2 η δεκάδα θεµάτων επανάληψης
|
|
- Δορκάς Αλθαία Λύκος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 1 2 η δεκάδα θεµάτων επανάληψης 11. Α. Αν α > 0 µε α 1 τότε για οποιουσδήποτε πραγµατικούς αριθµούς θ 1, θ 2 > 0 να αποδείξετε ότι log α (θ 1 θ 2 ) = log α θ 1 + log α θ 2 Β. Έστω το σύστηµα Σ : α1x + β1y = γ1 α x + β y = γ Να χαρακτηρίσετε τις παρακάτω προτάσεις σωστές (Σ) ή λανθασµένες (Λ) 1) Αν α 1 = β 1 = 0 τότε το Σ είναι κατά ανάγκη αδύνατο 2) Αν για την ορίζουσα D του συστήµατος ισχύει D 0 τότε το Σ έχει µία µόνο λύση ) Αν το ζεύγος (x, y) = ( 1, 1) είναι λύση του Σ τότε α 1 + β 1 = γ 1 4) Αν για τις ορίζουσες του Σ ισχύουν D = 0 και ( Dx 0 ή Dy 0 ) τότε το Σ είναι αδύνατο Γ. Να κάνετε τις σωστές αντιστοιχήσεις Εξίσωση Λύση εξίσωσης α.ηµx = ηµθ 1. x = kπ + θ, k Z β.συνx = συνθ γ. εφx = εφθ Α. Έστω log α θ 1 = x και log α θ 2 = y ( 1) θ 1 = α x και θ 2 = α y θ 1 θ 2 = α x α y θ 1 θ 2 = α x +y 2. x = 2kπ + θ ή x = 2kπ θ, k Z. x = 2kπ + θ ή x = 2kπ + π θ, k Z ( πολλαπλασιάζουµε κατά µέλη) ( ορισµός λογαρίθµου) x + y = log α (θ 1 θ 2 ) (1) x + y = log α θ 1 + logαθ 2 Β. 1 Λ, 2 Σ, Σ, 4 Σ Γ. α, β 2, γ 1
2 2 12. ίνεται το πολυώνυµο Ρ(x) = x 6x x 6 Ποιος είναι ο βαθµός του; Να βρείτε την αριθµητική τιµή του Ρ( 1) i Να βρείτε το πηλίκο της διαίρεσης Ρ(x) : (x 1) iν) Να λύσετε την ανίσωση Ρ(x) < 0 Προτεινόµενη Λύση Το πολυώνυµο είναι ου βαθµού, αφού ο εκθέτης του µεγιστοβάθµιου όρου είναι. Ρ( 1) = ( 1) 6 ( 1) ( 1)1 6 = = 24 i Σχήµα Horner για x = 1 π(x) = x x iν) Ρ(x) = 0 (x 1)(x 2 5x+6) = 0 x 1= 0 ή x 2 5x + 6 = 0 x = 1 ή x = 2 ή x = Πρόσηµο του Ρ(x) x Ρ(x) Εποµένως : Ρ(x) < 0 x (, 1) (2, )
3 1. Να λυθεί η εξίσωση συνx ηµx = 0 Από τις λύσεις της εξίσωσης ποιες βρίσκονται στο διάστηµα (0, π) ; συνx ηµx = 0 συνx = ηµx Αν ήταν συνx = 0 τότε η εξίσωση θα γινόταν ηµx = 0, πράγµα αδύνατο αφού ταυτόχρονα δεν µπορεί να είναι και συνx = 0 και ηµx = 0 Για να έχει λύση λοιπόν η εξίσωση πρέπει συνx 0 ηµ x Η εξίσωση = συνx εφx = π π εφx = εφ x = kπ +, k Z (1) Πρέπει 0 < x < π (1) 0 < kπ + π < π Για k = 0 η (1) δίνει π π < kπ < π π < kπ < 8 π 1 < k < 8 και επειδή k Z θα είναι k = 0 ή k = 1 ή k = 2 π x = Για k = 1 η (1) δίνει x = 4 π Για k = 2 η (1) δίνει x = 7 π
4 4 14. Αν α = log(8 2 x 2), β = log(4 2 x 1), γ = ( 2 x 1) να βρείτε το x ώστε οι αριθµοί α, β, γ να ικανοποιούν την σχέση 2β = α + γ Για x = 1 να βρείτε τους αριθµούς α, β, γ, να δείξετε ότι δύο από αυτούς είναι αντίθετοι και να υπολογίσετε την τιµή της παράστασης Α = Θα πρέπει να ισχύουν 8 2 x 2> 0 και 4 2 x 1> 0 και 2 x 1> 0 Με αυτούς τους περιορισµούς διαδοχικά έχουµε 2β = α + γ 2log(4 2 x 1)= log( 2 x 1) + log(8 2 x 2) log(4 2 x 1) 2 = log[( 2 x 1)(8 2 x 2)] (4 2 x 1) 2 = ( 2 x 1)(8 2 x 2) x 8 2 x +1= x 6 2 x 8 2 x x 6 2 x +1= 0 θέτω 2 x = y οπότε έχουµε α β γ 10 8y 2 6y + 1= 0 µε ρίζες y = 1 2 ή y = 1 4 Αν y = 1 2 τότε 2x = 1 2 = 2-1 x = 1 y = 1 4 τότε 2x = 1 4 = 2-2 x = 2 ρίζα η οποία απορρίπτεται διότι δεν ικανοποιεί τους περιορισµούς Αν x = 1 τότε α = log2, β = log1, γ = log 1 2 επειδή γ = log 1 = log1 log2 = 0 log2 = log2 = α οι α και γ είναι αντίθετοι 2 Επίσης A = α β γ 10 = log 2 log 1 1 log 2 10 = = 7 2
5 5 15. Έστω πολυώνυµο Ρ(x) ου βαθµού το οποίο διαιρείται µε το x 2 + 1, έχει ρίζα το 0 και το άθροισµα των συντελεστών του είναι ίσο µε 2. είξτε ότι Ρ(x) = x + x Να λύσετε την ανίσωση (Ρ(x) 2) + ( Ρ(x) 2) 2 + Ρ(x) > 2 Έστω Ρ(x) = αx + βx 2 + γx + δ, α 0 το ζητούµενο πολυώνυµο Το 0 είναι ρίζα του Ρ(x) Ρ(0) = 0 α 0 + β γ 0 + δ = 0 δ = 0 Άρα Ρ(x) = αx + βx 2 + γx ιαίρεση του Ρ(x) µε το x αx + βx 2 + γx x αx - αx αx + β βx 2 + ( γ - α)x -βx 2 -β (γ - α)x - β Επειδή η παραπάνω διαίρεση είναι τέλεια, θα πρέπει το υπόλοιπο υ(x) = (γ α)x β να είναι το µηδενικό πολυώνυµο, άρα πρέπει γ α = 0 και β = 0 α = γ και β = 0 Άθροισµα των συντελεστών = 2 α + β + γ + δ = 2 Και επειδή α = γ, β = 0, δ = 0 α α + 0 = 2 2α = 2 α = 1, άρα και γ = 1 Οπότε Ρ(x) = x + x (Ρ(x) 2) +( Ρ(x) 2) 2 + Ρ(x) > 2 (Ρ(x) 2) + ( Ρ(x) 2) 2 + Ρ(x) 2 > 0 Θέτουµε (Ρ(x) 2) = y, οπότε y + y 2 + y > 0 Επειδή το τριώνυµο y(y 2 + y + 1) > 0 (1) y 2 + y + 1 έχει = < 0, είναι µόνιµα θετικό. Η (1) y > 0 Ρ(x) 2 > 0 x + x 2 > 0 x + x 1 1 > 0 (x 1) + (x 1) > 0 (x 1)(x 2 + x + 1) + (x 1) > 0 (x 1)(x 2 + x ) > 0 (x 1)(x 2 + x + 2) > 0 (2) Επειδή το τριώνυµο x 2 + x + 2 > 0 έχει = 7 < 0, είναι µόνιµα θετικό. Η (2) x 1 > 0 x > 1.
6 6 16. A. Έστω ένας αριθµός θ >0. Τι ονοµάζουµε λογάριθµο του θ µε βάση το α, όπου α >0 και α 1 ; Β. Να χαρακτηρίσετε τις παρακάτω προτάσεις σωστές (Σ) ή λανθασµένες (Λ) Αν α > 0 µε α 1, θ 1, θ 2, θ > 0 και k R τότε ισχύουν α. log α ( θ 1 + θ 2 ) = log α θ 1 + log α θ 2 θ 1 β. logα = log α θ 1 - log α θ 2 θ2 γ. log α θ k = αlog k θ Γ. Συµπληρώστε τις προτάσεις α. Αν Ρ(x) = α ν x ν + α ν-1 x ν-1 + α ν-2 x ν α 1 x + α ο ένα πολυώνυµο µε α ν 0 τότε ο αριθµός ν ονοµάζεται.. β. Αν το υπόλοιπο της διαίρεσης του πολυωνύµου Ρ(x) µε το πολυώνυµο δ(x) είναι το µηδενικό πολυώνυµο, τότε η διαίρεση ονοµάζεται. Α. Ονοµάζουµε λογάριθµο του θ > 0 µε βάση το α όπου α >0 και α 1 έναν αριθµό x τέτοιον ώστε αν υψώσουµε το α στην x να βρούµε το θ δηλαδή log α θ = x αν και µόνο αν θ = α x B. α Λ, β Σ, γ Λ Γ. α. Αν Ρ(x) = α ν x ν + α ν-1 x ν-1 + α ν-2 x ν α 1 x + α ο ένα πολυώνυµο µε α ν 0 τότε ο αριθµός ν ονοµάζεται βαθµός του πολυωνύµου Ρ(x) β. Αν το υπόλοιπο της διαίρεσης του πολυωνύµου Ρ(x) µε το πολυώνυµο δ(x) είναι το µηδενικό πολυώνυµο, τότε η διαίρεση ονοµάζεται τέλεια διαίρεση
7 7 17. Έστω η συνάρτηση f(x) = (α + 1) συν(βπx) όπου α, β θετικοί πραγµατικοί αριθµοί. Αν η µέγιστη τιµή της συνάρτησης είναι και η περίοδος 4, να δείξετε ότι α = 2 και β = 1 2 Για α = 2 και β = 1 2 να λύσετε την εξίσωση f(x) = 2 i Να σχεδιάσετε τη γραφική παράσταση της f στο διάστηµα [0, 4]. α > 0 και f max = α + 1 = α = 2 Είναι T = 2π 4 = 2 βπ β β= 1 2 f(x) = 2 i Για α = 2 και β = 1 2 π συν x = 2 2 π συν x 1 = 2 2 π συν x π = συν 2 Πίνακας τιµών π έχουµε f(x) = συν x 2 π x π = 2kπ ± 2 x = 4k ± 2, k Z Γραφική παράσταση x f(x) y Ο x 5-2 -
8 8 18. Σ ένα γραµµικό σύστηµα 2 x 2 µε αγνώστους x,y ισχύει D 2 + D + D = 2D 4D x + 6D y 14, όπου D, D x, D y οι γνωστές ορίζουσες 2 2 x y είξτε ότι (D 1) 2 + (D x + 2) 2 + (D y ) 2 = 0 Να βρείτε την λύση του συστήµατος D 2 + D + D = 2D 4D x + 6D y x y D 2 + D + D 2D + 4D x 6D y + 14 = x y (D 2 2D + 1) +( D + 4 D x + 4) + ( (D 1) 2 + ( D x + 2) 2 + ( D y ) 2 = 0 2 x 2 D y 6D y + 9) = 0 Στο ( δείξαµε ότι (D 1) 2 + ( D x + 2) 2 + ( D y ) 2 = 0 οπότε D 1 = 0 και D x + 2 = 0 και D y = 0 άρα D = 1, D x = 2, D y = συνεπώς η λύση του συστήµατος είναι x = D = 2 και y = Dy D = Dx
9 9 19. Έστω το πολυώνυµο Ρ(x) = x 4 x x 2 x + k Αν το πολυώνυµο Ρ(x) έχει παράγοντα το (x + 1) δείξτε ότι k = 2 Για k = 2 να βρείτε το πηλίκο π(x) της διαίρεσης Ρ(x) : (x +1) i Να δείξετε ότι το (x 2) είναι παράγοντας του π(x) iν) Να βρείτε το πηλίκο της διαίρεσης Ρ(x) : (x + 1)(x 2) iν) Να βρείτε τα διαστήµατα στα οποία η γραφική παράσταση του Ρ(x ) είναι ψηλότερα από την γραφική παράσταση της παραβολής y = 10x Πρέπει και αρκεί Ρ( 1) = 0 ( 1) 4 ( 1) ( 1) 2 ( 1) + k = k = 0 k = 2 Για k = 2 το Ρ(x) γίνεται Ρ(x) = x 4 x x 2 x 2 Σχήµα Horner στο Ρ(x) Οπότε π(x) = x 2x 2 + x 2 i π(2) = = = 0 το x 2 είναι παράγοντας του π(x). iν) Σχήµα Horner στο π(x) Άρα π(x) = (x 2)(x 2 + 1) Με βάση τα ( και (i το Ρ(x) γράφεται Ρ(x) = ( x +1)π(x) Ρ(x) = (x +1)(x 2)(x 2 + 1) (1) Άρα το πηλίκο της διαίρεσης Ρ(x) : (x + 1)(x 2) είναι π 1 (x) = x 2 +1 iν) Πρέπει και αρκεί Ρ(x) > y (1) (x + 1)(x 2)(x 2 + 1) > 10x (x + 1) (x 2) (x 2 + 1) 10(x 2 +1) > 0 (x 2 + 1) [( x +1)(x 2) 10] > 0 (x 2 + 1) (x 2 x 12) > 0 x 2 x 12 >0 x < ή x > 4 Εποµένως η γραφική παράσταση του Ρ(x) είναι ψηλότερα από την παραβολή σε κάθε ένα από τα διαστήµατα (, ) και (4, + )
10 Έστω η συνάρτηση f(x) = e 2x 4e x + k Αν η γραφική παράσταση της συνάρτησης διέρχεται από την αρχή των αξόνων να βρείτε την τιµή του k Για k = α. Να λύσετε την εξίσωση f(x) = 0 β. Να λύσετε την ανίσωση f(x) < 0 i Αν ρ 1, ρ 2 είναι οι ρίζες της εξίσωσης f(x) = 0, να διατάξετε από τον µικρότερο στον µεγαλύτερο τους αριθµούς 1, ρ 1, ρ 2 δικαιολογώντας την απάντηση σας iν) Αν k = να υπολογίσετε την τιµή της παράστασης 5f(ln) 2 f(0) Είναι f(0) = 0 e 0 4e 0 + k = k = 0 k = Για k = έχουµε α. f(x) = 0 e 2x 4e x + = 0 θέτω e x = y οπότε η εξίσωση γίνεται y 2 4y + = 0 µε ρίζες y = 1 ή y = αν y = 1 τότε e x = 1 x = 0 αν y = τότε e x = x = ln β. f(x) < 0 e 2x 4e x + < 0 θέτοντας e x = y (1) η ανίσωση γίνεται y 2 4y + < 0 και δεδοµένου ότι το τριώνυµο y 2 4y + έχει ρίζες το 1 και το η ανίσωση αληθεύει όταν 1 < y < (1) 1 < e x < 0 < x < ln i Έστω ρ 1 = 0 και ρ 2 = ln τότε αφού e < είναι lne < ln 1 < ln εποµένως 0 < 1 < ln ρ 1 < 1 < ρ 2 iν) Επειδή για k = οι αριθµοί 0 και ln είναι ρίζες της εξίσωσης f(x) = 0 έχουµε ότι f(0) = 0 και f(ln) = 0 άρα 5f(ln) 2 f(0) = 0
3 η δεκάδα θεµάτων επανάληψης
η δεκάδα θεµάτων επανάληψης. Για ποιες τιµές του, αν υπάρχουν, ισχύει κάθε µία από τις ισότητες α. log = log( ) β. log = log γ. log 4 log = Να λυθεί η εξίσωση 4 log ( ) + = 0 6 α) Θα πρέπει > 0 και > 0,
Διαβάστε περισσότερα5 η δεκάδα θεµάτων επανάληψης
5 η δεκάδα θεµάτων επανάληψης 41. α + 1 Έστω η συνάρτηση f() = ( 3 ), α 1 Αν το σηµείο Μ( 1, 3) βρίσκεται στην γραφική παράσταση της f να βρείτε το α ii ) Αν α = 0 να λύσετε την ανίσωση f() + f(2) > 2
Διαβάστε περισσότερα( e ) 2. 4 η δεκάδα θεµάτων επανάληψης 31.
1 4 η δεκάδα θεµάτων επανάληψης 31. ίνονται οι συναρτήσεις f() = ln(e e + 3) και g() = ln3 + ln(e 1) i. Να βρείτε το πεδίο ορισµού τους. ii. Να βρείτε τα σηµεία τοµής των γραφικών παραστάσεων των f, g
Διαβάστε περισσότεραΟ μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:
Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Να αναγνωρίζει πότε μια αλγεβρική παράσταση της πραγματικής μεταβλητής x, είναι πολυώνυμο και να διακρίνει τα στοιχεία του: όροι, συντελεστές, σταθερός
Διαβάστε περισσότερα1 of 79 ΘΕΜΑ 2. Δίνεται η συνάρτηση f(x) = x 2 4x + 5, x R
1 of 79 Δίνεται η συνάρτηση f(x) = x 2 4x + 5, x R α) Να αποδείξετε ότι η f γράφεται στη μορφή f(x) = (x- 2) 2 + 1. (Μονάδες 12) β) Στο σύστημα συντεταγμένων που ακολουθεί, να παραστήσετε γραφικά τη συνάρτηση
Διαβάστε περισσότεραΘΕΜΑ Α ΘΕΜΑ B. Β.1. Γνωρίζουμε ότι τα σημεία Α(π,4) και Β(-2π,6) ανήκουν στην ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ
ΘΕΜΑ Α Α.1. Η απόδειξη βρίσκεται στη σελίδα 175 του σχολικού βιβλίου. Α.. Η διατύπωση του ορισμού βρίσκεται στη σελίδα 163 του σχολικού βιβλίου «εκθετική συνάρτηση». Α.3. i) Λάθος ii) Λάθος iii) Σωστό
Διαβάστε περισσότεραK. Μυλωνάκης Αλγεβρα B Λυκείου
ΠΟΛΥΩΝΥΜΑ Ονομάζουμε μονώνυμο του x κάθε πραγματικό αριθμό ή κάθε παράσταση της μορφής αx ν, όπου α είναι πραγμ. αριθμός και ν ένας θετικός ακέραιος. Π.χ. οι παραστάσεις 2χ 4, -3χ 2, 7 είναι μονώνυμα του
Διαβάστε περισσότερα1 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 2008
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 008 α). Να αποδείξετε ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου Ρ(x) με το πρωτοβάθμιο πολυώνυμο x ρ ισούται με την αριθμητική τιμή του Ρ(x) για x =
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ ÅÐÉËÏÃÇ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 07 Ε_3.ΜλΓΑ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ /ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Τετάρτη 9 Απριλίου 07 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Απόδειξη (Σχολικό βιβλίο, σελίδα
Διαβάστε περισσότεραΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΛΛΟ ΕΠΑΝΑΛΗΨΗΣ 1
ΘΕΜΑ Α ΦΥΛΛΟ 1 Α1. Να αποδείξετε ότι το υπόλοιπο υ της διαίρεσης ενός πολυωνύμου P(x) με το x - ρ είναι ίσο με την τιμή του πολυωνύμου για x = ρ. Είναι δηλαδή υ = P(ρ). Α. Να χαρακτηρίσετε τις προτάσεις
Διαβάστε περισσότερα3 η δεκάδα θεµάτων επανάληψης
η δεκάδα θεµάτων επανάληψης. Έστω η συνάρτηση f() = 80 αν < < 0 αν 0 αν i ) Να υπολογιστεί η τιµή της παράστασης Α = f( ) + f(0) 5f() f + f( ) Αν Μ(, ) και Ν(, 0) να βρείτε την εξίσωση της ευθείας ΜΝ i
Διαβάστε περισσότερα1.1 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1.2 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Να γίνουν οι γραφικές παραστάσεις των συναρτήσεων : π α) f() = + ηµ β) g() = + συν( ) 6 π π γ) f() = ηµ( ) δ) g() = συν( ) Να γίνει η µελέτη και η γραφική παράσταση
Διαβάστε περισσότερα1 η δεκάδα θεµάτων επανάληψης
1 1 η δεκάδα θεµάτων εανάληψης 1. ίνεται το ολυώνυµο Ρ(x) = x 3 x 2 4x + 4 Να αοδείξετε ότι ο αριθµός ρ = 1 είναι ρίζα του ολυωνύµου i Να βρείτε το ηλίκο της διαίρεσης του ολυωνύµου Ρ(x) µε το ολυώνυµο
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ. 2. ίνεται το Ρ(x) αν το ρ είναι ρίζα Ρ(2x) 2x τότε το ρ είναι ρίζα του Ρ( Ρ(2x)) 2x.
ΑΣΚΗΣΕΙΣ. ίνονται τα πολυώνυµα Ρ (x), Ρ (x), Ρ (x) αν τα πολυώνυµα Ρ (x) και Ρ (x) δεν έχουν κοινή ρίζα και ισχύει : ( Ρ (x)) + (Ρ (x)) = (Ρ (x)) για κάθε x R να δείξετε ότι το Ρ (x) δεν έχει πραγµατική
Διαβάστε περισσότεραΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 23/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 3/6/014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας δίπλα στο γράμμα
Διαβάστε περισσότεραΑ Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Συνοπτική Θεωρία Ασκήσεις της Τράπεζας Θεμάτων Ερωτήσεις Σωστού-Λάθους Διαγωνίσματα Επιμέλεια: Συντακτική ομάδα mathp.gr Συντονισμός
Διαβάστε περισσότερα9 Πολυώνυμα Διαίρεση πολυωνύμων
4ο Κεφάλαιο 9 Πολυώνυμα Διαίρεση πολυωνύμων Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισμοί Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής ν αx όπου α R, * ν N και x μια μεταβλητή που μπορεί να πάρει οποιαδήποτε
Διαβάστε περισσότερα( ) x 3 + ( λ 3 1) x 2 + λ 1
Επαναληπτικό Διαγώνισµα Άλγεβρα Β Λυκείου Θέµα Α Α1. Έστω η πολυωνυµική εξίσωσης α ν χ ν + α ν 1 χ ν 1 +... + α 1 χ + α 0 = 0, µε ακέραιους συντελεστές. Να αποδείξετε ότι αν ο ακέραιος ρ 0 είναι ρίζα της
Διαβάστε περισσότερα4.3 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ
4.3 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ ΘΕΩΡΙΑ. Πολυωνυµική εξίσωση Λέγεται κάθε εξίσωση της µορφής Ρ(x) = 0, όπου Ρ(x) πολυώνυµο.. Ρίζα πολυωνυµικής εξίσωσης Λέγεται κάθε ρίζα του αντίστοιχου πολυωνύµου.
Διαβάστε περισσότεραΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΑΛΓΕΒΡΑΣ... ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑ 1 Ο
Αµυραδάκη, Νίκαια (1-493576) ΙΑΝΟΥΑΡΙΟΣ 1 Α1. Έστω P(x) ένα πολυώνυµο του x και p ένας πραγµατικός αριθµός. Αν π(χ) είναι το πηλίκο και υ(x) το υπόλοιπο της διαίρεσης του πολυωνύµου P(x) µε το πολυώνυµο
Διαβάστε περισσότερα2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Β' Γενικού Λυκείου. Γενικής Παιδείας. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ
ΘΕΜΑ A ΑΛΓΕΒΡΑ Β' Γενικού Λυκείου Γενικής Παιδείας Σάββατο 1 Απριλίου 018 ιάρκεια Εξέτασης: ώρες ΘΕΜΑΤΑ Α1. Στο επόμενο σχήμα βλέπετε τον τριγωνομετρικό κύκλο, τους άξονες ημιτόνων, συνημιτόνων, εφαπτομένων,
Διαβάστε περισσότερα2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ο ΓΕΛ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β ΛΥΚΕΙΟΥ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ -4 ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Επιμέλεια: ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
Διαβάστε περισσότεραΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Έννοια του πολυωνύμου. Ας υποθέσουμε ότι έχουμε μια μεταβλητή x που μπορεί να πάρει κάθε πραγματική τιμή. Μονώνυμο του x, είναι κάθε παράσταση της μορφής : x όπου α είναι
Διαβάστε περισσότεραΕπαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου
Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου Θέμα Α. Αν α>0 με α, τότε για οποιουσδήποτε θ, θ,θ>0 και κ ισχύει log (θ θ ) log θ log θ Μονάδες 8 α α α Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας
Διαβάστε περισσότεραΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ
ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ) Copyright 2015 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com Αδεια χρήσης 3η Εκδοση, Ιωάννινα, Σεπτέµβριος 2015 Περιεχόµενα 1 ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ............................................
Διαβάστε περισσότερα1 η δεκάδα θεµάτων επανάληψης
1 η δεκάδα θεµάτων επανάληψης 1. Έστω η εξίσωση (k 5k+ 4) x (k 1)x + 1= 0 Να βρείτε την τιµή του k ώστε η εξίσωση να έχει µία µόνο ρίζα την οποία ρίζα να προσδιορίσετε i Να βρείτε την τιµή του k ώστε η
Διαβάστε περισσότεραΠολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν α 1 x+α 0 =0,με α 0,α 1,...
3 0 ΛΥΚΕΙΟ ΚΕΡΑΤΣΙΝΙΟΥ Λ. ΒΟΥΛΓΑΡΗ ΜΑΘΗΜΑΤΙΚΟΣ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΞΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΩΝΥΜΙΚΕΣ Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν-1 +...+α
Διαβάστε περισσότεραΕπαναληπτικές Ασκήσεις
Επαναληπτικές Ασκήσεις Έστω ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου ( x ) α Να γράψετε την ταυτότητα της διαίρεσης β Να βρείτε τα 0 και Ρ γ Αν το πολυώνυμο ( x) είναι x να βρείτε: x + x είναι 3x
Διαβάστε περισσότερα4.3. ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΑΝΙΣΩΣΕΙΣ
4.3. ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΑΝΙΣΩΣΕΙΣ Αν η εξίσωση α ν x ν +α ν-1 x ν-1 +... +α 1 x+α 0 = 0 με α ν,α ν-1,...,α 1,α 0 Ζ : έχει ρίζα τον ακέραιο αριθμό ρ, τότε το ρ διαιρεί το α 0. έχει ρίζα το κλάσμα,
Διαβάστε περισσότεραΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος
Κεφάλαιο ο: ΠΟΛΥΩΝΥΜΑ Ερωτήσεις του τύπου Σωστό-Λάθος 1. * Οι πραγματικοί αριθμοί είναι σταθερά πολυώνυμα. Σ Λ. * Το σταθερό πολυώνυμο 0 λέγεται μηδενικό πολυώνυμο. Σ Λ 3. * Κάθε σταθερό και μη μηδενικό
Διαβάστε περισσότεραΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος
Κεφάλαιο 2ο: ΠΟΛΥΩΝΥΜΑ Ερωτήσεις του τύπου Σωστό-Λάθος 1. * Οι πραγματικοί αριθμοί είναι σταθερά πολυώνυμα. Σ Λ 2. * Το σταθερό πολυώνυμο 0 λέγεται μηδενικό πολυώνυμο. Σ Λ 3. * Κάθε σταθερό και μη μηδενικό
Διαβάστε περισσότεραβ) Αν επιπλέον το υπόλοιπο της διαίρεσης είναι υ(x) = - 3x + 5, τότε να βρείτε το Δ(x). (Απ. α) 5 ος β) Δ(x) = x 5 5x 4 + 6x 3 + 4x 2 11x + 5)
ΠΑΝΤΕΛΗΣ ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΑΛΓΕΒΡΑ B Λυκείου Γενικής Παιδείας Κ Ε Φ Α Λ Α Ι Ο 4ο - Φ Υ Λ Λ Ο Νο 2 Δ Ι Α Ι Ρ Ε Σ Η ΠΟΛΥΩΝΥΜΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΟΛΥΩΝΥΜΙΚΕΣ ΑΝΙΣΩΣΕΙΣ ΑΣΚΗΣΕΙΣ 1. Ένα πολυώνυμο Δ(x),
Διαβάστε περισσότεραx 1 δίνει υπόλοιπο 24
ΓΕΝΙΚΕΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 3. Δίνεται το πολυώνυμο P() 6 α β το οποίο έχει παράγοντα το και όταν διαιρείται με το δίνει υπόλοιπο i. Να δείξετε ότι: α και β 6 ii. Να λύσετε την εξίσωση
Διαβάστε περισσότερα1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι
_ ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ 1. Αν α + β + γ = αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P () = (α - β) + (β - γ) + γ - α είναι το µηδενικό πολυώνυµο.. Να δειχθεί ότι το πολυώνυµο P () = (κ - ) + (λ + 6) +
Διαβάστε περισσότερα4.1. Πολυώνυμα. Η έννοια του πολυωνύμου
4.1 Πολυώνυμα Η έννοια του πολυωνύμου ΟΡΙΣΜΟΙ 1. Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής αx ν, όπου α R, ν N (σταθερές) και x R (μεταβλητή).. Πολυώνυμο του x ονομάζουμε κάθε παράσταση της μορφής:
Διαβάστε περισσότεραPx α x α x... α x α. Ο αριθμός κ λέγεται βαθμός
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΑΛΓΕΒΡΑ ΘΕΜΑ Α Α1. Να δείξετε ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου Px με το x ρ είναι ίσο με την τιμή του πολυωνύμου για
Διαβάστε περισσότεραΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...
ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται
Διαβάστε περισσότεραA N A B P Y T A ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ. 1 (α + β + γ) [(α-β) 2 +(α-γ) 2 +(β-γ) 2 ] και τις υποθέσεις
ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ ΑΣΚΗΣΗ η Αν α +β +γ = αβγ και α + β + γ, να δείξετε ότι το πολυώνυμο P()=(α β) +(β γ) + γ α είναι το μηδενικό πολυώνυμο. Από την ταυτότητα του Euler α +β +γ -αβγ = (α + β + γ)[(α-β)
Διαβάστε περισσότερα5. Να λυθεί η εξίσωση. 6. Δίνεται η συνάρτηση. 2f x ΛΥΣΗ: Τα x για τα οποία 2 x 0 x 0 x, δεν είναι λύσεις της εξίσωσης γιατί για
5. Να λυθεί η εξίσωση ΛΥΣΗ: Τα για τα οποία 0 0, δεν είναι λύσεις της εξίσωσης γιατί για αυτά ισχύει 1 ή 1 1 0 και αντικαθιστώντας στην εξίσωση παίρνουμε την μή αληθή σχέση Αρα θεωρούμε ότι 0 και πλέον
Διαβάστε περισσότεραθετικοί αριθμοί, να δείξετε ότι
1 Ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΤΕΡΙΝΗΣ 9 /05/ 01 Προαγωγικές Εξετάσεις Β τάξης Εξεταζόμενο μάθημα : Άλγεβρα Σελίδες : (ΔΥΟ) ΘΕΜΑ 1 ο Α. Αν 0, 1 και, 1 θετικοί αριθμοί, να δείξετε ότι log a 1 log 1 log (15 μονάδες)
Διαβάστε περισσότεραΆλγεβρα Γενικής Παιδείας Β Λυκείου 2001
Άλγεβρα Γενικής Παιδείας Β Λυκείου 00 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο Α.. Α.. Έστω η πολυωνυµική εξίσωση α ν x ν + α ν- x ν- +... + α x + α 0 0, µε ακέραιους συντελεστές. Αν ο ακέραιος ρ 0 είναι ρίζα της εξίσωσης,
Διαβάστε περισσότεραΘέµατα Εξετάσεων Άλγεβρας Β Λυκείου
Θέµατα Εξετάσεων Άλγεβρας Β Λυκείου 1999-004 Περιεχόµενα 1 Θέµατα 1999......................................... 3 Θέµατα 000......................................... 8 3 Θέµατα Σεπτεµβρίου 000..................................
Διαβάστε περισσότερα( ) ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. Σηµείωση. 2. Παραδοχή α = Ιδιότητες x. αβ = α = α ( ) x. α β. α : α = α = α
. ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ. Σηµείωση Οι δυνάµεις α του κεφαλαίου έχουν βάση α > 0 και εκθέτη οποιονδήποτε πραγµατικό αριθµό.. Παραδοχή 0 α. Ιδιότητες α + α ( ) α α : α ( ) α α α αβ α β α β α β. Εκθετική
Διαβάστε περισσότεραΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ
ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Ημερομηνία: Σάββατο Μαΐου 09 Διάρκεια Εξέτασης: ώρες ΘΕΜΑ Α A. Σχολικό βιβλίο σελίδα 4. ΑΠΑΝΤΗΣΕΙΣ Α. α. Λάθος, β. Λάθος, γ. Σωστό, δ. Λάθος,
Διαβάστε περισσότερα4.1. Πολυώνυμα. Η έννοια του πολυωνύμου
4.1 Πολυώνυμα Η έννοια του πολυωνύμου ΟΡΙΣΜΟΙ 1. Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής αx ν, όπου α R, ν N (σταθερές) και x R (μεταβλητή). 2. Πολυώνυμο του x ονομάζουμε κάθε παράσταση της
Διαβάστε περισσότερα4.1 ΕΝΝΟΙΑ ΠΟΛΥΩΝΥΜΟΥ -ΒΑΘΜΟΣ-ΙΣΟΤΗΤΑ-ΡΙΖΕΣ. ΛΥΣΗ 1 2 =κ κ κ 1+43κ κ = =0
4.1 ΕΝΝΟΙΑ ΠΟΛΥΩΝΥΜΟΥ -ΒΑΘΜΟΣ-ΙΣΟΤΗΤΑ-ΡΙΖΕΣ 4.1.1 Να δειχθεί ότι για κάθε κ R το πολυώνυμο P (x) = (κ - 1) x 5 + (3κ 2 + 2) x 3 + κx δεν έχει ρίζα το 1. 2 1 2 =κ 11 2 +3κ + 2 1 + 2 1 2 =0 κ 1+43κ + 2+16κ
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ
ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ Τελευταία ενηµέρωση: Νοέµβριος 016) Ανέστης Τσοµίδης Κατερίνη Περιεχόµενα 1 Συστήµατα 1.1 Μη γραµµικά συστήµατα........................ Ιδιότητες συναρτήσεων 3.1 Μονοτονία,
Διαβάστε περισσότεραΠολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές
0 Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Για να λύσουμε μια πολυωνυμική εξίσωση P(x) 0 (ή μια πολυωνυμική ανίσωση P(x)
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ. Ηµεροµηνία: Κυριακή 10 Μαΐου 2015 ιάρκεια Εξέτασης: 2 ώρες ΑΠΑΝΤΗΣΕΙΣ
ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΆΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Κυριακή 0 Μαΐου 05 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ A Α Αόδειξη (βλέε σχολικό σελ 35) Α Σχολικό σελίδα 97 x Α3 Για την f (x) =
Διαβάστε περισσότερα(x) = δ(x) π(x) + υ(x)
Μάθηµα 12 Κεφάλαιο 4ο: Πολυώνυµα Πολυωνυµικές Εξισώσεις Θεµατικές Ενότητες: Α. ιαίρεση Πολυωνύµων Β. Σχήµα Horner Η ταυτότητα της Ευκλείδειας διαίρεσης Αν ( χ), δ ( χ) δύο πολυώνυµα µε δ ( χ) 0 και βαθµούς
Διαβάστε περισσότερα1.7 ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ
1 1.7 ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ ΘΕΩΡΙΑ 1. Ταυτότητα Ευκλείδειας διαίρεσης : Για δύο οποιαδήποτε πολυώνυµα (x) και δ(x) µε δ(x) µπορούµε να βρούµε δύο άλλα πολυώνυµα π(x) και υ(x) τέτοια ώστε να ισχύει (x) = δ(x)π(x)
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ 1 ln 4 i Να βρείτε το πεδίο ορισμού της ii Να δείξετε ότι η παραπάνω συνάρτηση γράφεται: ln iii Να λύσετε την εξίσωση ln 5 ln 3 4 a a1 4,, a i Να βρείτε τον αριθμό
Διαβάστε περισσότερα1ο Κεφάλαιο: Συστήματα
ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.
Διαβάστε περισσότερα4 η δεκάδα θεµάτων επανάληψης
1 4 η δεκάδα θεµάτων επανάληψης 31. Έστω Α, Β δύο ενδεχόµενα του ίδιου δειγµατικού χώρου. Αν Ρ(Α ) 0,8 και Ρ(Β ) 0,71 δείξτε ότι Ρ( Α Β) 1,01 Ρ( Α Β) i Το ενδεχόµενο Α Β δεν είναι το κενό. Έχουµε Ρ( Α
Διαβάστε περισσότεραΤΡΙΓΩΝΟΜΕΤΡΙΑ ΘΕΜΑ 1. ημ x. 1 σφx 1 σφx 4 ΘΕΜΑ γ ε. 2 δ. 1
1 ΤΡΙΓΩΝΟΜΕΤΡΙΑ 1. Να αποδείξετε ότι: 1 σφ 1 σφ ΘΕΜΑ 1. Nα λύσετε την εξίσωση: ημ 1 σφ 1σφ 4 ΘΕΜΑ Α. Να βρεθούν οι παρακάτω τριγωνομετρικοί αριθμοί: α. συν330 ο = β. συν (-300 ο ) = γ. συν (-10 ο ) = δ.
Διαβάστε περισσότερατην αρχή των αξόνων και ύστερα να υπολογίσετε το εμβαδόν του
ΑΣΚΗΣΗ 47 Δίνεται η συνάρτηση f(x) = και οι ευθείες (ε ): y = x και (ε ): y = x +. Να αποδείξετε ότι:. Η (ε ) είναι ασύμπτωτη της C f στο, ενώ η (ε ) είναι ασύμπτωτη της C f στο +. Για κάθε x R ισχύει
Διαβάστε περισσότεραΟΝΟΜ/ΜΟ :... ΟΜΑ Α Α. 1. Χαρακτηρίστε µε ΣΩΣΤΟ (Σ) ή ΛΑΘΟΣ (Λ) τις παρακάτω προτάσεις : Σχῆµα 1: Ασκηση 1δ.
ΙΑΓΩΝΙΣΜΑ 1 oυ 4 νoυ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ΟΜΑ Α Α 1. Χαρακτηρίστε µε ΣΩΣΤΟ (Σ) ή ΛΑΘΟΣ (Λ) τις παρακάτω προτάσεις : (α ) Η περίοδος της συνάρτησης f(x) = 3συν x 5 είναι 5π... (ϐ ) Η συνάρτηση f(x)
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4ο: ΠΟΛΥΩΝΥΜΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ
ΚΕΦΑΛΑΙΟ 4ο: ΠΟΛΥΩΝΥΜΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ) Copyright 2015 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoocom Αδεια χρήσης 3η Εκδοση, Ιωάννινα, Σεπτέµβριος 2015 Περιεχόµενα 1 ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 5ο: ΕΚΘΕΤΙΚΗ-ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ
ΚΕΦΑΛΑΙΟ 5ο: ΕΚΘΕΤΙΚΗ-ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ) Copyright 2015 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com Αδεια χρήσης η Εκδοση, Ιωάννινα, Σεπτέµβριος 2015 Περιεχόµενα
Διαβάστε περισσότερα4. Δίνεται το πολυώνυμο P(x) = x 3 2x 2 + x 12 α) Να αιτιολογήσετε γιατί το διώνυμο x 3 είναι παράγοντας του P(x) β) Να λύσετε την εξίσωση P(x) = 0
1. α) Να βρείτε το υπόλοιπο και το πηλίκο της διαίρεσης (x 3 6x 2 +11x 2) : (x 3) β) Αν P(x) = x 3 6x 2 +11x + λ να βρείτε το λ R ώστε η διαίρεση P(x) : (x 3) να έχει υπόλοιπο 0. 2. Δίνονται τα πολυώνυμα:
Διαβάστε περισσότεραςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός
ςες ΤΕΤΡΑΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παραπάνω φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια κυρίως στους μαθητές
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (ΟΕΦΕ) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 06 Β4 Έστω η συνάρτηση f ( ) = A( ) B( ) Βρείτε τη µέγιστη
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (ΟΕΦΕ) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΤΑΞΗ: ΜΑΘΗΜΑ: ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 06 Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΆΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Μ Τετάρτη 7 Απριλίου 06 ιάρκεια Εξέτασης:
Διαβάστε περισσότερα2.3 Πολυωνυμικές Εξισώσεις
. Πολυωνυμικές Εξισώσεις η Μορφή Ασκήσεων: Ασκήσεις που μας ζητούν να λύσουμε μια πολυωνυμική εξίσωση.. Να λυθούν οι εξισώσεις: i. + + + 6 = 0 ii. 7 = iii. ( + ) + 7 = 0 iv. 8 + 56 = 0 i. + + + 6 = 0 (
Διαβάστε περισσότερα5.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ
5.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ. Λογαριθµική συνάρτηση µε βάση α Όταν α > f() = log α Έχει πεδίο ορισµού το (0, + ) Έχει σύνολο τιµών το R Είναι γνησίως αύξουσα Τέµνει τον άξονα των στο σηµείο (, 0) Είναι
Διαβάστε περισσότερα4 η δεκάδα θεµάτων επανάληψης
4 η δεκάδα θεµάτων επανάληψης 31. Έστω Α, Β δύο ενδεχόµενα του ίδιου δειγµατικού χώρου. Αν Ρ(Α ) 0,8 και Ρ(Β ) 0,71 δείξτε ότι Ρ( Α Β) 1,01 Ρ( Α Β) i Το ενδεχόµενο Έχουµε Α Βδεν είναι το κενό. Ρ( Α Β)
Διαβάστε περισσότεραΕπαναληπτικές Ασκήσεις Φάκελος : Άλγεβρα Β-Λυκείου Επιµέλεια : Φωτεινή Καλδή
www.mathematica.gr Επαναληπτικές Ασκήσεις Φάκελος : Άλγεβρα Β-Λυκείου Επιµέλεια : Φωτεινή Καλδή Ασκηση : ίνεται η συνάρτηση f () = ln ( 3 7 + 6 ). Να ϐρεθούν : α) Το πεδίο ορισµού της συνάρτησης f ϐ) Να
Διαβάστε περισσότεραΕΞΙΣΩΣΕΙΣ - 2 ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ. 9). Να λυθούν οι εξισώσεις :
ΕΞΙΣΩΣΕΙΣ - ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ ). Να λυθούν οι εξισώσεις: α). + ( 3 ) 6 = 0 β). 4 ( 3 ) + 3 = 0 γ). + ( ) = 0 δ). 5 + 5 = 0 ε). 4( 3) + 5 + 6 6 = 0 στ).( + 3 ) ( 3 + ) ( 3 ) = 0 η). + (3 ) + (4 3 ) = 0
Διαβάστε περισσότεραΘέµατα Άλγεβρας Γενικής Παιδείας Β Λυκείου 1999 ΕΚΦΩΝΗΣΕΙΣ
Θέµατα Άλγεβρας Γενικής Παιδείας Β Λυκείου 999 Ζήτηµα ο ΕΚΦΩΝΗΣΕΙΣ Α. Έστω Ρ(x) ένα πολυώνυµο του x και ρ ένας πραγµατικός αριθµός. Αν π(x) είναι το πηλίκο και υ(x) το υπόλοιπο της διαίρεσης του πολυωνύµου
Διαβάστε περισσότεραΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΑΛΓΕΒΡΑ ΘΕΜΑ A Α1. Να αποδείξετε ότι: αβ α β (Μονάδες 15) A. Χαρακτηρίστε ως Σωστό (Σ) ή Λάθος (Λ) τις ακόλουθες προτάσεις: 1. Η εξίσωση
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ. β) x 9x. ε) (x 1) 3(x 1) 2(x 1) 0. (2x 1) x 128 0
ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1. Να λύσετε τις εξισώσεις: α) x x 10x 0 5 x 9x γ) x 8x 0 x x x 0 x (x ) 9(x ) ε) (x 1) (x 1) (x 1) 0. Να λύσετε τις εξισώσεις: 5 α) x 0 7 γ) (x ) 1 0 (x 1)
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1
Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες
Διαβάστε περισσότεραii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας
. Δίνεται η εξίσωση, (). i) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει μία τουλάχιστον πραγματική ρίζα. ii) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει δύο ίσες πραγματικές ρίζες. iii) Να βρεθεί ο
Διαβάστε περισσότεραΠΟΛΥΩΝΥΜΑ. Λυμένα Παραδείγματα
ΠΟΛΥΩΝΥΜΑ Λυμένα Παραδείγματα. Να βρεθούν οι τιμές του λ R για τις οποίες το πολυώνυμο Ρ () = (4λ -9) +(λ -λ-) +λ- είναι το μηδενικό. Το Ρ () θα είναι το μηδενικό πολυώνυμο, για εκείνες τις τιμές του λ
Διαβάστε περισσότεραΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Β 2016
ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Β 06 version -6-06 Παρακάτω υπάρχουν θέματα θεωρίας και ασκήσεις που καλύπτουν πιστεύω σε μεγάλο βαθμό την εξεταστέα ύλη. Εχουν στόχο να μας βοηθήσουν να θυμηθούμε την
Διαβάστε περισσότεραΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 A ΦΑΣΗ
ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Ημερομηνία: Σάββατο Ιανουαρίου 09 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α Α. Σχολικό βιβλίο σελίδα 0 ΑΠΑΝΤΗΣΕΙΣ Α. α. Λάθος β. Λάθος γ. Σωστό δ. Σωστό
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. Να εξετάσετε αν είναι ίσες οι συναρτήσεις f, g όταν: x x 2 x x. x x g x. ln x ln x 1 και
Α ΟΜΑΔΑ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Να εξετάσετε αν είναι ίσες οι συναρτήσεις, όταν: () με R και (). Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ Το πεδίο ορισμού της είναι A R. Επομένως A A R Α Θα εξετάσουμε αν για κάθε R ισχύει.
Διαβάστε περισσότερα2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Α' Γενικού Λυκείου. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ
ΘΕΜΑ A ΑΛΓΕΒΡΑ Α' Γενικού Λυκείου Σάββατο 1 Απριλίου 018 ιάρκεια Εξέτασης: ώρες ΘΕΜΑΤΑ Πεδίο ορισμού μιας συνάρτησης f (x) από ένα σύνολο Α σε ένα σύνολο Β ονομάζουμε το σύνολο Α, στο οποίο φαίνονται οι
Διαβάστε περισσότεραlnx ln x ln l x 1. = (0,1) (1,7].
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα
Διαβάστε περισσότεραΑ ΛΥΚΕΙΟ ΓΕΡΑΚΑ. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Σχολικό Έτος ΜΑΝΩΛΗ ΨΑΡΡΑ. Μανώλης Ψαρράς Σελίδα 1
Α ΛΥΚΕΙΟ ΓΕΡΑΚΑ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Σχολικό Έτος 014-15 ΜΑΝΩΛΗ ΨΑΡΡΑ Μανώλης Ψαρράς Σελίδα 1 Α ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΗ 1 η Να λυθούν γραφικά τα συστήματα: y y6 y 5 1 : 1 : 3 : y 6 0 y 5
Διαβάστε περισσότεραΘέματα ενδοσχολικών εξετάσεων Άλγεβρας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων
Διαβάστε περισσότεραΑ Λ Γ Ε Β Ρ Α Σ Υ Σ Τ Η Μ Α Τ Α
Σ Υ Λ Λ Ο Γ Η Α Σ Κ Η Σ Ε Ω Ν Β Λ Υ Κ Ε Ι Ο Υ Α Λ Γ Ε Β Ρ Α Σ Υ Σ Τ Η Μ Α Τ Α α 3y β 5 (1) Αν το (Σ) : 3 αy 5β τους α,β έχει λύση την (, y) = (1, ) να βρείτε () Να λυθούν τα συστήματα : y 4 3 y 5 6 5 6
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότερα4.2. ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ
4.. Η ταυτότητα της διαίρεσης A. Όπως στους ακέραιους αριθμούς, έτσι και στα πολυώνυμα ισχύει η ταυτότητα της διαίρεσης. Πιο συγκεκριμένα ισχύει ότι: Για κάθε ζεύγος πολυωνύμων Δ(x) και δ(x), με δ(x) 0
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ Α - Β ΛΥΚΕΙΟΥ 1. ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ
1. ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ 1. Φυσικοί αριθμοί : Ν = {0,1,,3,4,...}. Ακέραιοι αριθμοί : Ζ = {...-4,-3,-,-1,0,1,,3,4,...} 3. Ρητοί αριθμοί : Q = { ì í, μ Ζ, ν Ζ* } Σημ. Το σύνολο Q των ρητών αριθμών ταυτίζεται με
Διαβάστε περισσότεραΑν α θετικός πραγματικός αριθμός, σε κάθε x αντιστοιχεί η
Εκθετική συνάρτηση Αν α θετικός πραγματικός αριθμός, σε κάθε αντιστοιχεί η δύναμη α. Έτσι ορίζεται η συνάρτηση : f : με f α, 0 α η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α, τότε έχουμε τη σταθερή
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότερα1. Δίνεται η γραφική παράσταση της συνάρτησης f(x)= 3 x με x R.
1. Δίνεται η γραφική παράσταση της συνάρτησης f(x)= 3 x με x R. α) Στο ίδιο σύστημα να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων: g(x) = 3 x + 1 και h(x) = 3 x 1, μετατοπίζοντας κατάλληλα τη γραφική
Διαβάστε περισσότερα7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει
8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y
Διαβάστε περισσότερα4.4 ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ
1 4.4 ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΩΝΥΜΙΚΕΣ Ασκήσεις σχολικού βιβλίου σελίδας 1 14 A Οµάδας 1.i) Να λύσετε την εξίσωση 1 + = 1 Είναι = ( 1) Ε.Κ.Π = ( 1) 0 0 και 1 0 0 και 1 (περιορισµοί)
Διαβάστε περισσότερα5.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ
5.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ Ασκήσεις σχολικού βιβλίου σελίδας 84 85 A Οµάδας. Στο ίδιο σύστηµα αξόνων να παραστήσετε γραφικά τις συναρτήσεις f() = log και g() = log Τι παρατηρείτε; Να δικαιολογήσετε την
Διαβάστε περισσότεραqwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj
qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ klzxcvλοπbnαmqwertyuiopasdfghjklz ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ xcvbnmσγqwφertyuioσδφpγρaηsόρ
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω.
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ 1. Έστω ότι για μια γωνία ω, όπου, ισχύει ότι:. 1 α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. β. Να υπολογίσετε την τιμή της παράστασης:
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_3.ΜλΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α A.. Α.. Α.3. ΘΕΜΑ Β Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ηµεροµηνία: Κυριακή Απριλίου
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0.
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα
Διαβάστε περισσότεραΘΕΜΑ 2 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο.
α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. (Μονάδες 10) β) Να παραστήσετε γραφικά στο επίπεδο τις δυο εξισώσεις
Διαβάστε περισσότεραμε παραμέτρους α, β, γ R α) Να επιλέξετε τιμές για τις παραμέτρους α, β, γ, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1,-4).
Δίνεται το σύστημα: x 2y= 9 ax+ βy= γ με παραμέτρους α, β, γ R α) Να επιλέξετε τιμές για τις παραμέτρους α, β, γ, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1,-4). (Μονάδες 13) β) Να επιλέξετε
Διαβάστε περισσότερα2.2 ιαίρεση Πολυωνύμων
ιαίρεση Πολυωνύμων 1 Να γίνουν οι διαιρέσεις: α) (x 5 - x + x - 9) : (x - 1) β) (x 4-7x + x - 15) : (x + 5) γ) (x - 4αx + α ) : (x - α) δ) [7x - (9α + 7α ) x + 9α ] : (x - α) Με τη βοήθεια του σχήματος
Διαβάστε περισσότερα2 η δεκάδα θεµάτων επανάληψης
η δεκάδα θεµάτων επανάληψης. ίνεται ο κύκλος x + y = 5 και οι εφαπτόµενες σ αυτόν από το σηµείο Μ(0, 0). Αν Α και Β είναι τα σηµεία επαφής, να βρείτε Τις εξισώσεις των εφαπτόµενων Τις συντεταγµένες των
Διαβάστε περισσότεραΠΟΛΥΧΡΟΝΙΑΔΗΣ ΝΙΚΟΣ ΤΑΥΤΟΤΗΤΕΣ
ΘΕΩΡΙΑ Α ΛΥΚΕΙΟΥ ΤΑΥΤΟΤΗΤΕΣ ). (α + β) = α +αβ + β ). (α β) = α αβ + β. 3). (α + β) 3 = α 3 + 3α β +3αβ + β 3 ). (α β) 3 = α 3 3α β +3αβ β 3. 5). α β = (α β)(α + β) 6). α + β = (α + β) αβ. 6). α 3 β 3
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω.
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ 1. Έστω ότι για μια γωνία ω, όπου, ισχύει ότι:. 1 α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. β. Να υπολογίσετε την τιμή της παράστασης:
Διαβάστε περισσότερα