p k = (1- ρ) ρ k. E[N(t)] = ρ /(1- ρ).



Σχετικά έγγραφα
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

Ορισµός. (neighboring) καταστάσεων. ηλαδή στην περίπτωση αλυσίδας Markov. 1.2 ιαµόρφωση µοντέλου

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Γεννήσεων - Θανάτων Εξισώσεις Ισορροπίας - Ουρές Μ/Μ/1, M/M/1/N Προσομοίωση Ουράς Μ/Μ/1/Ν

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little. Β. Μάγκλαρης, Σ. Παπαβασιλείου

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων (2/2) Διαδικασία Γεννήσεων Θανάτων Η Ουρά Μ/Μ/1

Χρησιμοποιείται για να δηλώσουμε τους διάφορους τύπους ουρών. A/B/C. Κατανομή εξυπηρετήσεων

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εκθετική Κατανομή, Στοχαστικές Ανελίξεις Διαδικασίες Απαρίθμησης, Κατανομή Poisson

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2)

ΣΤΑΤΙΣΤΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ ΤΗΛΕΦΩΝΙΚΗΣ ΚΙΝΗΣΗΣ

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 2: Θεμελιώδεις σχέσεις

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές:

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

P (M = n T = t)µe µt dt. λ+µ

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Birth-Death, Ουρές Markov:

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης

Δίκτυα Επικοινωνίας Υπολογιστών Ενότητα 5: Στοιχεία Θεωρίας Τηλεπικοινωνιακής Κίνησης (Στοιχεία ΘΤΚ)

Ηρώων Πολυτεχνείου 9, Ζωγράφου, Αθήνα, Τηλ: , Fax: URL

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης

Θέμα 1 (20%) (α) Πότε είναι εργοδικό το παραπάνω σύστημα; Για πεπερασμένο c, το σύστημα είναι πάντα εργοδικό.

Ηρώων Πολυτεχνείου 9, Ζωγράφου, Αθήνα, Τηλ: , Fax: URL

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Θεωρία Τηλεπικοινωνιακής Κίνησης

1 + ρ ρ ρ3. iπ i = Q = λ λ i=0. n=0 tn. n! Qn, t 0

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 3: Μοντέλα Θεωρίας Αναμονής

H επίδραση των ουρών στην κίνηση ενός δικτύου

Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές:

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ιαστασιοποίηση του Ασύρµατου Μέρους του ικτύου

Ο Π Ε Υ Ελάχιστα γραμμών Ο *maximin (A) Π Ε Υ * minimax (B)

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή

Απλα Συστήματα Αναμονής Υπενθύμιση

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Αναλυτικών Τεχνικών Θεωρίας Πιθανοτήτων για Εφαρμογή σε Ουρές Αναμονής M/G/1

Ονοματεπώνυμο: Ερώτημα: Σύνολο Μονάδες: Βαθμός:

Συστήματα Αναμονής. Ενότητα 6: Θεωρία Ουρών. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Άσκηση Προσομοίωσης Στατιστικές Εξόδου Ουράς Μ/Μ/1 - Θεώρημα Burke Ανοικτά Δίκτυα Ουρών Μ/Μ/1 - Θεώρημα Jackson

Μοντέλα Αναμονής σε Δίκτυα Επικοινωνιών. Ανάλυση Ουρών. Λάζαρος Μεράκος Τμήμα Πληροφορικής &Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών

Δίκτυα Επικοινωνιών ΙΙ. Ενότητα 2: Μοντέλα Συστηµάτων Αναµονής σε Δίκτυα Επικοινωνιών

Συστήματα Αναμονής. Ενότητα 10: Ουρά Μ/Μ/s. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

Markov. Γ. Κορίλη, Αλυσίδες. Αλυσίδες Markov

Δίκτυα Κινητών και Προσωπικών Επικοινωνιών

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems


Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 5: Μαρκοβιανό σύστημα αναμονής Μ/Μ/s

Μοντέλα Συστημάτων Αναμονής σε Δίκτυα Επικοινωνιών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο ιδάσκων : Π.

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαδικασίες Markov Υπενθύμιση

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Παραδείγματα Θεμάτων/Ασκήσεων Συστημάτων Ουρών Αναμονής

Γραπτή Εξέταση στο Μάθημα "ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ" 6ο Εξάμηνο Ηλεκτρολόγων Μηχ. & Μηχ. Υπολογιστών Θέματα και Λύσεις. μ 1.

3.ΟΥΡΕΣ ΑΝΑΜΟΝΗΣ

Τεχνο-οικονοµικά Συστήµατα ιοίκηση Παραγωγής & Συστηµάτων Υπηρεσιών

3. Προσομοίωση ενός Συστήματος Αναμονής.

Καθ. Γιάννης Γαροφαλάκης. ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής

E[X n+1 ] = c 6 z z 2. P X (z) =

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Ροή Δ - 6 ο εξάμηνο, κωδικός

ίκτυα Επικοινωνίας Υπολογιστών

Συστήματα Αναμονής. Ενότητα 9: Ανέλιξη Γέννησης - Θανάτου. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Θεωρία Τηλεπικοινωνιακής Κίνησης

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

ιωνυµική Κατανοµή(Binomial)

ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ

Εργαστηριακή Άσκηση Το σύστημα αναμονής M/G/1

συστημάτων απλής μορφής

Μοντέλα Αναµονής. Μία Ουρά Αναµονής FIFO

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

που αντιστοιχεί στον τυχαίο αριθμό 0.6 δίνει ισχύ P Y Να βρεθεί η μεταβλητή k 2.

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΝΑΠΤΥΞΗ ΔΥΝΑΜΙΚΩΝ ΠΡΟΤΥΠΩΝ ΓΙΑ ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ

DEPARTMENT OF STATISTICS

7. Η ΔΥΝΑΜΙΚΗ ΤΟΥ ΕΡΓΟΣΤΑΣΙΟΥ

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Στατιστική Ι-Θεωρητικές Κατανομές Ι

Κινητές επικοινωνίες. Κεφάλαιο 3 Ένταση κίνησης σε δίκτυο

ΠΡΟΣΟΜΟΙΩΣΗ & ΣΥΣΤΗΜΑΤΑ ΣΤΗΡΙΞΗΣ ΑΠΟΦΑΣΕΩΝ. Διδάσκων: Γεώργιος Γιαγλής. Παράδειγμα Μπαρ

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

Συστήματα Αναμονής. Ενότητα 7: Ουρά Μ/Μ/1. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Εργαστήριο 5: Υπολογισμός της Κίνησης στα Δίκτυα Κινητών Επικοινωνιών

«ίκτυα ουρών αναµονής και Προσοµοίωση: εφαρµογή σε συστήµατα εξυπηρέτησης»

Πανεπιστήµιο Μακεδονίας. Οικονοµικών και Κοινωνικών Επιστηµών. Τµήµα Εφαρµοσµένης Πληροφορικής

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)

Στοχαστικές Μέθοδοι στην Επιχειρησιακή Έρευνα Ι. Λύσεις Ασκήσεων

Κεφάλαιο 6: Προσομοίωση ενός συστήματος αναμονής

Transcript:

ΚΕΦΑΛΑΙΟ 2: CAM 2.1 Συστήµατα Μ/Μ/1 2.1.1 Ανασκόπηση θεωρίας Η ουρά Μ/Μ/1 είναι η πιο σηµαντική διαδικασία ουράς Άφιξη: ιαδικασία Poisson Εξυπηρέτηση: Ακολουθεί εκθετική κατανοµή Εξυπηρετητής: Ένας Χώρος αναµονής: Άπειρος Ας υποθέσουµε ότι N(t) είναι ο αριθµός των πελατών στο σύστηµα (συµπεριλαµβανοµένου και αυτού που εξυπηρετείται τώρα). Τότε N(t) είναι η διαδικασία γέννησης-θανάτου µε: λ k = λ µ k = µ P(Άφιξη ακριβώς ενός πελάτης στο χρονικό διάστηµα [t, t + t]) = λ t P( εδοµένου ότι υπάρχει τουλάχιστον ένας πελάτης στο σύστηµα, ακριβώς µία εξυπηρέτηση ολοκληρώνεται στο χρονικό διάστηµα [t, t + t]) = µ t Μία ουρά M/M/1 είναι η διαδικασία γέννησης-θανάτου µε σταθερό ρυθµό γέννησης (ρυθµό αφίξεων) και σταθερό ρυθµό θανάτου (ρυθµό εξυπηρέτησης). Όταν ρ< 1, τότε p k = P[N(t) = k] = (1- ρ) ρ k, όπου ρ= λ/ µ. 2.1.2 Χρήση (Utilization) Τότε, από το γεγονός ότι p k = 1, έχουµε: p k = (1- ρ) ρ k. Εύκολα προκύπτει ότι: E[N(t)] = ρ /(1- ρ). Η ποσότητα ρ αποκαλείται χρήση (utilization) του συστήµατος. Αφού p 0 είναι η πιθανότητα το σύστηµα να είναι άδειο, τότε ρ= 1- p 0 είναι η πιθανότητα ο m να είναι ο πελάτης υπό εξυπηρέτηση. Όταν ρ 1, τότε το σύστηµα είναι ασταθές (unstable). Πράγµατι, ο αριθµός των πελατών στο σύστηµα θα αρχίσει να τείνει στο. 2.1.3 Εκτίµηση του χρόνου Αναµονής Για τον πελάτη του συστήµατος, ο χρόνος αναµονής είναι πιο σηµαντικός από τον αριθµό των πελατών που βρίσκονται στο σύστηµα. Η πληροφορία σχετικά µε τον χρόνο αναµονής, µπορεί να εξαχθεί µε δύο τρόπους: 2.1.3.1 Ο υπολογισµός του χρόνου αναµονής µε τον τύπο του Little Ας υποθέσουµε ότι Sn είναι ο χρόνος εξυπηρέτησης του n-ιοστού πελάτη και ότι Wn είναι ο χρόνος αναµονής του. Ο χρόνος παραµονής Yn προκύπτει από την σχέση: Yn =Wn+Sn.

E[W] = (ρ/ µ) /(1- ρ). 2.1.4 Κατανοµή του Χρόνου αναµονής των ουρών M/M/1 Ο τύπος του Little δίνει µία εκτίµηση του µέσου χρόνου αναµονής. Η ίδια η κατανοµή, όµως προκύπτει από την παρακάτω σχέση, πού είναι η κατανοµή του Erlang (Erlang distribution). Αν {Si}i=1,...,m είναι µία ακολουθία ανεξάρτητων και ταυτόσηµων τυχαίων µεταβλητών που ακολουθούν την εκθετική κατανοµή και µέσο 1/ µ, και m X = Σ S i, i=1 τότε έχουµε ότι: dp{x t}/dt = [λ( λt) m-1 / (m-1)!] e -λt. Αν W είναι ο χρόνος αναµονής µίας ουράς M/M/1, τότε έχουµε ότι µ (1-ρ) w P [W w] = 1- ρ e 2.2 Παραδείγµατα 2.2.1 Παράδειγµα 1 Ας θεωρήσουµε ένα σύστηµα γέννησης/ θανάτου Μ/Μ/1 µε τα εξής χαρακτηριστικά: Οι µηχανές συνδέονται σε σειρά εν υπάρχουν ενδιάµεσοι χώροι αποθήκευσης. Οι χρόνοι είναι εκθετικοί. Οι εξισώσεις που εκφράζουν αυτό το σύστηµα είναι της µορφής: P k (t), k =0,1 Είναι προφανές, ότι το σύστηµα µπορεί να έχει δύο καταστάσεις: Στην κατάσταση 0 το σύστηµα είναι άδειο Στην κατάσταση 1 το σύστηµα είναι γεµάτο. Ο ρυθµός εισαγωγής στο σύστηµα είναι λ, ενώ ο ρυθµός εξυπηρέτησης είναι µ. Το διάγραµµα ροής των πιθανοτήτων για το παραπάνω σύστηµα είναι το εξής: λ 0 1 µ

Οι διαφορικές εξισώσεις που εκφράζουν το συγκεκριµένο σύστηµα είναι οι εξής: dp 0 /dt = - λ P 0 (t) + µp 1 (t) (1) dp 1 /dt= - µ P 1 (t) + λ P 0 (t) (2) p 0 (t)+p 1 (t) = 1 (3) Από τις σχέσεις (1) και (3), συµπεραίνουµε ότι: dp 0 /dt= -(λ+µ) P 0 (t) + µ Επιλύοντας την διαφορική εξίσωση: P 0 (t)= [µ/ (λ+µ)] + {P 0 (0)- [λ/(λ+µ)]} e (λ+µ)t Προφανώς: P 1 (t) = 1 P 0 (t) 2.2.2 Παράδειγµα 2 Θεωρήστε έναν εξυπηρετητή WWW. Οι χρήστες προσεγγίζουν τον εξυπηρετητή ακολουθώντας µία διαδικασία Poisson µε µέση τιµή 10 προσεγγίσεις/sec. Ο εξυπηρετητής επεξεργάζεται τη κάθε προσέγγιση ανάλογα µε τον χρόνο, που ακολουθεί εκθετική κατανοµή µε µέση τιµή 0.01 sec. λ= 10. 1/ µ= 0.01. ρ= λ/ µ= 10 0.01 = 0.1. Έτσι το σύστηµα έχει χρήση 0.1 και ο αριθµός των πελατών που είναι στην αναµονή έχουν την εξής κατανοµή: P[N(t) = n] = (1- ρ) ρ n = 0.9 0.1 n E[N(t)] =ρ/(1- ρ) = 1/9. 32.3 Η ουρά M/M/m/m 2.3.1 Ανασκόπηση θεωρίας: Ο εύτερος τύπος του Erlang (Erlang-B formula) Αφίξεις: ιαδικασία Poisson Εξυπηρέτηση: Εκθετική κατανοµή Εξυπηρετητές: m Χώρος αναµονής: 0 Όποιος πελάτης εισέρχεται σε µία ουρά M/M/m/m στο χρόνο που όλοι οι εξυπηρετητές είναι απασχοληµένοι θα µπλοκαριστεί και θα χαθεί. Η κατανοµή της σταθερής κατάστασης (steady-state distribution), προκύπτει από τη σχέση: p k = (λ/µ) k m k! Σ(λ/µ) i (1/i!) η πιθανότητα όλοι οι εξυπηρετητές να είναι απασχοληµένοι, ή αλλιώς η Erlang-B formula, δίνεται από τη σχέση:

p m = (λ/µ) m m m! Σ (λ/µ) i (1/i!) Η p m καλείται πιθανότητα µπλοκαρίσµατος (blocking probability). 2.3.2 Παράδειγµα Εκτιµήστε την πιθανότητα µπλοκαρίσµατος (blocking probability) µίας γραµµής εισητηρίων µε 200 γραµµές. Ο µέσος αριθµός των πιθανών τηλεφωνικών κλήσεων από πελάτες είναι 50 κλήσεις/λεπτό και κάθε κλήση έχει µέσο χρόνο εξυπηρέτησης 3 λεπτά. Εποµένως: λ= 50 µ= 1/3 m = 200 Τότε η πιθανότητα µπλοκαρίσµατος µπορεί να υπολογιστεί από την σχέση: p m = (λ/µ) m m m! Σ (λ/µ) i (1/i!)