Ενότητα 2: Έλεγχοι Υποθέσεων Διαστήματα Εμπιστοσύνης

Σχετικά έγγραφα
ΤΕΙ Αθήνας Μεθοδολογία της έρευνας και Ιατρική στατιστική

Ενότητα 3: Ανάλυση Διακύμανσης κατά ένα παράγοντα One-Way ANOVA

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία. Απλή Παλινδρόμηση. Έλεγχοι υποθέσεων και διαστήματα εμπιστοσύνης των συντελεστών. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης

Ενότητα 1: Πληθυσμός και δείγμα Είδη Μεταβλητών - Περιγραφική στατιστική

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Στατιστική Ι. Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Γ. Πειραματισμός - Βιομετρία

ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ

Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Αναλυτική Στατιστική

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού

Στατιστική Επιχειρήσεων ΙΙ

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Εφαρμοσμένη Στατιστική

Εισαγωγή στην Ανάλυση Δεδομένων

Το τυπικό σφάλμα του μέσου (standard error of mean) ενός δείγματος

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση

Ιατρικά Μαθηματικά & Βιοστατιστική

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 7. Στατιστικός έλεγχος υποθέσεων

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

Σκοπός του μαθήματος. Έλεγχος μηδενικής υπόθεσης OR-RR. Έλεγχος μηδενικής υπόθεσης. Σφάλαμα τύπου Ι -Σφάλμα τύπου ΙΙ 20/4/2013

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

Έλεγχοι Υποθέσεων. Χρήση της Στατιστικής. Η λογική του Ελέγχου Υπόθεσης Ο Έλεγχος Υπόθεσης 7-2

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής

Δειγματοληπτικές κατανομές

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 22 Μαΐου /32

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

Στατιστική Ι. Ενότητα 3: Στατιστική Ι (3/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017

Μέρος IV. Ελεγχοι Υποθέσεων (Hypothesis Testing)

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων

Οικονομετρία Ι. Ενότητα 5: Ανάλυση της Διακύμανσης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΚΕΦΑΛΑΙΟ 17

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων

Μαθηματικά Και Στατιστική Στη Βιολογία

Ενότητα 5 η : Επαγωγική Στατιστική ΙΙ Ανάλυση ποσοτικών δεδομένων. Δημήτριος Σταμοβλάσης Φιλοσοφίας Παιδαγωγικής

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική

Οικονομετρία Ι. Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40]

Κλωνάρης Στάθης. ΠΜΣ: Οργάνωση & Διοίκηση Επιχειρήσεων Τροφίμων και Γεωργίας

Εισόδημα Κατανάλωση

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Ασκήσεις Εξετάσεων. Μεταπτυχιακό Πρόγραμμα Σπουδών στη. Διοίκηση των Επιχειρήσεων

Έλεγχος υποθέσεων - Ισχύς και Μέγεθος είγματος Sample Size and Power. Γρηγόρης Χλουβεράκης, Ph.D. Αναπληρωτής Καθηγητής Πανεπιστήμιο Κρήτης

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων

Στατιστική. Ανάλυση ιασποράς με ένα Παράγοντα. One-Way Anova. 8.2 Προϋποθέσεις για την εφαρμογή της Ανάλυσης ιασποράς

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

Οικονομετρία Ι. Ενότητα 8: Κανονικότητα. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Έλεγχος Υποθέσεων (Hypothesis Testing)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο

Οικονομετρία. Απλή Παλινδρόμηση Βασικές έννοιες και τυχαίο σφάλμα. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης. Διδάσκων: Λαζαρίδης Παναγιώτης

Για το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x

Μεθοδολογία των επιστημών του Ανθρώπου : Στατιστική Εργαστήριο 6 :

Κεφάλαιο 11 Εισαγωγή στον Έλεγχο Υποθέσεων

Λίγα λόγια για τους συγγραφείς 16 Πρόλογος 17

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Έλεγχοι Υποθέσεων

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

Μέθοδοι Γεωργοοικονομικής & Κοινωνιολογικής Έρευνας

Έρευνα Μάρκετινγκ Ενότητα 4

5. Έλεγχοι Υποθέσεων

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο )

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 24/2/2017

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011

Εισαγωγή στην Εκτιμητική

Νοσηλευτική Σεμινάρια

Νοσηλευτική Σεμινάρια

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Οικονομετρία Ι. Ενότητα 2: Ανάλυση Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Περιπτώσεις που η στατιστική συνάρτηση ελέγχου είναι η Ζ: 1. Η σ είναι γνωστή και ο πληθυσμός κανονικός.

Μέθοδοι Γεωργοοικονομικής & Κοινωνιολογικής Έρευνας

Οικονομετρία. Πολυσυγγραμμικότητα. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης. Διδάσκων: Λαζαρίδης Παναγιώτης

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Διάλεξη 1 Βασικές έννοιες

ΑΣΚΗΣΕΙΣ ΔΙΑΣΤΗΜΑΤΩΝ ΕΜΠΙΣΤΟΣΥΝΗΣ. Άσκηση 1. Βρείτε δ/μα εμπιστοσύνης για τη μέση τιμή μ κανονικού πληθυσμού όταν n=20,

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Transcript:

ΕΘΝΙΚΟ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΙΑΤΡΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΦΑΡΜΟΣΜΕΝΗ ΝΕΥΡΟΑΝΑΤΟΜΙΑ» «Βιοστατιστική, Μεθοδολογία και Συγγραφή Επιστημονικής Μελέτης» Ενότητα 2: Έλεγχοι Υποθέσεων Διαστήματα Εμπιστοσύνης Δρ. Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων

Οι ερευνητικές υποθέσεις Στην έρευνα ελέγχουμε υποθέσεις, με βάση τα πραγματικά δεδομένα μας. o π.χ. ο μεγάλος χρόνος εισόδου στο Νοσοκομείο από την έναρξη των συμπτωμάτων, συσχετίζεται με αυξημένο κίνδυνο θανάτου; o Μια διατροφή πλούσια σε υδατάνθρακες συσχετίζεται με μειωμένο σωματικό βάρος; 1

Η διαδικασία που ακολουθείται για την λήψη τέτοιου είδους αποφάσεων ονομάζεται έλεγχος υποθέσεων. Η υπόθεση που θέλουμε να ελέγξουμε συμβολίζεται με Ηο και ονομάζεται μηδενική υπόθεση ενώ η εναλλακτική της υπόθεση συμβολίζεται με H 1. Σε κάθε έλεγχο είναι δυνατόν να πραγματοποιηθούν δύο ειδών σφάλματα: o Σφάλμα τύπου Ι: Απόρριψη της Ηο ενώ στην πραγματικότητα είναι αληθής. o Σφάλμα τύπου ΙΙ: Απόρριψη της H 1 (Αποδοχή της Ηο) ενώ στην πραγματικότητα η H 1 είναι αληθής. 2

Σφάλματα στη λήψη απόφασης Αποδοχή υπόθεσης Η ο από το δείγμα Απόρριψη υπόθεσης Η O από το δείγμα Υπόθεση Ηο αληθής στον πληθυσμό Σφάλμα τύπου Ι Υπόθεση Ηο ψευδής στον πληθυσμό Σφάλμα τύπου ΙΙ Στατιστική ισχύς 3

Έλεγχοι Υποθέσεων Ηο αληθής στον Πληθυσμό Σφάλμα Τύπου-Ι Περιοχή απόρριψης Ηο Σωστή απόφαση Σωστή απόφαση Ηο ψευδής στον Πληθυσμό Περιοχή μηαπόρριψης Ηο Σφάλμα Τύπου-ΙΙ Στατιστική Ισχύς Τιμές στατιστικού κριτηρίου 4

α=p(σφάλμα τύπου Ι)=P(Απόρριψη της Ηο ενώ στην πραγματικότητα είναι αληθής) β=p(σφάλμα τύπου ΙΙ)=P(Αποδοχή της Ηο ενώ στην πραγματικότητα η H 1 είναι αληθής) Η πιθανότητα γ= 1-β ονομάζεται ισχύς του ελέγχου και εκφράζει το ποσοστό των «σωστών» απορρίψεων της Ηο. Το α ονομάζεται επίπεδο σημαντικότητας. Ερμηνεία του α: Εάν για παράδειγμα σε έναν έλεγχο επιλέξουμε επίπεδο σημαντικότητας α=0.05 και απορρίψουμε την υπόθεση, αυτό σημαίνει ότι σε 100 όμοιες περιπτώσεις, είναι δυνατό έχουμε κάνει λάθος και να απορρίψουμε την Ηο ενώ είναι αληθής, μόνο σε 5. Σε μια τέτοια περίπτωση λέμε ότι η υπόθεση απορρίπτεται σε επίπεδο σημαντικότητας 0.05 5

Statistical Tests Confidence Intervals Κριτήριο για την αποδοχή ή όχι της Ηο είναι το p-value. Το μικρότερο επίπεδο σημαντικότητας για το οποίο απορρίπτεται η Ηο ονομάζεται p-value. Απορρίπτεται η Ηο αν η τιμή του p-value είναι μικρή. Συγκεκριμένα, απορρίπτεται η Ηο αν η τιμή του p-value είναι μικρότερη του α για αυτό το επίπεδο σημαντικότητας. Όσο μειώνεται το α τόσο δυσκολεύει η απόφαση της απόρριψης. 6

Τι δεν είναι το p-value Το p-value δεν είναι η πιθανότητα να επαληθευθεί η μηδενική υπόθεση o και αυτό γιατί οι υποθέσεις δεν εκφράζονται με πιθανότητες στην στατιστική. 7

Τι δεν είναι το p-value Το p-value δεν είναι η πιθανότητα να απορριφθεί λανθασμένα η μηδενική υπόθεση. o Το να απορριφθεί λανθασμένα η μηδενική υπόθεση είναι το σφάλμα Τύπου Ι. Αυτό το σφάλμα είναι μια εκδοχή της καλούμενης «σφάλμα του εισαγγελέα» ( prosecutor's fallacy ) όπου κρίνει αθώο τον κατηγορούμενο ενώ έχει διαπράξει το έγκλημα. Το σφάλμα Τύπου Ι είναι στενά συνυφασμένο με το p-value, αφού απορρίπτουμε τη μηδενική υπόθεση όταν το p-value είναι μικρότερο από κάποιο προκαθορισμένο όριο α (επίπεδο σημαντικότητας) του σφάλματος τύπου-ι. 8

p-value και μέγεθος του δείγματος o Το p-value επηρεάζεται ισχυρά από το μέγεθος του δείγματος. Συγκεκριμένα Υπάρχει αντίστροφη συσχέτιση μεταξύ του μεγέθους δείγματος και του p-value. 9

p-value p-value και μέγεθος του δείγματος για μια δεδομένη συσχέτιση 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 0 100 200 300 400 500 600 700 800 900 1000 Μέγεθος δείγματος σε κάθε ομάδα 10

Το μέγεθος του δείγματος Το επαρκές μέγεθος του δείγματος είναι μεγίστης σημασίας για την αξιοπιστία της έρευνας. 11

Οι «αρχές» της δειγματοληψίας Πρέπει όμως να ληφθεί υπόψη ότι σχετικά μεγάλο δείγμα συνεπάγεται και μεγάλο κόστος o χωρίς αυτό να σημαίνει και απαραίτητα αξιόπιστα αποτελέσματα, ενώ πολύ μικρό δείγμα μπορεί να οδηγήσει σε συστηματικό σφάλμα και μεροληπτικές αποφάσεις για τον πληθυσμό. 12

Το μέγεθος του δείγματος καθορίζεται από: Το επίπεδο στατιστικής σημαντικότητας των ελέγχων, το οποίο συμβολίζεται με α και στο χώρο των επιστημών έχει καθοριστεί να είναι < 0,01 ή < 0,05. Το μέγεθος της αναζητούμενης σχέσης, π.χ. πόσο μεγάλη θα πρέπει να είναι η διαφορά στα επίπεδα ολικής χοληστερόλης μεταξύ της θεραπευτικής προσέγγισης Α και της θεραπευτικής προσέγγισης Β έτσι ώστε να θεωρείται κλινικά αξιόλογη. Τη στατιστική ισχύ των ελέγχων, η οποία συμβολίζεται με γ και στο χώρο των επιστημών της Υγείας έχει καθοριστεί να είναι > 0,80 ή > 0,90. Το επίπεδο ακρίβειας στις μετρήσεις, το οποίο εξαρτάται και από την συνείδηση των ερευνητών που διεξάγουν την έρευνα. Το μέγεθος του πληθυσμού αναφοράς. Τη μεταβλητότητα στα χαρακτηριστικά του πληθυσμού, η οποία αν είναι μεγάλη συνεπάγεται και ανάλογη αύξηση του μεγέθους του δείγματος. Το διαθέσιμο χρηματικό ποσό για την έρευνα. 13

Τα διαστήματα εμπιστοσύνης αποτελούν έναν εναλλακτικό τρόπο εκτίμησης παραμέτρων. Εκτιμάμε μία παράμετρο, με ένα διάστημα που έχει άκρα τυχαίες μεταβλητές. Το διάστημα θα έχει την μορφή: P[L θ U] =γ Ένα τέτοιο διάστημα ονομάζεται διάστημα εμπιστοσύνης με βαθμό εμπιστοσύνης γ. Ο αριθμός γ=1-α εκφράζει την ακρίβεια με την οποία θέλουμε να γίνει η εκτίμηση, ενώ ο α εκφράζει τον βαθμό ανεκτικότητας ώστε το διάστημα να μην περιέχει την πραγματική τιμή της παραμέτρου. Για παράδειγμα αν γ=0.95 αναμένεται σε 100 δείγματα της μορφής [L,U] τα 95 να περιλαμβάνουν την σωστή τιμή. 14

Παράδειγμα Μετρήθηκε το κάλιο του ορού σε 9 υγιή άτομα και σε 4 άτομα που έπασχαν από μία νόσο. Στα υγιή άτομα βρέθηκε μέση τιμή 4 m Eq/L και σταθερή απόκλιση 0.9 m Eq/L, ενώ στους ασθενείς βρέθηκε μέση τιμή 5 m Eq/L και σταθερή απόκλιση 0.8 m Eq/L. Υπάρχει διαφορά των μέσων τιμών του καλίου του ορού στις δύο αυτές ομάδες; 15

Έλεγχοι υποθέσεων και δ.ε. για διαφορά μέσων τιμών σε ανεξάρτητους πληθυσμούς σε μικρά δείγματα και με ισότητα διασπορών (σ 1 =σ 2 =σ): H 0 : μ 1 =μ 2 Η 1 : μ1>μ2 R { t tn n a} 1 2 2; H 0 : μ 1 =μ 2 Η 1 : μ1<μ2 R { t tn n a} 1 2 2; H 0 : μ 1 =μ 2 Η 1 : μ1 μ2 R { t t } a n1 n2 2; 2 ( x x s t, x x s t ), όπου 1 1 1 1 1 2 n1 n2 a 1 2 n1 n2 a n1 n2 2; n1 n2 2; 2 2 s ( n 1) s ( n 1) s n n 2 2 2 2 1 1 2 2 1 2. Το κριτήριο t δίνεται από τον τύπο: t s x x 1 2 1 1 n n 1 2 16

17

Όπως διαπιστώνουμε δεχόμαστε την μηδενική υπόθεση Ηο : μ1=μ2 έναντι της εναλλακτικής H 1 : μ1 μ2, δηλαδή δεχόμαστε ότι δεν υπάρχει διαφορά στις τιμές του καλίου του ορού στις δύο αυτές ομάδες. Συγκεκριμένα: Null Hypothesis: difference between means = 0,0 Alternative: not equal Computed t statistic = -1,9043 P-Value = 0,0833412 Do not reject the null hypothesis for alpha = 0,05 (Equal variances assumed) Δεχόμαστε την μηδενική υπόθεση Ηο για επίπεδο σημαντικότητας α=0.05, διότι η τιμή του p-value είναι 0.08334 > 0.05. Επίσης το στατιστικό λογισμικό μας υπολογίζει και την τιμή του t κριτηρίου ίση με -1.9043. Σημειώνεται ότι αναφερόμαστε σε κανονικούς πληθυσμούς με άγνωστες και ίσες διασπορές (σ1=σ2=σ). 18

Statistical Tests Confidence Intervals Statistical tests I Όπως διαπιστώνουμε επίσης το 95% διάστημα εμπιστοσύνης για την διαφορά των μέσων τιμών μ1-μ2 του καλίου του ορού στις δύο αυτές ομάδες είναι: [-2,1558;0,155798] 19

Statistical Tests Confidence Intervals Statistical tests I Παράδειγμα: Σε τέσσερα άτομα με αυξημένες τιμές των τριγλυκεριδίων του ορού (mg/dl) χορηγήθηκε για ένα μήνα φάρμακο που πιστεύεται ότι ελαττώνει τα επίπεδα των τριγλυκεριδίων. Οι τιμές των τριγλυκεριδίων στα τέσσερα αυτά άτομα πριν και μετά τη χορήγηση του φαρμάκου ήταν: Άτομο Πριν τη χορήγηση Μετά τη χορήγηση 1 o 180 120 2 o 200 220 3 o 240 130 4 o 230 160 Βρείτε ένα 95% δ.ε. για την διαφορά των μέσων μ1-μ2 στα επίπεδα των τριγλυκεριδίων πριν και μετά την χορήγηση. Ελαττώνει τα επίπεδα των τριγλυκεριδίων το φάρμακο αυτό; (Άσκηση 65 σελ. 16 του Βιβλίου Ασκήσεων Βιοστατιστικής Α. Τζώνου & Κ. Κατσουγιάννη) 20

Statistical Tests Confidence Intervals Statistical tests I Έλεγχοι υποθέσεων και δ.ε. για παρατηρήσεις κατά ζεύγη: H 0 : μ 1 =μ 2 Η 1 : μ1>μ2 z R n t H 0 : μ 1 =μ 2 Η 1 : μ1<μ2 z { } { n 1; a} R n tn 1; a sz sz H 0 : μ 1 =μ 2 Η 1 : μ1 μ2 z R { n t } s z a n 1; 2 sz s ( z t, z t ), όπου z xi yi. n z a a n 1; n 1; 2 n 2 21

Statistical Tests Confidence Intervals Statistical tests I Όπως φαίνεται και στην παρακάτω εικόνα το 95% διάστημα εμπιστοσύνης για την διαφορά των μέσων στα επίπεδα τριγλικεριδίων πριν και μετά την χορήγηση είναι: 55,0 +/- 86,6694 = [-31,6694;141,669] 22

Statistical Tests Confidence Intervals Statistical tests I 23

Statistical Tests Confidence Intervals Statistical tests I Όπως παρατηρούμε παράγονται τα εξής συμπεράσματα: Null hypothesis: mean = 0,0 Alternative: greater than Computed t statistic = 2,01957 P-Value = 0,0683566 Do not reject the null hypothesis for alpha = 0,05. Δηλ. δεχόμαστε (δεν απορρίπτουμε) την μηδενική υπόθεση σε επίπεδο σημαντικότητας α=5% και συνεπώς το φάρμακο δεν ελαττώνει τα επίπεδα των τριγλυκεριδίων. Αυτό συμβαίνει διότι η τιμή του P είναι 0,068>0,05 και άρα δέχομαι την Ηο: μ1=μ2. Ταυτόχρονα υπολογίζεται και η τιμή του κριτηρίου t statistic ίση με 2,01957. 24

Τέλος Ενότητας

Σημειώματα

Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εμπορική Χρήση Παρόμοια Διανομή 4.0 [1] ή μεταγενέστερη, Διεθνής Έκδοση. [1] http://creativecommons.org/licenses/by-nc-sa/4.0/

Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους.