Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. (Πρόοδοι) ΠΡΟΟΔΟΙ

Σχετικά έγγραφα
Ακολουθίες Αριθµητική Γεωµετρική Πρόοδος

1. * Η ακολουθία είναι µια συνάρτηση µε πεδίο ορισµού το σύνολο Α. Q Β. Ζ* Γ. Ν. Ν* Ε. R

5.3 ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟ ΟΣ

3 ΠΡΟΟΔΟΙ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ( ) Να αποδείξετε ότι για κάθε θετικό ακέραιο ν ισχύει : ! + 2 2! + 3 3! + +ν ν! = (ν + 1)!

Δυνάμεις πραγματικών αριθμών

(πολλδ β) = πολλδ + ( 1) ν β ΕΥΣΤΡΑΤΙΟΣ ΚΩΣΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΘΟ ΙΚΟ ΙΑΙΡΕΤΟΤΗΤΑ

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

ΜΑΘΗΜΑ 9 Γενικές ασκήσεις µιγαδικών

3 ΠΡΟΟΔΟΙ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

+ + = + + α ( β γ) ( )

Ε 1. Διαφορικός λογισμός (Κανόνες παραγώγισης)

ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΤΑΞΗΣ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2003 ΕΚΦΩΝΗΣΕΙΣ

4. * Αν α, β, γ, διαδοχικοί όροι αριθμητικής προόδου τότε β - α = γ - β. Σ Λ

Παρατηρήσεις 1 Για α ααζητήσουµε το όριο της f στο, πρέπει η f α ορίζεται όσο θέλουµε κοτά στο, δηλαδή η f α είαι ορισµέη σ έα σύολο της µορφής ( α, )

ΑΛΓΕΒΡΑ Α' ΛΥΚΕΙΟΥ. Η ΕΞΙΣΩΣΗ αx+β=0

Α. Οι Πραγματικοί Αριθμοί

Κι όµως, τα Ρολόγια «κτυπούν» και Εξισώσεις: Η Άλγεβρα των εικτών του Ρολογιού

Παραδείγµατα στις ακολουθίες. 2. Να γράψετε τους 4 πρώτους όρους των ακολουθιών. 2ν +1. i) α. =, ii)α. = (-1) v. ΛΥΣΗ

1.5 ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ

4.3 ΔΙΑΙΡΕΤΟΤΗΤΑ. Εισαγωγή

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΗΜΑ BOLZANO. και επιπλέον. Αν μία συνάρτηση f είναι ορισμένη σε ένα κλειστό διάστημα [α,β] η f είναι συνεχής στο [α,β]

ΟΡΙΑ. 0 : Παραγοντοποιώ αριθµητή και παρονοµαστή και διώχνω τους παράγοντες x, x 0 που προκύπτουν.

ΛΥΚΕΙΟ ΜΕΤΑΜΟΡΦΩΣΗΣ 2014 ΒΑΣΙΚΗ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

1. Το σύνολο των μιγαδικών αριθμών

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να βρεθεί ο γεωμετρικός τόπος των εικόνων των μιγαδικών z για τους οποίους ισχύει:

Μαθηµατική Επαγωγή 175.

Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

lim f (x) = +. ΣΗΜΕΙΩΣΕΙΣ Μη πεπερασμένο όριο στο x 0 R

στους μιγαδικούς αριθμούς

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÊÏÑÕÖÁÉÏ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

Η παραπάνω ιδιότητα γενικεύεται και για περισσότερους από δύο πραγµατικούς αριθµούς. Έτσι έχουµε: αβγ α β γ = β β. d a β = α

5 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 41.

Α. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ ΠΡΑΞΕΙΣ ΤΟΥΣ

Τι είναι εκτός ύλης. Σχολικό έτος

Θέµατα Άλγεβρας Γενικής Παιδείας Β Λυκείου 2000

5.2 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ

2.2 ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ R ΤΩΝ ΜΙΓΑΔΙΚΩΝ

Θέµατα Άλγεβρας Γενικής Παιδείας Β Λυκείου 2000

Σηµειώσεις στις σειρές

0..1 ΒΑΣΙΚΕΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΝΝΟΙΕΣ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 12 Νοεμβρίου 2016 Β ΓΥΜΝΑΣΙΟΥ ˆ ΑΔΒ.

Μαθηματικά κατεύθυνσης Γ Λυκείου. Όλη η θεωρία και οι ασκήσεις των πανελλαδικών εξετάσεων. Στέλιος Μιχαήλογλου Δημήτρης Πατσιμάς

(Καταληκτική ημερομηνία αποστολής 15/11/2005)

4.7 ΙΣΟΫΠΟΛΟΙΠΟΙ ΑΡΙΘΜΟΙ

1. [0,+ , >0, ) 2. , >0, x ( )

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ

, ο αριθμός στον οποίο αντιστοιχεί ο 2 καλείται δεύτερος όρος της ακολουθίας και τον συμβολίζουμε συνήθως με

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Θεωρία - Μέθοδοι

Ι δ ι ο τ η τ ε ς Π ρ ο σ θ ε σ η ς - Π ο λ λ α π λ α σ ι α σ μ ο υ ΙΔΙΟΤΗΤΑ ΠΡΟΣΘΕΣΗ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Ταυτότητες ΤΑΥΤΟΤΗΤΕΣ

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 3ο : Πρόοδοι)

β± β 4αγ 2 x1,2 x 0.

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ

ΑΛΓΕΒΡΑ. Για να βρούµε την δύναµη i (όπου κ ακέραιος), διαιρούµε το κ µε το 4 και σύµφωνα µε την ταυτότητα της διαίρεσης ισχύει κ=4ρ+υ όπου ρ Ζ

Ορισμός : Ακολουθία ονομάζεται κάθε συνάρτηση με πεδίο ορισμού το σύνολο Ν* των θετικών ακεραίων και παίρνει τιμές στο R. a: Ν* R

ΘΕΩΡΙΑ ΜΙΓΑΔΙΚΩΝ. 1. Τι ονομάζουμε σύνολο Μιγαδικών Αριθμών; Τι ονομάζουμε πραγματικό μέρος - φανταστικό μέρος ενός μιγαδικού αριθμού z = α + βi.

Εκφωνήσεις Λύσεις των θεμάτων

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Λογάριθµοι ΛΟΓΑΡΙΘΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΛΟΓΑΡΙΘΜΟΥΣ

Εκφωνήσεις Λύσεις των θεμάτων

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. Θεωρία Άλυτες Ασκήσεις Θέματα εξετάσεων

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΚΕΦΑΛΑΙΟ 5 ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΗΤΙΚΗ ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

(, )

i) Αν ο φυσικός αριθμός n δεν είναι τετράγωνο ακεραίου, τότε ο n είναι άρρητος.

Πρόοδοι. Κώστας Γλυκός. Αριθμητική & Γεωμετρική ΜΑΘΗΜΑΤΙΚΟΣ. 91 Ασκήσεις. σε 5 σελίδες. Ιδιαίτερα μαθήματα. εκδόσεις. Kglykos.gr.

Ορισµοί, ισότητα, µέτρο, άθροισµα µιγαδικών αριθµών. Μιγαδικό επίπεδο. Γεωµετρική παράσταση του αθροίσµατος µιγαδικών αριθµών.

ΑΚΟΛΟΥΘΙΕΣ - ΠΡΟΟΔΟΙ

ΜΙΓΑΔΙΚΟΙ 9o ΓΕΛ ΠΕΡΙΣΤΕΡΙΟΥ είναι τέλεια, να υπολογίσετε την τιμή της παράστασης: Α = (1 + i) v - (1 - i) v. 15. Αν z μιγαδικός και f (ν) = i

ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ. Κριτήρια διαιρετότητας

α) να βρείτε το άθροισµα των τεσσάρων πρώτων όρων της S 4 και β) το άθροισµα των άπειρων όρων της.

ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΩΝ EΞΙΣΩΣΕΙΣ...47 ΠΡΟΛΟΓΟΣ... 9

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 47) Εισαγωγικό σημείωμα. Λυμένες Ασκήσεις. 2συν x 2συν x 1 συνx συνx 1 x 2κπ, κ οι ζητούμενοι α-

a lim x 1.7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( x ) ΒΑΣΙΚΑ ΟΡΙΑ , a R * ΠΑΡΑΤΗΡΗΣΗ : Ενώ αν f(x) < g(x) κοντά στο x 0, τότε lim f(x) lim g(x)

ΕΡΩΤΗΣΕΙΣ. ικανοποιούν την ανίσωση 2x 3 < 11; (E) µεταξύ των απαντήσεων Α D δεν υπάρχει

Μοριακή Φασµατοσκοπία

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

σ αυτή την περίπτωση; = 610 και το άθροισμα των 12 πρώτων όρων της S 12 = 222. Να βρείτε τη διαφορά και τον 1 ο όρο της.

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β )

4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ 4.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ. Εισαγωγή

Παρουσίαση 1 ΜΕΤΡΑ ΘΕΣΗΣ

2 α1 = 0, αν+1 = 2. Να βρείτε τον αναδρομικό τύπο των ακολουθιών : α. αν = 2ν 3 β. βν = 5 3 ν γ. γν = ν

φ = 2ω = = 2 2(ν 2) + 4 = 2 + 4

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΘΟΔΟΛΟΓΙΑ

ΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ. ορισµοί. Ι ΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ (κεφ. 2 )

Επομένως μια ακολουθία α είναι γεωμετρική πρόοδος αν και μόνο αν ισχύει α, δηλαδή το πηλίκο δύο διαδοχικών όρων είναι σταθερό.

ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ

z = =5 ενώ z 1 z 2. (µε απόδειξη) z = z z I. z = z. z 1 z z όπου z 1 =x 1 +y 1 i και z 2 =x 2 +y 2 i σταθεροί z παριστάνει υπερβολή µε z 2

ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΒΙΒΛΙΟ ΜΑΘΗΤΗ. Η διαίρεση στους φυσικούς αριθμούς

5.5 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΟ C

Transcript:

ΠΡΟΟΔΟΙ Οι πρόοδοι αποτελού µια ειδική κατηγορία τω ακολουθιώ και είαι τριώ ειδώ : αριθµητικές, αρµοικές και γεωµετρικές. ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΟΟΔΟΙ (ΘΕΩΡΙΑ) Ορισµός Μια ακολουθία αριθµώ α, α,, α, α +, θα λέµε ότι αποτελεί αριθµητική πρόοδο τότε και µόο τότε α υπάρχει έας αριθµός ω, ώστε α ισχύει : α + = α + ω, =,, Ο αριθµός ω αποκαλείται λόγος ή διαφορά της αριθµητικής προόδου. Η αριθµητική πρόοδος αποκαλείται και πρόοδος κατά διαφορά, γιατί εύκολα µπορούµε α παρατηρήσουµε ότι η διαφορά δύο διαδοχικώ όρω της είαι σταθερή και ίση µε ω. Παρατηρούµε επίσης ότι α ω > 0, τότε η αριθµητική πρόοδος είαι γησίως αύξουσα, γιατί α + > α, εώ α α ω < 0, τότε η αριθµητική πρόοδος είαι γησίως φθίουσα, γιατί α + < α, και τέλος α ω = 0, τότε η αριθ- µητική πρόοδος είαι µια σταθερή ακολουθία. Ο τύπος για α υπολογίσουµε το ιοστό όρο α µιας αριθµητικής προόδου συαρτήσει του πρώτου όρου της α, της διαφοράς της ω και του, είαι ο εξής : α = α + ( )ω, Ν Αποδεικύεται ότι για µια αριθµητική πρόοδο α µε διαφορά ω και για τους φυσικούς αριθµούς και µ, µε µ<, ισχύει : α +µ + α µ = α + α Αυτό σηµαίει πρακτικά ότι το άθροισµα δύο όρω µιας αριθµητικής προόδου που απέχου εξ ίσου από τους άκρους όρους είαι ίσο µε το άθροισµα τω άκρω όρω. Στη περίπτωση που το πλήθος τω πρώτω όρω µιας αριθµητικής προόδου είαι άρτιο σε πλήθος δε υπάρχει µεσαίος όρος, εώ στη περίπτωση που το πλήθος τω πρώτω όρω µιας αριθµητικής

προόδου είαι περιττό, τότε υπάρχει µεσαίος όρος και το άθροισµα τω ά- κρω όρω είαι ίσο µε το διπλάσιο του µεσαίου όρου. Έας άλλος ορισµός για µια αριθµητική πρόοδο είαι ο εξής : Μια ακολουθία α, =,,, θα λέµε ότι αποτελεί αριθµητική πρόοδο τότε και µόο τότε ότα ισχύει : α = α + α +, =, 3, Αριθµητικός Μέσος Τρεις αριθµοί α, β, γ αποτελού διαδοχικούς όρους µιας αριθµητικής προόδου, ότα και µόο ότα ισχύει : β = α + γ α και γ. Στη περίπτωση αυτή, ο β = α + γ αποκαλείται αριθµητικός µέσος τω Σα γεικό ορισµό, αποκαλούµε αριθµητικό µέσο τω αριθµώ α, α,, α, το πραγµατικό αριθµό : Μ Α = α + +... + α a Άθροισµα Όρω Αριθµητικής Προόδου Το άθροισµα Σ τω πρώτω όρω µιας αριθµητικής προόδου είαι ίσο µε : ( a ). Σ = + a Σ = [ a + ( ) ω]. Παρεµβολή Αριθµητικώ Εδιαµέσω Το πρόβληµα της αριθµητικής παρεµβολής, ότα µας δίοται δύο α- ριθµοί α και β και ο φυσικός αριθµός µ, έγκειται στο α προσδιορίσουµε τους µ αριθµούς x, x,, x µ, ώστε οι αριθµοί α, x, x,, x µ, β α αποτελού διαδοχικούς όρους αριθµητικής προόδου.

Για α λύσουµε το πρόβληµα της αριθµητικής παρεµβολής, αρκεί α υπολογίσουµε τη διαφορά ω της αριθµητικής προόδους που θέλουµε α σχη- µατισθεί. Αποδεικύεται εύκολα ότι : ω = β α µ + Ο παραπάω τύπος αποκαλείται τύπος της αριθµητικής παρεµβολής και οι ζητούµεοι αριθµοί είαι οι εξής : x = α+ω, x = α+ω,, x µ = α+µω Παράσταση τω Όρω µιας Αριθµητικής Προόδου Ότα γωρίζουµε το άθροισµα τω διαδοχικώ όρω µιας αριθµητικής προόδου, τότε α το πλήθος τω όρω είαι περιττό, θα πρέπει α συµβολίσουµε τους όρους ως εξής : x ω,, x ω, x ω, x, x + ω, x + ω,, x + ω όπου το x είαι ο µεσαίος όρος της αριθµητικής προόδου και το ω ο λόγος (διαφορά) της. Από το άθροισµα τω παραπάω όρω απαλείφοται οι όροι µε το ω και έτσι εύκολα υπολογίζουµε το x. Στη περίπτωση τώρα που το πλήθος τω όρω είαι άρτιο, θα πρέπει α συµβολίσουµε τους όρους ως εξής : x ( )ω,, x 3ω, x ω, x + ω, x + 3ω,, x + ( )ω όπου έχουµε δύο µεσαίους όρους, τους x ω και x + ω, η διαφορά της προόδου είαι ίση µε ω και το x δε αποτελεί όρο της προόδου. Χρήσιµα Αθροίσµατα Θα δούµε µερικά χρήσιµα αθροίσµατα τω k (k N) δυάµεω τω πρώτω φυσικώ αριθµώ. ( +) Σ = ++3+ + = Σ = + +3 + + ( + )( + ) = 6 Σ 3 = 3 + 3 +3 3 + + 3 ( + ) = = Σ 3

ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΟΟΔΟΙ (ΑΣΚΗΣΕΙΣ). Να βρεθεί ο ος όρος της αριθµητικής προόδου 0, 3, 6, (Απ. 70).. Να βρεθεί ο αριθµός α ώστε οι αριθµοί 4α+5, 6 και 8α 3 α αποτελού διαδοχικούς όρους αριθµητικής προόδου (Απ. α=0). 3. Ο πρώτος όρος µιας αριθµητικής προόδου είαι ίσος µε 4 και ο 3 ος είαι ίσος µε 40. Να βρεθεί η πρόοδος καθώς και το άθροισµα τω 3 πρώτω όρω της (Απ. ω=3, Σ=.59). 4. Να παρεµβληθού 0 αριθµητικοί εδιάµεσοι αάµεσα στους αριθ- µούς 6 και 7 (Απ. ω=6). 5. Να βρεθού τρεις αριθµοί που α αποτελού διαδοχικούς όρους µιας αριθµητικής προόδου ότα το άθροισµά τους είαι ίσο µε 30 και το γιόµεό τους είαι ίσο µε 90 (Απ. 7, 0, 3 και 3, 0, 7). 6. Να βρεθού τέσσερις αριθµοί που α αποτελού διαδοχικούς όρους µιας αριθµητικής προόδου ότα το άθροισµά τους είαι ίσο µε 36 και το γιόµεό τους είαι ίσο µε 5.760 (Απ. 6, 8, 0, και, 0, 8, 6). 7. Να αποδειχθεί ότι το άθροισµα τω πρώτω περιττώ αριθµώ είαι ίσο µε το τετράγωο του πλήθους τους. 8. Να βρεθεί ο τετραψήφιος αριθµός του οποίου τα ψηφία αποτελού διαδοχικούς όρους αριθµητικής προόδου και το τελευταίο ψηφίο είαι τετραπλάσιο του πρώτου (Απ. 34 και 468). 9. Α οι αριθµοί α, β και γ βρίσκοται στις θέσεις β, γ και α σε µια αριθ- µητική πρόοδο, α αποδειχθεί ότι α=β=γ. 0. Α ο ιοστός όρος µιας ακολουθίας δίεται από το τύπο α = 3+4, α αποδειχθεί ότι η ακολουθία αυτή αποτελεί αριθµητική πρόοδο και α βρεθού ο πρώτος όρος της και η διαφορά της (Απ. α =7, ω=3). + + + 3 +. Να υπολογισθεί το άθροισµα + + + + (Απ. 5 + ). 4

ΑΡΜΟΝΙΚΕΣ ΠΡΟΟΔΟΙ (ΘΕΩΡΙΑ) Ορισµός Μια ακολουθία αριθµώ α, α,, α, α +, θα λέµε ότι αποτελεί αρµοική πρόοδο τότε και µόο τότε α α 0 Ν και υπάρχει έας αριθ- µός ω, ώστε α ισχύει : α + = α + ω, =,, Παρατηρούµε ότι σε µια αρµοική πρόοδο, οι ατίστροφοι τω όρω της µε τη ίδια τάξη αποτελού όρους µιας αριθµητικής προόδου και έτσι η µελέτη µιας αρµοικής προόδου αάγεται στη µελέτη της ατίστοιχης αριθ- µητικής προόδου. Ο τύπος για α υπολογίσουµε το ιοστό όρο α µιας αρµοικής προόδου συαρτήσει του πρώτου όρου της α, της διαφοράς της ω και του, είαι ο εξής : α α = + ( ) ωα, Ν Αρµοικός Μέσος Τρεις αριθµοί α, β, γ αποτελού διαδοχικούς όρους µιας αρµοικής προόδου, ότα και µόο ότα ισχύει : β = αγ α + γ Στη περίπτωση αυτή, ο β αποκαλείται αρµοικός µέσος τω α και γ. Σα γεικό ορισµό, αποκαλούµε αρµοικό µέσο τω αριθµώ α, α,, α 0, το πραγµατικό αριθµό : Μ Η = α + +... + α α Πρέπει α έχουµε υπόψη µας ότι δε υπάρχει τύπος που α δίει το άθροισµα Σ τω πρώτω όρω µιας αρµοικής προόδου. 5

Παρεµβολή Αρµοικώ Εδιαµέσω Το πρόβληµα της αρµοικής παρεµβολής, ότα µας δίοται δύο αριθ- µοί α και β και ο φυσικός αριθµός µ, έγκειται στο α προσδιορίσουµε τους µ αριθµούς x, x,, x µ, ώστε οι αριθµοί α, x, x,, x µ, β α αποτελού διαδοχικούς όρους αρµοικής προόδου. Για α λύσουµε το πρόβληµα της αρµοικής παρεµβολής, αρκεί α παρεµβάλουµε µ αριθµητικούς εδιαµέσους αάµεσα στους αριθµούς α και. β Αποδεικύεται εύκολα ότι : ω = α β ( µ +) αβ Ο παραπάω τύπος αποκαλείται τύπος της αρµοικής παρεµβολής. 6

ΓΕΩΜΕΤΡΙΚΕΣ ΠΡΟΟΔΟΙ (ΘΕΩΡΙΑ) Ορισµός Μια ακολουθία αριθµώ α, α,, α, α +, θα λέµε ότι αποτελεί γεωµετρική πρόοδο τότε και µόο τότε α υπάρχει έας αριθµός λ, ώστε α ισχύει : α + = α. λ, =,, Ο αριθµός λ αποκαλείται λόγος της γεωµετρικής προόδου. Η γεωµετρική πρόοδος αποκαλείται και πρόοδος κατά πηλίκο, γιατί εύκολα µπορούµε α παρατηρήσουµε ότι το πηλίκο δύο διαδοχικώ όρω της είαι σταθερό και ίσο µε λ. Παρατηρούµε επίσης ότι α λ >, τότε η γεωµετρική πρόοδος είαι απολύτως γησίως αύξουσα, γιατί α + > α, εώ α α λ <, τότε η γεωµετρική πρόοδος είαι απολύτως γησίως φθίουσα, γιατί α + < α, και τέλος α λ =, τότε η γεωµετρική πρόοδος είαι µια απολύτως σταθερή ακολουθία. Ο τύπος για α υπολογίσουµε το ιοστό όρο α µιας γεωµετρικής προόδου συαρτήσει του πρώτου όρου της α, του λόγου της λ και του, είαι ο εξής : α = α. λ -, Ν Αποδεικύεται ότι για µια γεωµετρική πρόοδο α µε λόγο λ 0 και για τους φυσικούς αριθµούς και µ, µε µ<, ισχύει : α +µ. α µ = α. α Αυτό σηµαίει πρακτικά ότι το γιόµεο δύο όρω µιας γεωµετρικής προόδου που απέχου εξ ίσου από τους άκρους όρους είαι ίσο µε το γιόµεο τω άκρω όρω. Στη περίπτωση που το πλήθος τω πρώτω όρω µιας γεωµετρικής προόδου είαι άρτιο σε πλήθος δε υπάρχει µεσαίος όρος, εώ στη περίπτωση που το πλήθος τω πρώτω όρω µιας γεωµετρικής προόδου είαι περιττό, τότε υπάρχει µεσαίος όρος και το γιόµεο τω άκρω όρω είαι ίσο µε το τετράγωο του µεσαίου όρου. 7

Έας άλλος ορισµός για µια γεωµετρική πρόοδο είαι ο εξής : Μια ακολουθία α 0, =,,, θα λέµε ότι αποτελεί γεωµετρική πρόοδο τότε και µόο τότε ότα ισχύει : α = α. α +, =, 3, Γεωµετρικός Μέσος Τρεις αριθµοί α, β, γ αποτελού διαδοχικούς όρους µιας γεωµετρικής προόδου, ότα και µόο ότα ισχύει : β = α. γ α. γ αποκαλείται γεωµετρικός µέσος ή µέ- Στη περίπτωση αυτή, ο β = σος αάλογος τω α και γ. Σα γεικό ορισµό, αποκαλούµε γεωµετρικό µέσο τω αριθµώ α, α,, α, το πραγµατικό αριθµό : Μ Γ = α α... α Άθροισµα Όρω Γεωµετρικής Προόδου Το άθροισµα Σ τω πρώτω όρω µιας γεωµετρικής προόδου είαι ίσο µε : Σ = a λ a λ Σ = a( λ ) λ Παρεµβολή Γεωµετρικώ Εδιαµέσω Το πρόβληµα της γεωµετρικής παρεµβολής, ότα µας δίοται δύο α- ριθµοί α και β 0 και ο φυσικός αριθµός µ, έγκειται στο α προσδιορίσουµε τους µ αριθµούς x, x,, x µ, ώστε οι αριθµοί α, x, x,, x µ, β α αποτελού διαδοχικούς όρους γεωµετρικής προόδου. Για α λύσουµε το πρόβληµα της γεωµετρικής παρεµβολής, αρκεί α υπολογίσουµε το λόγο λ της γεωµετρικής προόδους που θέλουµε α σχηµατισθεί. Αποδεικύεται εύκολα ότι : λ = µ+ β α 8

Ο παραπάω τύπος αποκαλείται τύπος της γεωµετρικής παρεµβολής και οι ζητούµεοι αριθµοί είαι οι εξής : x = α.λ, x = α.λ,, x µ = α.λ µ Στη γεωµετρική παρεµβολή διακρίουµε τις εξής περιπτώσεις :. Α το µ είαι άρτιος φυσικός αριθµός, οπότε το µ+ είαι περιττός φυσικός αριθµός, τότε θα έχουµε µία µόο πραγµατική λύση για το λ µε βάση το παραπάω τύπο και µάλιστα θα ισχύει λ>0 α α.β>0 και λ<0 α α.β<0.. Α το µ είαι περιττός φυσικός αριθµός, οπότε το µ+ είαι άρτιος φυσικός αριθµός, και α.β>0 τότε θα έχουµε δύο ετερόσηµες πραγµατικές λύσεις για το λ. 3. Α το µ είαι περιττός φυσικός αριθµός, οπότε το µ+ είαι άρτιος φυσικός αριθµός, και α.β<0 τότε δε θα έχουµε πραγµατικές λύσεις για το λ. Παράσταση τω Όρω µιας Γεωµετρικής Προόδου Ότα γωρίζουµε το γιόµεο τω διαδοχικώ όρω µιας γεωµετρικής προόδου, τότε α το πλήθος τω όρω είαι περιττό, θα πρέπει α συµβολίσουµε τους όρους ως εξής : x x x,,,, x, x.λ, x.λ,, x.λ λ λ λ όπου το x είαι ο µεσαίος όρος της γεωµετρικής προόδου και το λ ο λόγος της. Από το γιόµεο τω παραπάω όρω απαλείφοται οι όροι µε το λ και έτσι εύκολα υπολογίζουµε το x. Στη περίπτωση τώρα που το πλήθος τω όρω είαι άρτιο, θα πρέπει α συµβολίσουµε τους όρους ως εξής : x x x, 5, 3,, x.λ, x.λ 3, x.λ 5, λ λ λ όπου έχουµε δύο µεσαίους όρους, ο λόγος της προόδου είαι ίσος µε λ και το x δε αποτελεί όρο της προόδου. Άθροισµα Άπειρω Όρω Απολύτως Φθίουσας Γεωµετρικής Προόδου Το άθροισµα Σ τω άπειρω όρω µιας απολύτως φθίουσας γεωµετρικής προόδου, µε πρώτο όρο α και λόγο λ, όπου λ <, είαι ίσο µε : α λ 9

ΓΕΩΜΕΤΡΙΚΕΣ ΠΡΟΟΔΟΙ (ΑΣΚΗΣΕΙΣ). Να βρεθεί ο 8 ος όρος της γεωµετρικής προόδου,, 4, (Απ. 8).. Να βρεθεί ο αριθµός α ώστε οι αριθµοί α, 6 και 9 α αποτελού διαδοχικούς όρους γεωµετρικής προόδου (Απ. α=4). 3. Ο πρώτος όρος µιας γεωµετρικής προόδου είαι ίσος µε και ο 7 ος είαι ίσος µε 3. Να βρεθεί η πρόοδος καθώς και το άθροισµα τω 0 πρώτω όρω της (Απ. λ=, Σ=4 8 ). 4. Να παρεµβληθού 4 γεωµετρικοί εδιάµεσοι αάµεσα στους αριθµούς και 64 (Απ. λ=). 5. Να βρεθού τρεις αριθµοί που α αποτελού διαδοχικούς όρους µιας γεωµετρικής προόδου ότα το άθροισµά τους είαι ίσο µε και το γιόµεό τους είαι ίσο µε 6 (Απ. 3, 6, και, 6, 3). 6. Να υπολογισθεί το άθροισµα τω άπειρω όρω,, 8, 3, (Απ. 8 ). 3 7. Να βρεθεί ο ρητός αριθµός που ισούται µε το περιοδικό δεκαδικό 3 αριθµό,555 (Απ. ). 99 8. Να αποδειχθεί ότι οι διαφορές τω διαδοχικώ όρω µιας γεωµετρικής προόδου δηµιουργού επίσης µια γεωµετρική πρόοδο. Ποιος είαι ο λόγος αυτής της γεωµετρικής προόδου; (Απ. λ). 9. Να αποδειχθεί ότι τα τετράγωα τω διαδοχικώ όρω µιας γεωµετρικής προόδου δηµιουργού επίσης µια γεωµετρική πρόοδο. Ποιος είαι ο λόγος αυτής της γεωµετρικής προόδου; (Απ. λ ). 0. Να βρεθεί η απολύτως φθίουσα γεωµετρική πρόοδος της οποίας ο πρώτος όρος είαι ίσος µε τα 5 6 του αθροίσµατος τω άπειρω όρω της και το άθροισµα τω τριώ πρώτω όρω της είαι ίσο µε α =3, λ= 5 3 ). 47 (Απ. 5. Να βρεθεί η απολύτως φθίουσα γεωµετρική πρόοδος της οποίας το άθροισµα τω άπειρω όρω της είαι ίσο µε 6 και το άθροισµα τω τετραγώω τω άπειρω όρω της είαι ίσο µε 8 (Απ. α =4, λ= 3 ).. Α το άθροισµα τω όρω µιας ακολουθίας δίεται από το τύπο Σ = 4, α αποδειχθεί ότι η ακολουθία αυτή αποτελεί γεωµετρική πρόοδο και α βρεθού ο πρώτος όρος και ο λόγος της (Απ. α =3, λ=4). 0