ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ Στθερές. π = 03,459 6535 89793 3846 643... e = 0,788 884 59045 3536 087... e π = 3,4069 637 7969 006... π e =,4595 7783 6045 4734 75... e e = 5,546 44 7964 90... = 0,44 3563 73095 0488... 3 = 0,7305 08075 68877 935... 5 = 0,3606 79774 99789 6964... e = 0,6487 707 008 468... π = 0,7745 38609 0556 079 867... log = 00,300 99956 6398 95 37389... log3 = 00,477 547 966 4379 5079... loge = 00,4349 4489 035 8765... logπ = 00,4974 9876 9433 85435 683... ln = 00,6934 7805 59945 3094 73... ln3 = 0,0986 886 6809 6939 545... ln0 = 0,3058 5099 94045 6840 799... lnπ = 0,447 9886... Μθηµτική λογική. p q P q p p q p q p q p q ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ( p q) ( q p)
Σύολ. A B [ x A x B] A B [( x A x B) x B x A] [ A B x B x A] Α=Β [( A B) ( B A) ] A B { x x A x B}. Α Β {x : x Α x Β}. A-B {x A x B}. Α c U-A={x U x B}. A + B (A-B) (B-A). A = κι A =A, A. A A=Α κι A A=A, A. A U=Α κι Α U=U, Α. Α (Β Γ)=(Α Β) Γ κι Α (Β Γ)=(Α Β) Γ Α,Β,Γ Α Β=Β Α κι Α Β=Β Α, Α,Β Α (Β Γ)=(Α Β) (Α Γ), Α,Β,Γ Α (Β Γ)=(Α Β) (Α Γ), Α,Β,Γ Συµολισµοί κι ιδιότητές τους.!= 3... µε N * κι 0!=.! κ =,,κ N. κ!( κ)! + κ + = κ+,,κ N. κ+ x i =x +x +x 3 +...+x. i= λx i =λ x i i= i= (xi+ yi) = x i + y i i= x = x. i= i= i=
Αξιοσηµείωτες τυτότητες. (+) = ++. ( ) = +. (+) 3 = 3 +3 +3 + 3 = 3 + 3 +3(+). ( ) 3 = 3 3 +3 3 = 3 3 3( ). (++γ) = + +γ ++γ+γ. (++γ) 3 = 3 + 3 +γ 3 +3(+)(+γ)(γ+). (+)( )=. (x )(x )=x (+)x+. =( ) ( - + - + -3 +...+ - + - ), N *. + =(+) ( - - + -3... - + - ), N * =κ+ 3 + 3 +γ 3 3γ=(++γ) ( + +γ γ γ). 3 + 3 +γ 3 3γ= (++γ) [( ) +( γ) +(γ ) ]. (+) = κ=0 Χρήσιµες ισότητες. κ -κ x 0, x R. + κι +, R. + κι +, R. + +γ +γ+γ.,,γ R. (+) +, - R. (Bernoulli) Απόλυτη τιµή., 0 =, <0 0 R. = R. R. x = x= ή x=-. x ε -ε x ε. x ή x - ή x. =, R. =, R, R *. ± +,, R. κ 3
ευτεροάθµιο Τριώυµο. Τριώυµο π(x)=x +x+γ, 0. ικρίουσ = 4 γ. Ρίζες x, = ±. S=x +x = κι P=x x = γ. Αριθµητική Πρόοδος. Ορισµός + = +ω,=,,3,... ω: διφορά. Νιοστός όρος = +(-) ω, N *. Άθροισµ πρώτω όρω Σ = = ω + + ( ) : ριθµητικός µέσος τω,γ =+γ. Γεωµετρική Πρόοδος. Ορισµός + = λ,=,,3,... λ: λόγος. Νιοστός όρος = λ -, N *. Άθροισµ πρώτω όρω λ ( λ ) Σ = = λ λ λ λ= Άθροισµ άπειρω όρω ( λ <) Σ = λ : γεωµετρικός µέσος τω,γ = γ. Αρµοική Πρόοδος. Ορισµός ( + ) - =( ) - +ω. : ρµοικός µέσος τω,γ = γ +γ 4
Τριγωοµετρί. Τριγωοµετρικός κύκλος - Τριγωοµετρικοί ριθµοί γωίς. Γεικά. συω=οπ, ηµω=ορ, εφω= ΑΝ, σφω= ΒΣ. µ Μεττροπή µοάδω = =. 80 π 00 Πρόσηµο τριγωοµετρικώ ριθµώ Τετρτ ηµ συ εφ σφ ηµόριο ο + + + + ο + 3 ο + + 4 ο + Τριγωοµετρικοί ριθµοί σικώ τόξω. x 0 π/6 π/4 π/3 π/ π 3π/ π 0 30 45 60 90 80 70 360 Ηµx 0 / / 3 / 0-0 συx 3 / / / 0-0 Εφx 0 33 / 3 0 0 Σφx 3 33 / 0 0 Αγωγή στο πρώτο τετρτηµόριο. x -θ (π/)+θ (π/)-θ π+θ (3π/)+θ π+θ ηµx -ηµθ συθ συθ -ηµθ -συθ ηµθ συx συθ -ηµθ ηµθ -συθ ηµθ συθ εφx -εφθ -σφθ σφθ εφθ -σφθ εφθ σφx -σφθ -εφθ εφθ σφθ -εφθ σφθ 5
Τριγωοµετρί. ηµ x+συ x=. εφx= ηµx συx. σφx= συx ηµx. εφx σφx=. Βσικές τυτότητες. ηµ(+)=ηµ συ+συ ηµ. συ(+)=συ συ ηµ ηµ. εφ(+)= εφ+εφ εφ εφ σφ σφ σφ(+)= σφ+σφ ηµ( )=ηµ συ συ ηµ. συ( )=συ συ+ηµ ηµ. εφ εφ εφ( )= + εφ εφ σφ σφ+ σφ( )= σφ σφ ηµ=ηµ συ συ ηµ συ= συ ηµ εφ= εφ εφ σφ= σφ σφ ηµ= ± συ= ± εφ= ± 6 συ + συ συ +συ = εφ. + εφ = εφ +εφ = εφ εφ =± = ± εφ +εφ + εφ
ηµ3=3ηµ 4ηµ 3 συ3=4συ 3 3συ 3 3εφ εφ εφ3= 3εφ 3 σφ 3σφ σφ3= 3σφ ηµ συ=ηµ(+)+ηµ( ) συ συ=συ(+)+συ( ) ηµ ηµ=συ( ) συ(+) ηµ+ηµ= ηµ + συ ηµ ηµ= ηµ + συ συ+συ= συ + συ συ συ= ηµ + ηµ Τριγωοµετρί. εφα+εφβ+εφγ=εφα εφβ εφγ. ηµα+ηµβ+ηµγ=4συ Α συ Β συ Γ. συα+συβ+συγ=+4 ηµ Α ηµ Β ηµ Γ. Τυτότητες γι στοιχεί τριγώου. ηµα+ηµβ+ηµγ=4 ηµα ηµβ ηµγ συα+συβ+συγ= 4 συα συβ συγ. σφ Α +σφ Β +σφ Γ =σφ Α σφ Β σφ Γ σφα σφβ+σφβ σφγ+σφγ σφα=. εφ Α εφ Β +εφ Β εφ Γ +εφ Γ εφ Α =. γ = = = R. (Νόµος ηµιτόω.) ηµα ηµβ ηµγ = +γ γ συα, =γ + γ συβ, γ = + συγ (Νόµος συηµιτόω.) 7
Τριγωοµετρί. ηµx=ηµ x=κπ+ ή x=(κ+)π, κ Z. συx=συ x=κπ±, κ Z. εφx=εφ x=κπ+, κ Z. σφx=σφ x=κπ+, κ Z. Λογάριθµοι. log a (x y)= log a x+log a y, x>0, y>0. log a (x:y)= log a x log a y, x>0, y>0. log a (x )= log a x, x>0 κι N. logx=log 0 x. lnx=log e x log a x= log b x log a Συδυστική. b Τριγωοµετρικές εξισώσεις. Μετθέσεις τω στοιχείω : Μ =!. ιτάξεις τω µ στοιχείω σε θέσεις : µ = µ! (µ-)! ιτάξεις µε επάληψη τω µ στοιχείω σε θέσεις : Ε µ =µ.! Συδυσµοί τω στοιχείω ά κ : κ = κ!( κ)! Πιθότητες. P(A)= Ν(Α) Ν(Ω). 0 P(A). P(Ω)=. P( )=0. Α Β Ρ(Α) Ρ(Β) Ρ(Α Β)=Ρ(Α)+Ρ(Β) Ρ(Α Β). Ρ(Α )= Ρ(Α). Ρ(Α Β) Ρ(Β Α)=. Ρ(Α) 8
Γεωµετρί Θεωρήµτ διχοτόµω. Β = Γ ΕΒ ΕΓ = ΑΒ ΑΓ γ Β = + γ Γ= + γ γ ΒΕ= γ ΕΓ= γ Τ Ε κι λέγοτι ρµοικά συζυγή τω Β κι Γ. Τ Α,Β,Γ, κι λέγοτι ρµοική τετράδ. Γεωµετρί Μετρικές σχέσεις σε ορθογώι τρίγω. Τ τρίγω ΑΒΓ, ΒΑ κι ΑΓ είι όµοι. γ = Β κι = Γ. = +γ. (Πυθγόρειο Θεώρηµ.) υ =Β Γ. γ= υ. + = γ υ 9
Γεωµετρί. Μετρικές σχέσεις σε τυχίο τρίγωο. ΑΓ =ΑΒ +ΒΓ ΒΓ Β, η γωί B είι οξεί.. ΑΓ =ΑΒ +ΒΓ + ΒΓ Β, η γωί B είι µλεί.. γ + Β = τ ( τ ) ( τ ) ( τ γ) υ =. +γ = µ +. ( ο Θεώρηµ διµέσω.) +γ = Μ. µ + γ = 4 + + =. υ υ υ ρ γ. Γεωµετρί 360 ω = φ =80 ο ω λ = R R 4R λ + = R Κοικά πολύγω. Ε = λ R λ λ 3 =R 3 3 = R λ 4 = R 4 = R 3 λ 6 =R 6 = 0
Γεωµετρί. Εµδά - Όγκοι. Ορθογώιο. Ε= Πρλληλόγρµµο. Ε= υ Τρίγωο. Τρπέζιο. Ε= υ τ Ε= ( τ ) ( τ ) ( τ γ) Ε=τ ρ γ Ε= 4R Ε= + υ Κύκλος. Ε=πR Γ=πR
Κυκλικός τοµές - τόξο. Έλλειψη. S=θ R, θ κτίι. S= θ πr, θ µοίρες. 360 Ε= θr, θ κτίι. Ε= θ 360 πr, θ µοίρες. Ε=π. + Γ ( ) Πρίσµ. V=Ε υ. Πυρµίδ V= 3 E υ. Κύλιδρος. Ε π =πr υ. Ε ολ =πr(r+υ). V=πR υ.
Πλάγιος κύλιδρος V=πR υ. Κώος. V= 3 πr υ. Σφίρ. Ε=4 πr. V= 4 3 πr3. Κυκλικό τµήµ. Ε=πRυ. V= 3 πυ (3R-υ). 3
Αάλυση Ότ υπάρχου τ όρι τω συρτήσεω f κι g τότε ισχύου lim f ( x) = lim (f(x)+g(x))= lim f(x)+ lim g(x) x σ x σ x σ o lim[ f ( x) ] = 0 lim (f(x) g(x))= lim f(x) lim g(x) x σ x σ o lim( f ( x) ) = x σ lim (f(x) g(x))= lim f(x) lim g(x) x σ x σ x σ lim f ( x) = x σ f ( x) lim f ( x) 3 lim = < f ( x) < g( x) lim g( x) lim[ λ f ( x) ] = λ lim f ( x) lim f ( x) = lim f ( x) Όρι. Εφόσο ορίζοτι κλώς τ κλάσµτ.. Εφόσο ορίζοτι κλώς οι ρίζες. Αάλυση [ c ] = 0 [ x ] = [ x ] = x ρ ρ [ x ] = ρx x x [ e ] = e ln = [ x] [ x ] [ ηµ x] = συx [ συx] = ηµ x x εφ = συ x σφ = ηµ x [ x] Πράγωγοι. f f g = f f g = f g + f f f g f g = g g λ f = λ [ + g] = f + g [ ] g [ ] g [ ] f [ f ] f f = [ f ( g( x) )] = f ( g( x) ) g ( x) ή df ( g( x) ) df ( g( x) ) = dx dg( x) dg( x) dx 4
Αάλυση Ολοκληρώµτ. f ( x) dx : = lim f + κ f ( x) κ= dx = 0 [ f ( x) + g( x) ] dx = f ( x) dx + g( x) dx ( ) ( ) f x dx = f x dx λ f ( x) dx = λ f ( x) dx f ( x) dx f ( ) f ( ) = γ x f ( x) dx = f ( x) dx + f ( x) dx γ [ f ( t) dt] = f ( x) g( x ) min f ( ) f ( x) dx max f ( ) f ( t) f ( x) g( x) dx = [ f ( x) g( x) ] f ( x) g ( x) dx [ dt] = f g( x) g( ) f ( g( x) ) g ( x) dx = f ( y) dy f = f ( x) ( x) dx = f ( x) g ( ) x x f + c συ xdx = ηµx + c e dx = e + c dx = x + c ηµ xdx = συx c + dx = ln x + c x + x x dx = + c + ( ) g ( x) dx x x dx = εφx + c συ x dx = + c ln dx = σφx + c ηµ x 5