμβανομένης της ομποτικής, της ιατικής, των κοινωνικών και γνωστικών πιστημών και των νυοπιστημών (Tapus & Mataric, 2006). Η ΡΚΑ μποί να συμβάλι όχι μόνο στη βλτίωση, αλλά και στην ανάκαμψη, σ παιδιά μ βαιές νυολογικές αναπηίς, σ άτομα μ νοητικές αναπηίς και αναπτυξιακές και κοινωνικές διατααχές. Σύμφωνα μ τους Tapus και Mataric (2006) πολλές υνητικές Π. Αναστασιάδης, Ν. Ζαάνης, Β. Οικονομίδης & Μ. Καλογιαννάκης, (Επιμ.), Πακτικά 9 ου Πανλλήνιου Συνδίου μ Διθνή Συμμτοχή «Τχνολογίς της Πληοφοίας & Επικοινωνιών στην Εκπαίδυση». Πανπιστήμιο Κήτης, Ρέθυμνο, 3-5 Οκτωβίου 2014.

ΤΠΕ στην Εκπαίδυση 461 ομάδς έχουν ξτάσι την απόκιση στα ομπότ παιδιών μ αναπτυξιακές διατααχές Αυτιστικού φάσματος. Οι μλέτς αυτές νισχύουν την άποψη ότι τα ομπότ παάγουν κίνητα και δέσμυση στα παιδιά μ τα οποία συναναστέφονται, συμπιλαμβανομένων και των παιδιών που δίχνουν αποθυμία να συνγαστούν μ τους ανθώπους θαπυτές (Scassellati, Admoni & Matarić, 2012; Werry & Dautenhahn, 2007). Υπάχουν, πίσης, μλέτς μ αντικίμνο την αλληλπίδαση ανθώπου ομπότ και των πιπτώσών της σ τυπικούς νήλικς (Tapus, Mataric & Scassellati, 2007). Αξίζι να σημιωθί ότι οι έυνς σχτικά μ την κοινωνική αλληλπίδαση μταξύ τυπικών μαθητών και ομπότ ίναι λιγότς, νώ κάποις από αυτές αφοούν τηλχιιζόμνα ομπότ σ μαθήματα ξ αποστάσως (Jeonghye, 2012), τα οποία υποστηίζουν την τηλπαουσία του κπαιδυτικού. Τέλος, έχι διαπιστωθί ότι οι άνθωποι ποικίζουν μ ποθέσις, στόχους, συναισθήματα και ποσωπικότητα ακόμη και τις απλούστς μηχανές μ αληθοφανή κίνηση ή μοφή (Reeves & Nass, 1998). Κατά συνέπια, η δημιουγία κάποιου ίδους δσμού και πλαισίου συνύπαξης συνιστά βασικό μέσο για να πιστί ο χήστης να ανταποκιθί στο ομπότ και να αλληλπιδάσι μαζί του (Kiesler & Goetz, 2002). Η φυσική παουσία του ομπότ και η ύπαξη νός κοινού πλαισίου συνύπαξης μ το χήστη ίναι σημαντικοί παάγοντς για τη δημιουγία μιας χονικά κτταμένης σχέσης αλληλπίδασης. Μοφολογικά και λιτουγικά χαακτηιστικά του ομπότ, όπως το σώμα, η δξιότητα αλληλπίδασης μ ανθώπινο ποσανατολισμό, η υλοποίηση κατάλληλης κοινωνικής συμπιφοάς και η στίαση στον χήστη ίναι στοιχία πιθυμητά στο να τον βοηθήσι να πιτύχι συγκκιμένους στόχους (Tapus, Matarić & Scassellati, 2007). Στόχος της γασίας ίναι η διύνηση της δυνατότητας ένταξης του ομπότ σ τυπική τάξη, ως οντότητα κοινωνικής αωγής για τους μαθητές, μ στόχο τη βλτίωση της στάσης και της συμμτοχής τους στη μαθησιακή διαδικασία, τόσο ως πος τη διάθση, όσο και ως πος την ποσπάθια και πιμέλια. Επίσης, διυνάται η πίδασή του στην ανάπτυξη γνώσων και δξιοτήτων των μαθητών, σ σχέση μ τους στόχους συγκκιμένης διδακτικής νότητας (Ιστοία, Γλώσσας). Οι πααπάνω τομίς διυνήθηκαν μέσα από τα αποτλέσματα της δάσης στους τομίς πιχόμνο, έκφαση, οθογαφία και καλλιγαφία. Σχδίαση και κατασκυή του ομπότ Για τη σχδίαση και κατασκυή του ομπότ λήφθησαν υπόψη παάμτοι που καθοίζονται από την Επικοινωνία Ανθώπου-Ρομπότ (Human-Robot Interaction) (Dautenhahn, 2007), καθώς και από τις ανάγκς της κπαιδυτικής διαδικασίας. Μ στόχο να ανταποκίνται το ομπότ όχι μόνο στις απαιτήσις της ΡΚΑ, αλλά και στις διδακτικές ανάγκς του μαθήματος, πιλέχθηκ να έχι τη μοφή και τις λιτουγίς οντότητας η οποία να αποτλί και αντικίμνο της διδακτικής νότητας. Η δάση αποφασίστηκ να αποτλί τμήμα μιας τυπικής διδακτικής νότητας και όχι μιας υύτης διαδικασίας, όπως η Ευέλικτη Ζώνη. Επίσης, να συνάδι μ το αναπτυξιακό στάδιο των μαθητών και το αναλυτικό πόγαμμα (παγματοποίηση στο πλαίσιο σχολικής τάξης) και να δικαιολογίται η νισχυμένη διδακτική δάση (η διδακτική νότητα να παουσιάζι διδακτικές δυσκολίς). Το δίγμα παιδιών που πόκιτο να πλαισιώσι την έυνά μας ήταν μαθητές και μαθήτις της Γ τάξης δημοτικού σχολίου. Για να καλύψουμ λοιπόν τα πααπάνω κιτήια πιλέξαμ ένα κφάλαιο της Μυθολογίας και, συγκκιμένα, για τον γίγαντα Τάλω. Η σχδίαση πικντώθηκ στο πώς θα μποούσ ένα ομπότ αφνός να αναπααστήσι τη λιτουγία του μυθικού γίγαντα, αφτέου να αλληλπιδάσι μ τους μαθητές και τις

462 9 ο Πανλλήνιο Συνέδιο μ Διθνή Συμμτοχή μαθήτις. Επίσης λάβαμ υπόψη τις αντιλήψις και πααστάσις των παιδιών για μια ομποτική οντότητα αχαίου πολμιστή. Ο κομός του Τάλω κατασκυάστηκ από σωλήνα από ανοξίδωτο ατσάλι. Επιδή θα ήταν υπβολικά δύσκολο να κατασκυάσουμ λιτουγικά πόδια, υιοθτήσαμ την κίνηση μ όδς, οι οποίς όμως θα έππ να μη φαίνονται και να δίνται η ντύπωση του βηματισμού. Έτσι η τοχήλατη βάση κατασκυάστηκ χαμηλή και ποσαμόστηκ στο σωτικό του σωλήνα, χωίς να ίναι οατές οι όδς. Στο κάτω μέος ποσαμόστηκ το «καφί» που συγκατούσ το υγό λιτουγίας του Τάλω. Το πάνω τμήμα στου σώματος, ίχ τη μοφή πολμιστή μ πικφαλαία, ασπίδα και δόυ, όπως στις πααστάσις σ αμφοίς και αγάλματα. Κατασκυάστηκ από φλιζόλ, το οποίο ξωτικά μοφοποιήθηκ από φύλλα φλλού και βάφτηκ μ χάλκινο χώμα, που παέπμπ στο χώμα του χάλκινου γίγαντα. Για να καλυφθί το κάτω μέος, χησιμοποιήθηκ ύφασμα σ μοφή χλαμύδας. Η ικαστική κατασκυή παγματοποιήθηκ μ τέτοιο τόπο ώστ να ίναι λαφιά και να μην πιβαύνται η κίνηση. Εικόνα 1. Ο Τάλως (αιστά), πάνω στο χάτη της Κήτης (κέντο) και σ δάση όπου οι μαθητές ποσπαθούν να αφαιέσουν το καφί από το ομπότ/μόνο βάση (δξιά) Για τον πογαμματισμό των κινήσων του ομπότ λάβαμ υπόψη τις πααμέτους χωικής αλληλπίδασης των ΡΚΑ (Koay et al., 2007; Browser, 2009). Σύμφωνα μ το σνάιο της δάσης, στο ομπότ νσωματώθηκαν αισθητής και πογαμματίστηκ ώστ: Να μποί να κινίται αυτόνομα (πιπολί), πάνω στην πιφάνια της Κήτης (στο πάτωμα, χατόνι μ το σχήμα της Κήτης, μήκους 2,5 μ.). Να ανιχνύι την παουσία αντικιμένου μτωπικά (μόνο μποστά του) σ απόσταση έως 1 μ. και να δίνι ηχητικό μήνυμα. Να παουσιάζι την νέγια «πιπολία-πόπτυση» μ σχτική μφατική κίνηση πίβλψης. Να δίχνι ότι ίναι νγό μ ηχητικό και οπτικό σήμα. Να ανιχνύι την αφαίση του καφιού και όταν συμβί να «πθαίνι» μ σχτικό ηχητικό, οπτικό σήμα και κίνηση. Δίγμα, Μθοδολογία, Υλοποίηση Το δίγμα μας ήταν 80 μαθητές της Γ τάξης Δημοτικού από σχολίο της Θσσαλονίκης. Από αυτούς οι 43 ήταν αγόια και οι 37 κοίτσια. Όλοι οι μαθητές και οι μαθήτις ίχαν

ΤΠΕ στην Εκπαίδυση 463 ηλικία 9 χονών. Δημιουγήθηκαν τέσσις ομάδς, βάση των τμημάτων της τάξης (Γ1: 20 μαθητές, Γ2: 21, Γ3: 22, και Γ4: 17), τα οποία λέχθησαν και θωήθηκαν ισάξια, βάση των ποηγούμνων πιδόσων των μαθητών στα γνωστικά αντικίμνα της έυνας, νώ κατά τη διξαγωγή της δάσης διαπιστώθηκ ότι δν υπήχαν διαφοές των ομάδων ως πος τις ποϋπάχουσς γνώσις για την νότητα. Κάθ ομάδα παγματοποίησ διαφοτική δάση, μ κοινό σημίο την αχική μλέτη του σχτικού κιμένου από το σχολικό βιβλίο. Οι μαθητές του Γ3 μτά την ανάγνωση του κιμένου, πξγάστηκαν το κίμνο, δηλαδή διάβασαν το κίμνο και στη συνέχια ακολούθησ μια συζήτηση σχτικά μ αυτό. Στους μαθητές που συμμτίχαν σ αυτή τη δάση, παουσιάστηκ απλά το ομπότ, αλλά δν αλληλπιδάσαν μ αυτό. Η δάση αυτή στην ποία της έυνας θα ονομάζται «Επξγασία κιμένου». Οι μαθητές του Γ2 μτά την ανάγνωση, δαματοποίησαν ομαδικά το κίμνο. Δουλύοντας σ ομάδς τα παιδιά μοιάστηκαν τους όλους (Τάλως, Ιάσονας, Μήδια, Αφηγητής) και στη συνέχια παγματοποιήθηκ η δαματοποίηση στην τάξη. Στους μαθητές που συμμτίχαν σ αυτή τη δάση, παουσιάστηκ απλά το ομπότ, αλλά δν αλληλπιδάσαν μ αυτό. Η δάση αυτή στην ποία της έυνας θα ονομάζται «Δαματοποίηση». Οι μαθητές του Γ4 μτά την ανάγνωση, συμμτίχαν στη δάση μ το ομπότ-τάλω. Ο Τάλως πιπολούσ πάνω στην Κήτη (χάτης στο πάτωμα). Τα παιδιά έππ να πλησιάσουν τον Τάλω, χωίς να τους «δι» και να αφαιέσουν το καφί από τη βάση του πίσω μέους του. Τότ ο Τάλως «πέθαιν» και το έδιχν μ κατάλληλη κίνηση και ηχητικό/οπτικό μήνυμα. Σ πίπτωση που ο Τάλως ντόπιζ το μαθητή, το έδιχν μ ένα ηχητικό μήνυμα, που σήμαιν ότι ο παίκτης έχι χάσι. Η δάση αυτή στην ποία της έυνας θα ονομάζται «Κούκλα». Οι μαθητές του Γ1 παγματοποίησαν την ίδια δάση μ το Γ4, μ τη διαφοά ότι χησιμοποιήθηκ μόνο το τχνολογικό τμήμα του ομπότ (αφαιέθηκ η ικαστική κατασκυή σώμα-ασπίδα-δόυ-χλαμύδα), δηλαδή ίχ τη μοφή κυλινδικής μταλλικής κατασκυής μ μφανίς τους αυτοματισμούς Η δάση αυτή στην ποία της έυνας θα ονομάζται «Μηχατονική» (έλλιψη χαακτηιστικών ανθώπινης μφάνισης). Να σημιωθί ότι στις δάσις «Μηχατονική» και «Κούκλα» τα παιδιά αλληλπιδάσαν μ το ομπότ και πέαν της δάσης, νώ στις δάσις «Δαματοποίηση» και «Επξγασία κιμένου» τα παιδιά δν αλληλπιδάσαν μ το ομπότ (έγιν μόνο παουσίαση). Στη συνέχια, από κοινού σ όλα τα τμήματα, μοιάστηκ ωτηματολόγιο/φύλλο ασκήσων, μ τέσσις ωτήσις ανοιχτού τύπου που αφοούσαν κυίως την κατανόηση της νότητας. Οι ωτήσις ήταν: «Τι ήταν ο Τάλως;», «Ποιος κατασκύασ τον Τάλω;», «Τι δυνατότητς ίχ ο Τάλως;», «Τι θα ωτούσς τον Τάλω;». Το ωτηματολόγιο μοιάστηκ δύο φοές, μ την πισήμανση ότι το ένα θα αξιολογηθί από τη δασκάλα της τάξης και το άλλο από το ομπότ. Έτσι, ποέκυψαν δύο καταστάσις ς: «δασκάλα» και «ομπότ». Για να αντισταθμιστί η νδχόμνη πίδαση της «ωίμανσης» των παιδιών στην πανάληψη του ωτηματολογίου (Cohen & Manion, 1997), η σιά διανομής των ωτηματολογίων παγματοποιήθηκ μ τυχαία ναλλαγή στους μαθητές κάθ τμήματος (στους μισούς πώτα το «δασκάλα», στους άλλους μισούς πώτα το «ομπότ»). Για την των απαντήσων των μαθητών και των μαθητιών χησιμοποιήθηκαν δύο βαθμολογητές, ώστ να μποί να γίνι έλγχος της αξιοπιστίας της βαθμολογία. Συμφωνήθηκ ότι στην πίπτωση που υπάξι σημαντική διαφοά στη βαθμολογία, οι δύο βαθμολογητές να πανξτάσουν τις αντίστοιχς απαντήσις και θα συναποφασίσουν για τον τλικό βαθμό. Στη συνέχια, καθμία από τις απαντήσις των

464 9 ο Πανλλήνιο Συνέδιο μ Διθνή Συμμτοχή παιδιών αξιολογήθηκ ως πος το Πιχόμνο, την Έκφαση, την Οθογαφία και τη Μοφή των γαμμάτων. Η πιλογή των αξόνων και τα αναλυτικά κιτήια ς σ κάθ άξονα, βασίστηκαν στις οδηγίς του Αναλυτικού Πογάμματος για την Γ δημοτικού σχολίου. Όλς οι απαντήσις αξιολογήθηκαν στα πααπάνω κιτήια μ άιστα το 10. Οι μαθητές βίσκονταν στο ίδιο γνωστικό πίπδο, καθώς οι βαθμοί όλων των παιδιών στη Β τάξη στη Γλώσσα ήταν «Άιστα Α». Η δάση μαζί μ την, διήκσ δύο διδακτικές ώς. Μ στόχο την παακολούθηση/, οι δάσις μαγνητοσκοπήθηκαν και φωτογαφήθηκαν, μ παάλληλη ύπαξη παατηητή (μέθοδος Τιγωνοποίησης). Τα δδομένα των αξιολογήσων αναλύθηκαν μ τη μέθοδο ANOVA. Πιο συγκκιμένα, τα δδομένα ποσαμόστηκαν στο μαθηματικό υπόδιγμα που πιλαμβάνι έναν παάγοντα «μταξύ» των υποκιμένων-μαθητών (παάγοντας «Δάση») και έναν παάγοντα «ντός» των υποκιμένων-μαθητών, μ παναλαμβανόμνς μτήσις (παάγοντας «Κατάσταση ς»). Για τις συγκίσις των μέσων όων χησιμοποιήθηκ το κιτήιο της Ελάχιστης Σημαντικής Διαφοάς (ΕΣΔ). Αποτλέσματα Στους Πίνακς 1 έως 5 παουσιάζονται τα αποτλέσματα της σύγκισης των βαθμολογιών των μαθητών στις τέσσις δάσις/τμήματα, σ κάθ άξονα ς. Οι μέσοι όοι που ακολουθούνται από διαφοτικό γάμμα διαφέουν στατιστικά σημαντικά (σ πίπδο σημαντικότητας p 0,05) σύμφωνα μ τα αποτλέσματα του κιτηίου της Ελάχιστης Σημαντικής Διαφοάς (ΕΣΔ-LSD). Στο πδίο «Σύνολο» ίναι η τιμή που υπολογίζται από το σύνολο των γαπτών, ανξατήτου δάσης. Πίνακας 1: Σύγκιση βαθμολογιών των μαθητών στην Οθογαφία δ Επξγασία κιμένου 9,33 a 1,13 9,35 a 1,34 ά Δαματοποίηση 8,71 b 1,26 9,12 a 0,80 σ Κούκλα 8,70 b 1,31 9,21 a 0,79 ι Μηχατονική 8,46 b 1,13 9,15 a 1,03 ς ΕΣΔ0,05 0,36 0,36 Σύνολο 8,82 b 1,23 9,21 a 1,02 ΕΣΔ0,05 0,18 * ΜΟ: Μέσος Όος, ΤΑ: Τυπική Απόκλιση, ΕΣΔ: Ελάχιστη Σημαντική Διαφοά για p 0,05. Ως πος την οθογαφία, ανξάτητα από δάση, όταν τα παιδιά φαντάζονταν ότι τα βαθμολογί το ομπότ, τα πήγαν καλύτα σ σχέση μ τη βαθμολογία τους από τη δασκάλα. Στη μόνη δάση που δν ανιχνύθηκ στατιστικά σημαντική διαφοά μταξύ των δύο καταστάσων ς ήταν η «Επξγασία κιμένου». Ως πος το πιχόμνο, δν παατηήθηκ στατιστικά σημαντική διαφοά μταξύ των δύο καταστάσων ς ούτ συνολικά ούτ σ κατά δάση. Ως πος την έκφαση, ανξάτητα από δάση, όταν τα παιδιά φαντάζονταν ότι τα βαθμολογί το ομπότ, πέτυχαν μγαλύτη βαθμολογία σ σχέση μ τη βαθμολογία τους από τη δασκάλα. Η μόνη δάση όπου παατηήθηκ στατιστικά σημαντική διαφοά μταξύ των δύο καταστάσων ς ήταν η δάση «Μηχατονική».

ΤΠΕ στην Εκπαίδυση 465 Πίνακας 2: Σύγκιση βαθμολογιών των μαθητών στο Πιχόμνο δ Επξγασία κιμένου 8,58 a 1,21 8,83 a 2,88 ά Δαματοποίηση 8,05 a 1,20 8,38 a 1,48 σ Κούκλα 8,35 a 1,28 8,32 a 1,26 ι Ρομπότ 7,01 a 0,83 7,43 a 1,09 ς ΕΣΔ0,05 0,98 0,98 Σύνολο 8,00 a 1,27 8,25 a 1,91 ΕΣΔ0,05 0,40 Πίνακας 3: Σύγκιση βαθμολογιών των μαθητών στην Έκφαση δ Επξγασία κιμένου 9,13 a 1,09 8,90 a 1,60 ά Δαματοποίηση 8,32 a 0,96 8,70 a 1,12 σ Κούκλα 8,47 a 0,85 8,60 a 0,82 ι Μηχατονική 8,03 b 1,00 8,56 a 0,72 ς ΕΣΔ0,05 0,51 0,51 Σύνολο 8,50 b 1,05 8,70 a 1,70 ΕΣΔ0,05 0,20 Πίνακας 4: Σύγκιση βαθμολογιών των μαθητών στη Μοφή Γαμμάτων δ Επξγασία κιμένου 9,61 a 1,00 9,44 a 1,29 ά Δαματοποίηση 9,12 a 1,06 9,50 a 0,88 σ Κούκλα 9,04 a 0,99 9,18 a 0,94 ι Μηχατονική 8,76 b 1,31 9,51 a 0,70 ς ΕΣΔ0,05 0,66 0,66 Σύνολο 9,15 b 1,12 9,42 a 0,98 ΕΣΔ0,05 0,18 Ως πος τη μοφή γαμμάτων, ανξάτητα από δάση, όταν τα παιδιά φαντάζονταν ότι τα βαθμολογί το ομπότ, τα πήγαν καλύτα σ σχέση μ τη βαθμολογία τους από τη δασκάλα. Όπως και στην πίπτωση της έκφασης, η μόνη δάση όπου παατηήθηκ στατιστικά σημαντική διαφοά μταξύ των δύο καταστάσων ς ήταν η δάση «Μηχατονική». Στη συνολική βαθμολογία, στη σύγκιση μταξύ των δύο βαθμολογιών (της ίδιας δάσης), μόνο η δάση «Επξγασία κιμένου» δν παουσίασ στατιστικά σημαντική διαφοά, νώ οι υπόλοιπς παουσιάζουν μγαλύτη βαθμολογία στην ξέταση ομπότ, μ στατιστικά σημαντική διαφοά. Στη σύγκιση των βαθμολογιών μταξύ των δάσων, όταν οι μαθητές θωούν ότι το γαπτό τους θα το αξιολογήσι το ομπότ, η βαθμολογία ίναι μγαλύτη στη δάση «Επξγασία κιμένου», η οποία διαφοοποιίται.

466 9 ο Πανλλήνιο Συνέδιο μ Διθνή Συμμτοχή Πίνακας 5: Σύγκιση συνολικών βαθμολογιών των μαθητών (Οθογαφία+Πιχόμνο+Εκφαση+Μοφή) δ Επξγασία κιμένου 36,65 a 3,92 36,52 a 6,23 ά Δαματοποίηση 34,20 b 3,51 35,70 a 3,23 σ Κούκλα 34,57 b 3,41 35,31 a 3,10 ι Μηχατονική 32,26 b 2,36 34,65 a 2,09 ς ΕΣΔ0,05 1,50 1,50 Σύνολο 34,47 b 3,67 35,58 a 4,05 ΕΣΔ0,05 0,76 στατιστικά σημαντικά από τη δάση «Μηχατονική», όχι όμως από τις δάσις «Δαματοποίηση» και «Κούκλα». Όταν το γαπτό το αξιολογί δασκάλα, πάλι στη δάση «Επξγασία κιμένου» οι μαθητές παουσίασαν την υψηλότη συνολική βαθμολογία, η οποία τώα διαφοοποιίται στατιστικά σημαντικά από όλς τις υπόλοιπς δάσις. Συζήτηση - Συμπάσματα Μλτώντας τα αποτλέσματα ς των γαπτών, βλέπουμ ότι η δάση «Επξγασία κιμένου» διαχωίζται από τις υπόλοιπς, μιας και ίναι η μόνη στην οποία δν παουσιάστηκ στατιστικά σημαντική διαφοά μταξύ των βαθμολογιών δασκάλας και ομπότ. Επίσης, συγκίνοντας τις βαθμολογίς μταξύ δάσων (τις τιμές στήλης στους Πίνακς), παουσιάζι σχδόν πάντα στατιστικά σημαντική διαφοά και έχι τη μέγιστη τιμή. Η δάση «Επξγασία κιμένου» ίχ τη μοφή που οι μαθητές γνωίζουν και αντιμτωπίζουν σ καθημινή βάση και σ όλη τη διάκιά της, ήταν ήσυχοι και συγκντωμένοι στο θέμα του κιμένου. Η μόνη παφή που ίχαν μ το ομπότ ήταν η παουσίαση του Τάλω. Η δάσις «Δαματοποίηση» και «Κούκλα» παουσιάζουν παόμοια ικόνα. Έχουν υψηλότη βαθμολογία στην από ομπότ (μ μόνη στατιστικά σημαντική διαφοά κατά τη συνολική βαθμολογία). Κοινό στοιχίο των δύο δάσων ίναι ο χαακτήας θατικού παιχνιδιού μ ανθώπινς μοφές (μαθητές ή/και κούκλα). Διαφοοποιούνται όμως στην παφή μ το ομπότ. Οι μαθητές της «Δαματοποίησης» απλώς ίδαν τον Τάλω, νώ οι στην «Κούκλα» οι μαθητές αναπαάστησαν την ξόντωση μέσω παιχνιδιού μ το ανθωποιδές ομπότ. Η δάση «Μηχατονική» παουσιάζι πάντα μγαλύτη βαθμολογία στην μ ομπότ μ στατιστικά σημαντική διαφοά και μ τη μικότη τυπική απόκλιση. Οι μαθητές παγματοποίησαν την ίδια δάση μ την «Κούκλα», αλλά η μοφή του ομπότ ήταν καθαά τχνολογικής διάστασης και αναγνώισαν σ αυτή τους μηχανισμούς κίνησης, τα αισθητήια και τον υπολογιστή που ήλγχ τη κατασκυή (οπτικοποίηση της νοημοσύνης). Η βέλτιστη βαθμολογία που παουσιάζι η «Επξγασία κιμένου», μποί να αιτιολογηθί από τον τύπο της δάσης (πιπλέον γασία των μαθητών στο γαπτό κίμνο της νότητας), την ομοιότητα του τύπου γασίας και ξέτασης (γαπτό κίμνο) και την οικία για τους μαθητές μέθοδο γασίας. Η διαφοοποίηση ως πος τις δύο μοφές βαθμολόγησης, δηλαδή ότι ίναι η δάση η οποία και στους τέσσις άξονς ς δν υπάχι στατιστικά σημαντική διαφοά μταξύ της βαθμολογίας δασκάλας και ομπότ, μποί να μηνυτί ίτ ως αποτέλσμα υψηλού βαθμού γνωστικής πίτυξης κατά το

ΤΠΕ στην Εκπαίδυση 467 μάθημα οπότ η πίδαση της μοφής του αξιολογητή ίναι μικότη, ίτ ως αποτέλσμα του φαινομένου Uncanny Valley (Pollick, 2010). Μ το φαινόμνο Uncanny Valley μποί να μηνυτί και η διαφοοποίηση μταξύ των δάσων «Δαματοποίηση», «Κούκλα» και «Μηχατονική». Η αποδοχή νός τχνουγήματος ως νοήμων οντότητα αυξάνται, όσο πισσότο η μφάνισή του ομοιάζι πος μια υπάχουσα (π.χ. άνθωπο), μ μόνη ξαίση την ύπαξη μια καμπής αποδοχής, της Uncanny Valley, όπου οι διαφοές ίναι μικές αλλά όχι ανπαίσθητς ώστ να πααπλανήσουν τις αισθήσις. Λαμβάνοντας αυτό υπόψη, η δάση «Μηχατονική» διαφοοποιίται γιατί η μφάνιση του ομπότ δν αποσκοπί στην πέμβαση μέσω των αισθήσων, αλλά μέσω της λογικής, δηλαδή η οντότητα έχι την γκυότητα της τχνολογίας και οι μαθητές μποούν να τη θωήσουν υφυή. Αντίθτα, στις δάσις «Δαματοποίηση» και «Κούκλα» η μοφή του ομπότ πλησιάζι την ανθώπινη, μ αισθητές όμως διαφοές, νώ ταυτόχονα πααπέμπι στην μφάνιση και τη λιτουγία των παιχνιδιών μ τα οποία ίναι ξοικιωμένα οι μαθητές, οι οποίοι ποέχονται από οικογνιακό πιβάλλον υψηλό γνωστικά και κοινωνικά. Η έυνα για την κοινωνική πίδαση του ομπότ στα τυπικά παιδιά βίσκται ακόμα σ πώιμο στάδιο. Μέσα από την έυνα αυτή διαφαίνται ότι υπό κατάλληλς ποϋποθέσις, η φυσική ή η νοή μπλοκή νός ομπότ σ μια κπαιδυτική διαδικασία δύναται να πιδάσι κοινωνικά, ως ένα βαθμό, τα τυπικά παιδιά μ στόχο την υποστήιξη της γνωστικής διαδικασίας. Αναφοές Browser, Z. (2009). The Sociable Robot for disabilities. Retrieved 8 June 2012 from http://zacbrowser.blogspot.gr/2009/03/sociable-robot-for-disabilities.html Cohen, L. & Manion, L. (1997). Μθοδολογία κπαιδυτικής έυνας. (Μτφ.: Χ. Μητσοπούλου και Μ. Φιλοπούλου). Αθήνα: Έκφαση. Dautenhahn, K (2007). Methodology and themes of human-robot interaction: a growing research field, International Journal of Advanced Robotic Systems, 4(1), pp. 103-108. Jeonghye, Η. (2012), Emerging Technologies Robot Assisted Language Learning, Language Learning & Technology, 16(3), 1 9. Feil-Seifer, D. & Mataric M. (2005). Defining Socially Assistive Robotics, In Proceedings of the International Conference on Rehabilitation Robotics, Chicago, Jun Jul. Kiesler, S. & Goetz, J. (2002). Mental Models and Cooperation with Robotic Assistants, Proceedings, Conference on Human Factors in Computing Systems (CHI), (pp. 576-577). Minneapolis, Minnesota. Koay, K.L., Syrdal, D.S., Walters, M.L. & Dautenhahn, K. (2007). Living with Robots: Investigating the Habituation Effect in Partici-pants Preferences during a Longitudinal Human-Robot Interaction. IEEE RO-MAN (Jeju Island, Korea, 26-29 August 2007), (pp. 564-569). Pollick, E. F., (2010), In Search of the Uncanny Valley. User Centric Media, Social Informatics and Telecommunications Engineering, 40, 69-78. Reeves B. & Nass C. (1998). The Media Equation: How People Treat Computers, Television, and New Media like Real People and Places. Cambridge University Press, New York, NY. Scassellati B., Admoni H. & Matarić M. (2012). Robots for Use in Autism Research. Annual Review of Biomedical Engineering, 14, 275 294. Tapus A. & Matarić M. (2006). Towards Socially Assistive Robotics. International Journal of the Robotics Society of Japan, 24(5). Tapus A., Mataric M. & Scassellati B. (2007). The grand challenges in socially assistive robotics. IEEE Robotics and Automation Magazine, 4(1), 35-42. Werry, I. & Dautenhahn, K. (2007). Human-robot interaction as a model for autism therapy: an experimental study with children with autism, Modeling Biology: Structures, Behaviors, Evolution. Laubichler, M. D. & Muller, G. B. (eds.). MIT Press, (pp. 283-299) (Vienna Series in Theoretical Biology).