ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ

Σχετικά έγγραφα
ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ

ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ

Ηλίας Σκαρδανάς Μαθηματικός

α β α < β ν θετικός ακέραιος.

ταυτότητες διάταξη α 2 +β 2 = (α+β) 2-2αβ (α+β) 2 = α 2 +β 2 +2αβ (α+β) 3 = α 3 +β 3 +3α 2 β+3αβ 2 =α 3 +β 3 +3αβ(α+β) α 3 +β 3 = (α+β) 3-3αβ(α+β)

ΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ. ηµχ = ηµθ χ=2κπ+θ ή χ=2κπ+π-θ, κ Z συνχ = συνθ χ=2κπ+θ ή χ=2κπ-θ, κ Z εφχ = εφθ χ=κπ+θ, κ Z σφχ = σφθ χ=κπ+θ, κ Z

ΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ. ορισµοί. Ι ΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ (κεφ. 2 )

Ασκήσεις Τριγωνοµετρικοί Αριθµοί

Α. ΕΞΙΣΩΣΕΙΣ ΣΥΣΤΗΜΑΤΑ = Γ. β1 = β2

3 ΠΡΟΟΔΟΙ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

π.χ. 2, 3, π=3,14... Αναλογία λέγεται κάθε ισότητα κλασµάτων και έχουµε τις παρακάτω ιδιότητες : α = 4) β = δ και δ γ β

ΤΡΙΓΩΝΟΜΕΤΡΙΑ Α. Τριγωνοµ ετρικοί αριθµ οί οξείας γωνίας ορθογωνίου τριγώνου

Θεωρήματα και προτάσεις με τις αποδείξεις τους

ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΤΑΞΗΣ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2003 ΕΚΦΩΝΗΣΕΙΣ

Τριγωνομετρικός κύκλος Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜAΤΙΚΟΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

Ε. ΛΙΑΤΣΟΣ Μαθηµατικός 4

τα βιβλία των επιτυχιών

Ορισμοί των εννοιών Τύποι και ιδιότητες Βασική μεθοδολογία

1 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 2008

Μέτρηση του όγκου και του εμβαδού ορθών πρισμάτων Κανονική Πυραμίδα 1 Βάσης) (Απόστημα) 2 1 ό Βάσης) (Ύψος) 3

Β Γενική Τριγωνομετρία

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ταυτότητες. α 2 β 2 = (α β)(α + β) "διαφορά τετραγώνων" α 3 β 3 = (α β)(α 2 + αβ + β 2 ) "διαφορά κύβων"

1.0 Βασικές Έννοιες στην Τριγωνομετρία

Γ ΩΝΙΕΣ Π ΟΥ Σ ΥΝΔΕΟΝΤΑΙ Μ ΕΤΑΞΥ Τ ΟΥΣ

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 3ο Κεφάλαιο - Τριγωνομετρία - Βασικές τριγωνομετρικές ταυτότητες. , να βρεθούν

3. Να δειχτει οτι α α. Ποτε ισχυει το ισον; α, β θετικοι, να συγκρινεται τους αριθμους Α = α + β, Β = α β + αβ

Τριγωνομετρία. Αναγωγή στο 1ο τεταρτημόριο

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΑΛΓΕΒΡΑΣ... ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑ 1 Ο

Bbs. ΑΛΓΕΒΡΑ ΣΥΝΟΛΑ Σύνολο Φυσικών αριθμών: N = {0,1,2, } Σύνολο Ακέραιων αριθμών: Z = {,-2,-1,0,1,2, } Σύνολο Ρητών αριθμών: Q = {

ν παραγοντες 1 ( ) β β α β α α α γ + β γ = α+ γ γ

τα βιβλία των επιτυχιών

( ) ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ 2 = ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΤΑΞΗ : Β Λυκείου κατ. 1) Να βρεθεί το Π.Ο.

ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΛΛΟ ΕΠΑΝΑΛΗΨΗΣ 1


1.0 Βασικές Έννοιες στην Τριγωνομετρία

ΘΕΩΡΗΜΑΤΑ (των οποίων πρέπει να ξέρουμε & τις αποδείξεις) από το σχολικό βιβλίο της ΤΕΧΝΟΛΟΓΙΚΗΣ & ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ Λυκείου

Τριγωνομετρία ΓΙΩΡΓΟΣ ΚΑΡΙΠΙΔΗΣ 2 ΑΝΘΟΥΛΑ ΣΟΦΙΑΝΟΠΟΥΛΟΥ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΑΘΡΟΙΣΜΑΤΟΣ ΚΑΙ ΔΙΑΦΟΡΑΣ ΓΩΝΙΩΝ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΜΑΘΗΜΑΤΙΚΑ

Ηλίας Σκαρδανάς Μαθηματικός

Για να λύσουμε μια τριγωνομετρική εξίσωση θα πρέπει να την φέρουμε σε μια από τις παρακάτω μορφές: Μορφή Εξίσωσης Τύποι Λύσεων ημx = ημα

Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

ΑΛΓΕΒΡΑ Β Λυκείου ΑΣΚΗΣΕΙΣ. 2. Να υπολογίσετε την τιµή των παραστάσεων : α) συν π 18 συνπ 9 - ηµ π. 18 ηµπ 9. β) συν18 ο συν27 ο - ηµ18 ο ηµ27 ο

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΙΣΑΓΩΓΗ ΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ. ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΗΣ 2ου ΒΑΘΜΟΥ ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ

ΚΕΦΑΛΑΙΟ 3 ο ΘΕΩΡΙΑ. 3.1 Τριγωνομετρικοί Αριθμοί Γωνίας

1. Υπάρχουν κανονικά πολύγωνα των οποίων οι εξωτερικές γωνίες είναι αµβλείες ; Απάντηση Ναι. Είναι το ισόπλευρο τρίγωνο

Τριγωνομετρικοί αριθμοί παραπληρωματικών γωνιών

Px α x α x... α x α. Ο αριθμός κ λέγεται βαθμός

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΑΠΑΝΤΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΑΠΑΝΤΗΣΕΙΣ

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου

1 of 79 ΘΕΜΑ 2. Δίνεται η συνάρτηση f(x) = x 2 4x + 5, x R

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

Θέµατα Άλγεβρας Γενικής Παιδείας Β Λυκείου 2000

Επαναληπτικές Έννοιες

2 η δεκάδα θεµάτων επανάληψης

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2018 ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ. Επιτρεπόμενη διάρκεια γραπτού 2,5 ώρες (150 λεπτά).

ΜΙΓΑΔΙΚΟΙ 9o ΓΕΛ ΠΕΡΙΣΤΕΡΙΟΥ είναι τέλεια, να υπολογίσετε την τιμή της παράστασης: Α = (1 + i) v - (1 - i) v. 15. Αν z μιγαδικός και f (ν) = i

ΕΡΩΤΗΣΕΙΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ B ΤΑΞΗΣ

ΚΕΦΑΛΑΙΟ 1 Ο ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΤΥΠΟΛΟΓΙΟ - ΑΣΚΗΣΕΙΣ

ΜΑΡΙΑ ΓΚΟΥΝΤΑΡΟΠΟΥΛΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

Μαθηματικά Θετικής - Τεχνολογική Κατεύθυνσης

ΛΥΚΕΙΟ ΚΟΚΚΙΝΟΧΩΡΙΩΝ ΦΩΤΗ ΠΙΤΤΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ:

ΕΡΩΤΗΣΕΙΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ B ΤΑΞΗΣ

ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΤ/ΝΣΗΣ ΘΕΩΡΙΑ - ΑΠΟΔΕΙΞΕΙΣ

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

Περίληψη μαθημάτων Ι. ΣΥΝΑΡΤΗΣΕΙΣ. Με N θα συμβολίζουμε το σύνολο των φυσικών αριθμών, δηλ. N = {1, 2, 3, 4, }.

Θέµατα Εξετάσεων Άλγεβρας Β Λυκείου

Τ ρ α π ε ζ α Θ ε μ α τ ω ν

Ε 1. Διαφορικός λογισμός (Κανόνες παραγώγισης)

Άλγεβρα Β Λυκείου Επαναληπτικά θέματα ΟΕΦΕ α φάση

ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΑΛΓΕΒΡΑΣ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 7 ΔΕΚΕΜΒΡΙΟΥ 2014

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑ. 1.Να βρείτε τους αριθμούς: i)ημ ii)συν( ) ΛΥΣΗ i)διαιρώντας το 1125 με το 360 βρίσκω.

Web page: Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία

Π ρ ό λ ο γ ο ς. Το βιβλίο αυτό γράφτηκε με στόχο την πληρέστερη προετοιμασία των μαθητών μας.

α+ βi, όπου α, ii) Ο µιγαδικός α+ βi είναι ίσος µε το µηδέν αν και µόνο αν α= 0 και β = 0

Άλγεβρα Γενικής Παιδείας Β Λυκείου 2001

1. ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ ΑΝΑΓΩΓΗ ΣΤΟ 1 Ο ΤΕΤΑΡΤΗΜΟΡΙΟ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ

5.4 ΤΡΙΓΩΝΟΜΕΤΡΙΚΗ ΜΟΡΦΗ ΜΙΓΑΔΙΚΟΥ

ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

Τριγωνομετρικοί αριθμοί οξείας γωνίας. Τριγωνομετρικοί αριθμοί γωνίας. Τριγωνομετρικοί αριθμοί οποιασδήποτε γωνίας. . Τότε ορίζουμε: ί ά ά.

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΛΥΚΕΙΟ ΜΕΤΑΜΟΡΦΩΣΗΣ 2014 ΒΑΣΙΚΗ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ. Τριγωνομετρικοι αριθμοι οξειων γωνιων

Η θεωρία στα Μαθηματικά κατεύθυνσης

ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ Α - Β ΛΥΚΕΙΟΥ 1. ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ

Η Θεωρία σε 99 Ερωτήσεις

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ - ΠΑΡΑΤΗΡΗΣΕΙΣ ΚΑΙ ΜΕΘΟΔΕΥΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις

ΘΕΩΡΗΜΑ (Μέσης Τιμής) Έστω f: [α, β] R συνεχής και παραγωγίσιμη στο (α, β). Τότε υπάρχει ξ (α, β)

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.)

Θέµατα Άλγεβρας Γενικής Παιδείας Β Λυκείου 2000

Συνηµίτονο µιας οξείας γωνίας ορθογωνίου τριγώνου λέγεται:

Transcript:

ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ Στθερές. π = 03,459 6535 89793 3846 643... e = 0,788 884 59045 3536 087... e π = 3,4069 637 7969 006... π e =,4595 7783 6045 4734 75... e e = 5,546 44 7964 90... = 0,44 3563 73095 0488... 3 = 0,7305 08075 68877 935... 5 = 0,3606 79774 99789 6964... e = 0,6487 707 008 468... π = 0,7745 38609 0556 079 867... log = 00,300 99956 6398 95 37389... log3 = 00,477 547 966 4379 5079... loge = 00,4349 4489 035 8765... logπ = 00,4974 9876 9433 85435 683... ln = 00,6934 7805 59945 3094 73... ln3 = 0,0986 886 6809 6939 545... ln0 = 0,3058 5099 94045 6840 799... lnπ = 0,447 9886... Μθηµτική λογική. p q P q p p q p q p q p q ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ( p q) ( q p)

Σύολ. A B [ x A x B] A B [( x A x B) x B x A] [ A B x B x A] Α=Β [( A B) ( B A) ] A B { x x A x B}. Α Β {x : x Α x Β}. A-B {x A x B}. Α c U-A={x U x B}. A + B (A-B) (B-A). A = κι A =A, A. A A=Α κι A A=A, A. A U=Α κι Α U=U, Α. Α (Β Γ)=(Α Β) Γ κι Α (Β Γ)=(Α Β) Γ Α,Β,Γ Α Β=Β Α κι Α Β=Β Α, Α,Β Α (Β Γ)=(Α Β) (Α Γ), Α,Β,Γ Α (Β Γ)=(Α Β) (Α Γ), Α,Β,Γ Συµολισµοί κι ιδιότητές τους.!= 3... µε N * κι 0!=.! κ =,,κ N. κ!( κ)! + κ + = κ+,,κ N. κ+ x i =x +x +x 3 +...+x. i= λx i =λ x i i= i= (xi+ yi) = x i + y i i= x = x. i= i= i=

Αξιοσηµείωτες τυτότητες. (+) = ++. ( ) = +. (+) 3 = 3 +3 +3 + 3 = 3 + 3 +3(+). ( ) 3 = 3 3 +3 3 = 3 3 3( ). (++γ) = + +γ ++γ+γ. (++γ) 3 = 3 + 3 +γ 3 +3(+)(+γ)(γ+). (+)( )=. (x )(x )=x (+)x+. =( ) ( - + - + -3 +...+ - + - ), N *. + =(+) ( - - + -3... - + - ), N * =κ+ 3 + 3 +γ 3 3γ=(++γ) ( + +γ γ γ). 3 + 3 +γ 3 3γ= (++γ) [( ) +( γ) +(γ ) ]. (+) = κ=0 Χρήσιµες ισότητες. κ -κ x 0, x R. + κι +, R. + κι +, R. + +γ +γ+γ.,,γ R. (+) +, - R. (Bernoulli) Απόλυτη τιµή., 0 =, <0 0 R. = R. R. x = x= ή x=-. x ε -ε x ε. x ή x - ή x. =, R. =, R, R *. ± +,, R. κ 3

ευτεροάθµιο Τριώυµο. Τριώυµο π(x)=x +x+γ, 0. ικρίουσ = 4 γ. Ρίζες x, = ±. S=x +x = κι P=x x = γ. Αριθµητική Πρόοδος. Ορισµός + = +ω,=,,3,... ω: διφορά. Νιοστός όρος = +(-) ω, N *. Άθροισµ πρώτω όρω Σ = = ω + + ( ) : ριθµητικός µέσος τω,γ =+γ. Γεωµετρική Πρόοδος. Ορισµός + = λ,=,,3,... λ: λόγος. Νιοστός όρος = λ -, N *. Άθροισµ πρώτω όρω λ ( λ ) Σ = = λ λ λ λ= Άθροισµ άπειρω όρω ( λ <) Σ = λ : γεωµετρικός µέσος τω,γ = γ. Αρµοική Πρόοδος. Ορισµός ( + ) - =( ) - +ω. : ρµοικός µέσος τω,γ = γ +γ 4

Τριγωοµετρί. Τριγωοµετρικός κύκλος - Τριγωοµετρικοί ριθµοί γωίς. Γεικά. συω=οπ, ηµω=ορ, εφω= ΑΝ, σφω= ΒΣ. µ Μεττροπή µοάδω = =. 80 π 00 Πρόσηµο τριγωοµετρικώ ριθµώ Τετρτ ηµ συ εφ σφ ηµόριο ο + + + + ο + 3 ο + + 4 ο + Τριγωοµετρικοί ριθµοί σικώ τόξω. x 0 π/6 π/4 π/3 π/ π 3π/ π 0 30 45 60 90 80 70 360 Ηµx 0 / / 3 / 0-0 συx 3 / / / 0-0 Εφx 0 33 / 3 0 0 Σφx 3 33 / 0 0 Αγωγή στο πρώτο τετρτηµόριο. x -θ (π/)+θ (π/)-θ π+θ (3π/)+θ π+θ ηµx -ηµθ συθ συθ -ηµθ -συθ ηµθ συx συθ -ηµθ ηµθ -συθ ηµθ συθ εφx -εφθ -σφθ σφθ εφθ -σφθ εφθ σφx -σφθ -εφθ εφθ σφθ -εφθ σφθ 5

Τριγωοµετρί. ηµ x+συ x=. εφx= ηµx συx. σφx= συx ηµx. εφx σφx=. Βσικές τυτότητες. ηµ(+)=ηµ συ+συ ηµ. συ(+)=συ συ ηµ ηµ. εφ(+)= εφ+εφ εφ εφ σφ σφ σφ(+)= σφ+σφ ηµ( )=ηµ συ συ ηµ. συ( )=συ συ+ηµ ηµ. εφ εφ εφ( )= + εφ εφ σφ σφ+ σφ( )= σφ σφ ηµ=ηµ συ συ ηµ συ= συ ηµ εφ= εφ εφ σφ= σφ σφ ηµ= ± συ= ± εφ= ± 6 συ + συ συ +συ = εφ. + εφ = εφ +εφ = εφ εφ =± = ± εφ +εφ + εφ

ηµ3=3ηµ 4ηµ 3 συ3=4συ 3 3συ 3 3εφ εφ εφ3= 3εφ 3 σφ 3σφ σφ3= 3σφ ηµ συ=ηµ(+)+ηµ( ) συ συ=συ(+)+συ( ) ηµ ηµ=συ( ) συ(+) ηµ+ηµ= ηµ + συ ηµ ηµ= ηµ + συ συ+συ= συ + συ συ συ= ηµ + ηµ Τριγωοµετρί. εφα+εφβ+εφγ=εφα εφβ εφγ. ηµα+ηµβ+ηµγ=4συ Α συ Β συ Γ. συα+συβ+συγ=+4 ηµ Α ηµ Β ηµ Γ. Τυτότητες γι στοιχεί τριγώου. ηµα+ηµβ+ηµγ=4 ηµα ηµβ ηµγ συα+συβ+συγ= 4 συα συβ συγ. σφ Α +σφ Β +σφ Γ =σφ Α σφ Β σφ Γ σφα σφβ+σφβ σφγ+σφγ σφα=. εφ Α εφ Β +εφ Β εφ Γ +εφ Γ εφ Α =. γ = = = R. (Νόµος ηµιτόω.) ηµα ηµβ ηµγ = +γ γ συα, =γ + γ συβ, γ = + συγ (Νόµος συηµιτόω.) 7

Τριγωοµετρί. ηµx=ηµ x=κπ+ ή x=(κ+)π, κ Z. συx=συ x=κπ±, κ Z. εφx=εφ x=κπ+, κ Z. σφx=σφ x=κπ+, κ Z. Λογάριθµοι. log a (x y)= log a x+log a y, x>0, y>0. log a (x:y)= log a x log a y, x>0, y>0. log a (x )= log a x, x>0 κι N. logx=log 0 x. lnx=log e x log a x= log b x log a Συδυστική. b Τριγωοµετρικές εξισώσεις. Μετθέσεις τω στοιχείω : Μ =!. ιτάξεις τω µ στοιχείω σε θέσεις : µ = µ! (µ-)! ιτάξεις µε επάληψη τω µ στοιχείω σε θέσεις : Ε µ =µ.! Συδυσµοί τω στοιχείω ά κ : κ = κ!( κ)! Πιθότητες. P(A)= Ν(Α) Ν(Ω). 0 P(A). P(Ω)=. P( )=0. Α Β Ρ(Α) Ρ(Β) Ρ(Α Β)=Ρ(Α)+Ρ(Β) Ρ(Α Β). Ρ(Α )= Ρ(Α). Ρ(Α Β) Ρ(Β Α)=. Ρ(Α) 8

Γεωµετρί Θεωρήµτ διχοτόµω. Β = Γ ΕΒ ΕΓ = ΑΒ ΑΓ γ Β = + γ Γ= + γ γ ΒΕ= γ ΕΓ= γ Τ Ε κι λέγοτι ρµοικά συζυγή τω Β κι Γ. Τ Α,Β,Γ, κι λέγοτι ρµοική τετράδ. Γεωµετρί Μετρικές σχέσεις σε ορθογώι τρίγω. Τ τρίγω ΑΒΓ, ΒΑ κι ΑΓ είι όµοι. γ = Β κι = Γ. = +γ. (Πυθγόρειο Θεώρηµ.) υ =Β Γ. γ= υ. + = γ υ 9

Γεωµετρί. Μετρικές σχέσεις σε τυχίο τρίγωο. ΑΓ =ΑΒ +ΒΓ ΒΓ Β, η γωί B είι οξεί.. ΑΓ =ΑΒ +ΒΓ + ΒΓ Β, η γωί B είι µλεί.. γ + Β = τ ( τ ) ( τ ) ( τ γ) υ =. +γ = µ +. ( ο Θεώρηµ διµέσω.) +γ = Μ. µ + γ = 4 + + =. υ υ υ ρ γ. Γεωµετρί 360 ω = φ =80 ο ω λ = R R 4R λ + = R Κοικά πολύγω. Ε = λ R λ λ 3 =R 3 3 = R λ 4 = R 4 = R 3 λ 6 =R 6 = 0

Γεωµετρί. Εµδά - Όγκοι. Ορθογώιο. Ε= Πρλληλόγρµµο. Ε= υ Τρίγωο. Τρπέζιο. Ε= υ τ Ε= ( τ ) ( τ ) ( τ γ) Ε=τ ρ γ Ε= 4R Ε= + υ Κύκλος. Ε=πR Γ=πR

Κυκλικός τοµές - τόξο. Έλλειψη. S=θ R, θ κτίι. S= θ πr, θ µοίρες. 360 Ε= θr, θ κτίι. Ε= θ 360 πr, θ µοίρες. Ε=π. + Γ ( ) Πρίσµ. V=Ε υ. Πυρµίδ V= 3 E υ. Κύλιδρος. Ε π =πr υ. Ε ολ =πr(r+υ). V=πR υ.

Πλάγιος κύλιδρος V=πR υ. Κώος. V= 3 πr υ. Σφίρ. Ε=4 πr. V= 4 3 πr3. Κυκλικό τµήµ. Ε=πRυ. V= 3 πυ (3R-υ). 3

Αάλυση Ότ υπάρχου τ όρι τω συρτήσεω f κι g τότε ισχύου lim f ( x) = lim (f(x)+g(x))= lim f(x)+ lim g(x) x σ x σ x σ o lim[ f ( x) ] = 0 lim (f(x) g(x))= lim f(x) lim g(x) x σ x σ o lim( f ( x) ) = x σ lim (f(x) g(x))= lim f(x) lim g(x) x σ x σ x σ lim f ( x) = x σ f ( x) lim f ( x) 3 lim = < f ( x) < g( x) lim g( x) lim[ λ f ( x) ] = λ lim f ( x) lim f ( x) = lim f ( x) Όρι. Εφόσο ορίζοτι κλώς τ κλάσµτ.. Εφόσο ορίζοτι κλώς οι ρίζες. Αάλυση [ c ] = 0 [ x ] = [ x ] = x ρ ρ [ x ] = ρx x x [ e ] = e ln = [ x] [ x ] [ ηµ x] = συx [ συx] = ηµ x x εφ = συ x σφ = ηµ x [ x] Πράγωγοι. f f g = f f g = f g + f f f g f g = g g λ f = λ [ + g] = f + g [ ] g [ ] g [ ] f [ f ] f f = [ f ( g( x) )] = f ( g( x) ) g ( x) ή df ( g( x) ) df ( g( x) ) = dx dg( x) dg( x) dx 4

Αάλυση Ολοκληρώµτ. f ( x) dx : = lim f + κ f ( x) κ= dx = 0 [ f ( x) + g( x) ] dx = f ( x) dx + g( x) dx ( ) ( ) f x dx = f x dx λ f ( x) dx = λ f ( x) dx f ( x) dx f ( ) f ( ) = γ x f ( x) dx = f ( x) dx + f ( x) dx γ [ f ( t) dt] = f ( x) g( x ) min f ( ) f ( x) dx max f ( ) f ( t) f ( x) g( x) dx = [ f ( x) g( x) ] f ( x) g ( x) dx [ dt] = f g( x) g( ) f ( g( x) ) g ( x) dx = f ( y) dy f = f ( x) ( x) dx = f ( x) g ( ) x x f + c συ xdx = ηµx + c e dx = e + c dx = x + c ηµ xdx = συx c + dx = ln x + c x + x x dx = + c + ( ) g ( x) dx x x dx = εφx + c συ x dx = + c ln dx = σφx + c ηµ x 5