Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 47) Εισαγωγικό σημείωμα. Λυμένες Ασκήσεις. 2συν x 2συν x 1 συνx συνx 1 x 2κπ, κ οι ζητούμενοι α-

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 47) Εισαγωγικό σημείωμα. Λυμένες Ασκήσεις. 2συν x 2συν x 1 συνx συνx 1 x 2κπ, κ οι ζητούμενοι α-"

Transcript

1 Μαθηματικά για τη Β τάξη του Λυκείου ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ τω Κώστα Βακαλόπουλου Bασίλη Καρκάη Εισαγωγικό σημείωμα Παραθέτουμε στα δύο άρθρα που ακολουθού μια σειρά από λυμέες ασκήσεις στα κεφάλαια τω Προόδω και της Εκθετικής και Λογαριθμικής Συάρτησης για έλεγχο τω γώσεω και εμπέδωση της ύ- λης. Προσέξτε στο τέλος κάθε άρθρου τα προβλήματα που παραθέτοται και δείτε τη εφαρμογή τω παραπάω εοιώ στη καθημεριή ζωή. Πρόοδοι Λυμέες Ασκήσεις. α) Το άθροισμα τω πρώτω όρω α- ριθμητικής προόδου α με ιοστό όρο α = + είαι: i) 6 ii) 6 iii) 6 iv) 64 v) 6 Nα επιλέξετε τη σωστή απάτηση. β) Να βρεθού οι τιμές του πραγματικού αριθμού ώστε οι αριθμοί: συ, συ π, ημ α είαι διαδοχικοί όροι αριθμητικής προόδου. γ) Δίεται η γεωμετρική πρόοδος,,,, 6. Δείξτε ότι οι διαφορές μεταξύ δύο διαδοχικώ όρω σχηματίζου μια έα γεωμετρική πρόοδο. Να εξετάσετε α η προηγούμεη ιδιότητα ισχύει γεικά. α) Σωστή απάτηση είαι η (iii) γιατί έχουμε: α 7, ω α α οπότε S β) Θα πρέπει α ισχύει: συ συ ημ συ συ συ συ κπ, κ οι ζητούμεοι α- π ριθμοί. γ) Οι διαφορές τω διαδοχικώ όρω της γεωμετρικής προόδου που δόθηκε σχηματίζου τη ακολουθία: 4,,,,... που προφαώς είαι γεωμετρική πρόοδος με ο όρο α = 4 και λόγο το λ =. Γεικά α έχουμε τη γεωμετρική πρόοδο: α, α λ, α λ, α λ,... με πρώτο όρο α και λόγο λ τότε οι διαφορές τω διαδοχικώ όρω της σχηματίζου τη ακολουθία: α λ α, α λ α λ, α λ α λ,... ή α λ, α λ λ, α λ λ,... που προφαώς είαι γεωμετρική πρόοδος με ο όρο α (λ ) και λόγο λ.. Δίεται η εξίσωση: 7 + = α) Να βρεθού οι ακέραιες ρίζες της. β) Να βρεθεί το άθροισμα S όλω τω ριζώ της εξίσωσης. γ) α βρεθεί η αριθμητική πρόοδος της ο- ποίας ο πρώτος όρος είαι ο α = S και το άθροισμα τω όρω της που βρίσκο- ΕΥΚΛΕΙΔΗΣ Β λστ τ./

2 ται μεταξύ του 8 ου όρου και του ου όρου (από το 9 ο όρο μέχρι και το ο όρο της) ισούται με 48. δ) Να βρεθεί ο όρος α 96 της παραπάω προόδου. ε) Να υπολογιστεί το άθροισμα τω 4 πρώτω όρω της παραπάω προόδου. α) Έχουμε τη εξίσωση: 7 + = () Oι πιθαές ακέραιες ρίζες της () είαι,, 7 εύκολα διαπιστώουμε με το σχήμα Horner ότι από αυτές ρίζα είαι μόο το. β) Λόγω του (α) η () γράφεται: 4 7 () ή 4 7 () Από τη () η γωστή ρίζα από το α) ερώτημα εώ για τη () είαι: Δ = 44 > οπότε αυτή θα έχει δύο ρίζες, με άθροισμα: β 4 4. α Έτσι: α = το άθροισμα τω ριζώ της ε- ξίσωσης () θα είαι: S= + + = 4 + =. γ) Λόγω του (β) ερωτήματος είαι: S = οπότε α = ο πρώτος όρος της ζητούμεης αριθμητικής προόδου. Έτσι α ω η διαφορά της προόδου και Σ = 48 (4) το άθροισμα τω όρω της, μεταξύ του 8 ου και του ου όρου τότε: 8 Σ S S8 α ω α 7ω ω Η (4) 4 468ω ω 44 ω δ) Επίσης: α96 α 96ω ε) Ακόμη: S4 α (4 )ω Α ο ιοστος όρος της ακολουθίας α είαι: α και η ακολουθία β είαι αριθμητική πρόοδος με πρώτο όρο β = και διαφορά ω = τότε: α) Να βρεθεί ο ιοστός όρος της ακολουθίας β. β) Να υπολογιστεί το άθροισμα τω πρώτω όρω της ακολουθίας β γ) Να δειχθεί ότι η ακολουθία γ = α β με είαι γεωμετρική πρόοδος και α βρεθεί, ο πρώτος όρος και ο λόγος της προόδου. δ) Να υπολογιστεί το άθροισμα τω πρώτω όρω της ακολουθίας γ. ε) Να υπολογιστεί το άθροισμα τω πρώτω όρω της ακολουθίας α. α) Για τη ακολουθία β που είαι αριθμητική πρόοδος με β = και ω = έχουμε: β β ω β) Είαι: S β + ω = +9 =4 γ) Έχουμε τη ακολουθία α με τύπο: α Έτσι γ α β οπότε: γ γ σταθερός για κάθε οπότε η γ είαι γεωμετρική πρόοδος με: γ και λ = δ) Α S το ζητούμεο άθροισμα τότε: λ S γ λ 4. ε) Επειδή: γ = α β ή α = β + γ για κάθε οπότε το ζητούμεο άθροισμα είαι: β S S S δ 4. Το έο Ολυμπιακό στάδιο της Αθήας. Ε όψει τω Ολυμπιακώ αγώω του 4 γίεται επέκταση στις κερκίδες του Ολυμπιακού σταδίου μας. Το έο στάδιο θα έχει σειρές καθισμάτω. Η πρώτη σειρά θα έχει 8 καθίσματα και η τελευταία 4.6 εώ ο αριθμός τω καθισμάτω θα αυξάεται εξίσου από σειρά σε σειρά. Υπολογίστε τη έα χωρητικότητα του σταδίου δηλαδή το σύολο τω καθισμάτω του σταδίου, καθώς και τη αύξηση τω καθισμάτω από σειρά σε σειρά. ΕΥΚΛΕΙΔΗΣ Β λστ τ./

3 Οι αριθμοί που δίου το αριθμό τω καθισμάτω κάθε σειράς, αποτελού διαδοχικούς όρους αριθμητικής προόδου (α ) με α = 8, α = 46, =. Α ω ο αριθμός τω καθισμάτω που αυξάεται από σειρά σε σειρά θα ισχύει: α α ω δηλαδή α α ω 46 8 ω ω Το σύολο τω καθισμάτω του σταδίου δίεται από το άθροισμα τω πρώτω όρω τη παραπάω αριθμητικής προόδου. Σ Έτσι:. Ο σύλλογος τω καθηγητώ. Τα μέλη του συλλόγου τω καθηγητώ εός κολλεγίου της Θεσσαλοίκης είαι πολύ ευγεικοί: κάθε πρωί αταλλάσσου όλοι φιλική χειραψία μεταξύ τους. α) Πόσες χειραψίες αταλλάσσοται μεταξύ //6/7/n καθηγητώ. β) Πόσα μέλη έχει ο σύλλογος τω καθηγητώ α κάθε πρωί αταλλάσσοται /9/7/77/n χειραψίες. α) Α ο πρώτος καθηγητής αταλλάσσει χειραψίες (α = ), ο επόμεος θα αταλλάσσει καιούργιες χειραψίες δηλαδή α = α + ( ) =, ο επόμεος α = α + ( ) = κ.ο.κ. Άρα έχουμε αριθμητική πρόοδο με α = και ω =. Σ α ω 6 6 Σ, Σ 6, Άρα: Σ6 8, Σ79 8 n n Σ n... β) Επιλύουμε τις εξισώσεις: + = (η λύση = 7 απορρίπτεται) (η λύση = 4 απορρίπτεται) Στη γεική περίπτωση: n 6. Μία γρήγορη δυσφήμηση «Θα θελα α μη το πω, αλλά η Μαρία από το Β τμήμα έκαε χρήση αρκωτικώ ουσιώ» ψιθύρισε καυχησιάρικα έας συμμαθητής του ε- τελώς αθώου κοριτσιού σ έα φίλο του στη αρχή του σχολείου στις 8 το πρωί. Αυτό δε θα ήτα σηματικό αλλά η υποτιθέμεη είδηση διαδόθηκε το επόμεο εικοσάλεπτο σε άλλους δύο συμμαθητές τους. Αυτοί οι δύο το είπα, στο επόμεο εικοσάλεπτο σε άλλους δύο. Με το ίδιο ρυθμό διαδιδότα η αβάσιμη είδηση σε όλο και περισσότερους μαθητές τα επόμεα εικοσάλεπτα. α) Σχηματίστε μια ακολουθία που α δίει το αριθμό τω μαθητώ που εημερώθηκε μέχρι το τέλος του ου, ου,... ου, εικοσάλεπτου. β) Επίσης μια ακολουθία που α δίει το α- ριθμό τω μαθητώ που εημερώθηκα κατά τη διάρκεια του ου, ου,... ου εικοσάλεπτου. γ) Πόσοι μαθητές γωρίζου μετά τη πάροδο,, εικοσαλέπτω; δ) Πόσοι μαθητές γωρίζου μετά τη πάροδο,, ωρώ; ε) Κάτω από αυτές τις συθήκες, τι ώρα θα έχει αμαυρωθεί η φήμη της Μαρίας σε όλους τους μαθητές του σχολείου; Θεωρούμε τη ακολουθία (α ) που δίει αριθμό τω μαθητώ που εημερώοται κάθε εικοσάλεπτο από το πρώτο που το μαθε απ το αρχικό δυσφημιστή. Η ακολουθία αυτή είαι γεωμετρική πρόοδος με α = και λ =, θετικός ακέραιος. Άρα: α α λ, θετικός ακέραιος. α) Έστω (β ) η ακολουθία που δίει το συολικό ΕΥΚΛΕΙΔΗΣ Β λστ τ./

4 αριθμό μαθητώ που γωρίζου τα έα κάθε εικοσάλεπτο που περάει. Έτσι: β = + Σ, όπου Σ το άθροισμα τω όρω της προόδου α και ο αριθμός τω πρώτω δύο δυσφημιστώ. λ Έτσι: β α λ θετικός ακέραιος. β) Έστω (γ ) η ακολουθία που δίει το σύολο τω μαθητώ που εημερώοται στη διάρκεια κάθε εικοσάλεπτου. Τότε: γ α α λ, θετικός ακέραιος γ) β = + = = 4, β = + = 8, β = + = 4 = 6 δ) η ώρα: β = 4 = 6 η ώρα: β 6 = 7 = 64 η ώρα: β 9 = = 4 Σημείωση: κάθε ώρα έχει εικοσάλεπτα. δ) β 9 8 (δηλ. σε 8 εικοσάλεπτα) Άρα: Η φήμη της Μαρίας θα αμαυρωθεί στις.4 ακριβώς! 7. Από έα Κιέζικο βιβλίο: 9 βιβλία Αριθμητικής Τεχικής που είαι γωστό από το ο μ.χ. αιώα και θεωρείται το αρχαιότερο διδακτικό βιβλίο αριθμητικής, διαβάζουμε τη ά- σκηση: Έα κορίτσι, που ξέρει α υφαίει πολύ καλά, κάει κάθε μέρα το διπλάσιο από τη προηγούμεη. Μετά από μέρες έχει φτιάξει fee (πόδια). Πόσο ύφαε κάθε μέρα; Το ύφασμα που υφαίει κάθε μέρα δίεται από τους όρους μιας γ.π. με πρώτο όρο α το ύφασμα που υφαίει τη πρώτη μέρα και λόγο λ =. Θα ισχύει: α α λ α όπου θετικός ακέραιος. λ Έτσι, Σ α λ Άρα α α α πόδια. Άρα: η μέρα: α πόδια η μέρα: α πόδια η μέρα: α πόδια 4 η 4 μέρα: α4 πόδια η 8 μέρα: α πόδια 8. Σε παλιά Γερμαικά βιβλία συατάμε το παρακάτω πρόβλημα: Έας καβαλάρης θέλει α πεταλώσει το άλογό του. Κάθε πέταλο πρέπει α στερεωθεί με 6 καρφιά. Ο πεταλωτής έχει το εξής παράλογο για πολλούς αλλά πραγματικό τιμοκατάλογο: ο καρφί: λεπτά, ο καρφί: λεπτά, ο καρφί: 4 λεπτά, 4 ο καρφί: 8 λεπτά κ.λ.π. α) Πόσο κοστίζει συολικά το πετάλωμα του αλόγου; β) Α ο καβαλάρης έχει ακριβώς μαζί του. Με πόσα καρφιά μπορεί α στερεώσει κάθε πέταλο από τα 4; Η αξία κάθε καρφιού δίεται από τους όρους μιας ακολουθίας που είαι γ.π. με α = και λ =. Άρα: α = α λ δηλαδή α =, θετικός ακέραιος. α) Προφαώς ο καβαλάρης χρειάζεται 4 καρφιά 4 λ Άρα: Σ4 α άρα 4 4 Σ ή λεπτά Προφαώς το ποσό αυτό είαι απαγορευτικό για το καβαλάρη! β) Πρέπει: Σ < ή Σ < λεπτά δηλαδή λ α <.Άρα < < λ Όμως: = 496 < Δηλαδή ο καβαλάρης μπορεί α αγοράσει καρφιά, οπότε θα στερεώσει κάθε πέταλο με καρφιά (... και θα πάρει και ρέστα!) ΕΥΚΛΕΙΔΗΣ Β λστ τ./4

5 Εκθετική και Λογαριθμική Συάρτηση. Στις παρακάτω ερωτήσεις α επιλεγεί η σωστή απάτηση. α) Η συάρτηση f() = ln( + 6) έχει πεδίο ορισμού το: i) (, ) ii) [,] iii), iv), v),, β) Η συάρτηση f() = log διέρχεται από το σημείο: i) Α(, ) ii) Β(4, 8) iii) (4, 8) iv) ( 4, 8) v) (8, 4) γ) Η παράσταση Α = log είαι ίση με: i) ii) iii) iv) v) log δ) Η παράσταση Β = log log είαι ίση με: i) log ii) log iii) log iv) log v) log ε) Η παράσταση Γ ln ln είαι ίση με: i) iv) ln ii) 8 ln v) ln 8 ln iii) ln στ)η παράσταση Δ = log είαι ίση με: i) ii) iii) iv) v) ζ) Η παράσταση E log log6 εί- 4 αι ίση με: i) log ii) iii) iv) v) log log η) Η παράσταση με: log 8 log Z είαι ίση i) ii) iii) 8 iv) 4 v) θ) Η παράσταση 7 H 7 log 7 4 log είαι ίση με: i) ii) iii) 7 iv) v) log Απατήσεις α) v, β) ii, γ) v, δ) iii, ε) iv, στ) i, ζ) ii, η) ii, θ) ii.. α) Να βρεθού οι, ψ ότα: + ψ = 4 και ψ + = β) Να λυθεί η εξίσωση: ln( ω + ) = ωln γ) Να εξεταστεί α οι, ψ, ω αποτελού διαδοχικούς όρους αριθμητικής προόδου της οποίας α βρεθεί η διαφορά και ο εικοστός όρος. δ) Να λυθεί η αίσωση: log log ψ z ψ ω z με άγωστο το z και τιμές για τους, ψ, ω αυτές που βρέθηκα στα ερωτήματα (α), (β). α) Έχουμε: + ψ = 4 () και ψ ψ () Η () 4 4 () Θέτουμε = ω (4) οπότε η () γίεται: ω 4 + ω 4 = ω ή ω =. Άρα: (αδύατη) ή από τη (): ψ =. 4 και β) Έχουμε τη εξίσωση: ln( ω + ) = ωln με ω γιατί ω + >, για κάθε ω. Έτσι η εξίσωση γράφεται: ω ω ω ω ln ln ω ω () Θέτουμε: ω = u (). Οπότε η () γίεται: u u u = ή u = 4. ω ω Άρα: αδύατη ή ω. γ) Λόγω τω (α), (β) είαι =, ψ =, ω = που προφαώς αποτελού διαδοχικούς όρους αριθμητικής προόδου με πρώτο όρο α = και ΕΥΚΛΕΙΔΗΣ Β λστ τ./

6 διαφορά ω =. α α ω 9 9 Έτσι δ) Έχουμε τη αίσωση: log logψ z ψ ω z log log z z Πρέπει: z z + > που ισχύει για κάθε z γιατί η διακρίουσα του τριωύμου είαι αρητική. Επίσης πρέπει: log z z z z z z που ισχύει για κάθε z για το ίδιο λόγο (Δ < ). log z z Έτσι η () z z z z z.. Α. α) Α ισχύει ln(συ) = τότε ο ι- σούται με: κπ i) κπ, κ ii),κ iii) κπ,κ κπ iv),κ v) κπ,κ Να επιλέξετε τη σωστή απάτηση. β) Έστω α, β, γ, θ θετικοί πραγματικοί αριθμοί διάφοροι του και διάφοροι μεταξύ τους αά δύο. i) Οι λογάριθμοι log α θ, log β θ, log γ θ α μετασχηματιστού σε λογάριθμους με βάση το. logα θ logαθ logβθ ii) Α ισχύει: log θ log θ log θ γ β γ τότε α δείξετε ότι οι αριθμοί α, β, γ είαι διαδοχικοί όροι γεωμετρικής προόδου. Β. α) Τι θα παρατηρούσατε για τις γραφικές παραστάσεις τω συαρτήσεω f () = 7 και f, 7 β) Δίοται οι αριθμοί α = log, β = logψ, ψ γ = log4, δ log, ε log, ζ log με, ψ >. Α οι α, β, γ ψ καθώς και οι δ, ε, ζ αποτελού διαδοχικούς όρους αριθμητικής προόδου. α βρεθού οι, ψ. Α) α) Σωστή απάτηση είαι η (iii). logθ β) i) Είαι: logα θ, logα logθ logθ logβθ, log γθ logβ log γ logα θ logαθ logβθ ii) Επίσης: log θ log θ log θ γ β γ α β γ log θ log θ log θ log θ log θ log θ γ α β log θlog θ log θlog θ α β α γ log θlog θ log θlog θ γ α γ β log θlog θ log θlog θ α β β γ α γ i log θlog θ logθ logθ logθ logθ log α logβ logβ log γ logθ logθ logα log γ + = log α logβ logβ logγ log α logγ log γ logα logβ logαγ logβ αγ β oπότε οι α, β, γ είαι διαδοχικοί όροι γεωμετρικής προόδου. Β) α) Για είαι: f 7 f 7 οπότε οι γραφικές παραστάσεις τω f, f είαι συμμετρικές ως προς το άξοα ψ ψ. β) Έχουμε, ψ >. Εφόσο οι α, β, γ καθώς και οι δ, ε, ζ είαι διαδοχικοί όροι αριθμητικής προόδου θα ισχύει: β α γ log ψ log log 4 και ψ log =log +log ε δ ζ ψ log ψ log 4 ψ 4 ψ log log ψ ΕΥΚΛΕΙΔΗΣ Β λστ τ./6

7 ψ 4 ψ οπότε ψ ψ, (ψ ) 4. α) Να λυθεί η εξίσωση: συ συ στο διάστημα [, π] β) Να λυθεί η εξίσωση: στο διάστημα [, π) γ) Να λυθεί η εξίσωση: συ e e e συ συ ln ln e 7e 6 α) Έχουμε τη εξίσωση: συ συ συ συ συ συ Θέτουμε: συ = ψ () οπότε η () γίεται ψ ψ ψ = ή ψ =. συ π Άρα: συ = άρα ή συ συ άρα =. (υπ όψι [,π] ). β) Έχουμε τη εξίσωση: συ e συ συ συ συ συ e e e e συ συ συ συ συ συ συ συ συ συ συ συ συ ή ή συ οπότε : συ ή συ π 4π ή ή π ή οι λύσεις εφόσο,π γ) Έχουμε τη εξίσωση: ln ln ln ln e 7e 6 e 7e 6 ln Πρέπει >, θέτουμε e ψ οπότε η () γράφεται: ψ 7ψ 6 ψ ψ 6ψ 6 ψ ψ 6 ψ ψψ ψ 6ψ ψ ψ ψ 6 ψ ψ ή ή ψ ή () ψ ψ 6 ψ ln ln Άρα: e αδύατη ή e αδύατη ή ln e η ζητούμεη λύση.. Σε μια περιοχή της ευρωπαϊκής έωσης λόγω τω μέτρω που πάρθηκα ο πληθυσμός τω αγροτώ μειώεται σύμφωα με το όμο της εκθετικής μεταβολής. Α ο αρχικός πληθυσμός ήτα 8 χιλιάδες αγρότες και σε δύο χρόια έμειε ο μισός τότε α βρεθού: α) Η συάρτηση που δίει το πληθυσμό κάθε χροική στιγμή. β) Ποιος θα είαι ο πληθυσμός τω αγροτώ ύστερα από τέσσερα χρόια; γ) Πόσος χρόος θα έχει περάσει ότα ο αγροτικός πληθυσμός της περιοχής θα έχει μειωθεί στους χίλιους αγρότες; α) Εφόσο η μείωση του αγροτικού πληθυσμού ακολουθεί το όμο της εκθετικής μεταβολής e c όπου > (σε θα είαι: χρόια) και c. Έχουμε = 8 χιλιάδες ο αρχικός πληθυσμός και () = 4 χιλιάδες. Έτσι από τη () για = παίρουμε: c c c c e 4 8e e e οπότε: 8 ζητούμεη συάρτηση. β) Λόγω του (α) έχουμε: με > (σε χρόια) η Δηλαδή ύστερα από τέσσερα χρόια ο πληθυσμός τω αγροτώ της περιοχής θα έχει μειωθεί 4 ΕΥΚΛΕΙΔΗΣ Β λστ τ./7

8 στις χιλιάδες. γ) Α () = ( αγρότες) τότε λόγω του (α) είαι: Άρα κάτι τέτοιο θα έχει γίει ύστερα από 6 χρόια. 6. Μία ποσότητα ραδιεεργού υλικού θάβεται και με τη πάροδο του χρόου μειώεται ακολουθώτας το όμο της εκθετικής μεταβολής. α) Α γωρίζουμε ότι μετά από δύο χρόια έχει απομείει το της αρχικής ποσότητας α γραφεί ο τύπος της εκθετικής μεταβολής. β) Α μετά από τέσσερα χρόια η ποσότητα που έχει απομείει είαι κιλό α βρεθεί η αρχική ποσότητα που θάφτηκε. γ) Μετά από πόσα χρόια η ποσότητα που θα έχει απομείει θα είαι 8 κιλά; α) Εφόσο η μείωση της ραδιεεργού ποσότητας είαι: ακολουθεί το όμο της εκθετικής μεταβολής θα e c όπου > (σε χρό- ια) και c. Όμως οπότε από τη () για = παίρουμε: c c e e c c e e οπότε: ο ζητούμεος τύπος β) Είαι (4) = οπότε από το τύπο 4 για = 4 παίρουμε: 4 9 κιλά η ζητούμεη αρχική ποσότητα. γ) Λόγω τω (α), (β) έχουμε: οπότε α 9 θα είαι: Δηλαδή ύστερα από χρόια θα έχει απομείει το κιλά της αρχικής ποσότητας Η ατμοσφαιρική πίεση μειώεται όσο αυξά- α) εται η απόσταση από το φλοιό της γης. Η σχέση μεταξύ πίεσης και ύψους περιγράφεται h προσεγγιστικά από το λεγόμεο βαρομετρικό τύπο ύψους:,88 όπου Ρ η h πίεση στο φλοιό και h το ύψος σε km) α) Α Ρ = mmhg τότε πόση είαι η πίεση σε ύψος:, 7,,,,, 7, μέτρω; β) Τι πίεση επικρατεί στη κορυφή τω παρακάτω βουώ: Όλυμπος (ύψος 87 μ.) Λευκό όρος (487 μ.) Κιλιμάτζαρο (89 μ.) Έβερεστ (8848 μ.) από τη επιφάεια της θάλασσας α η πίεση είαι 99 mmhg στη επιφάεια της θάλασσας. γ) Δώστε τη πίεση στη κορυφή τω παραπάω βουώ ως ποσοστό της πίεσης στη επιφάεια της θάλασσας. δ) Σε μια ειδυλλιακή πόλη σε ύψος 6 μ. από τη θάλασσα μια ωραία μέρα καλοκαιριού μετρήθηκε η πίεση και βρέθηκε 98 mmhg. Σε ποια τιμή πίεση στη ε- πιφάεια της θάλασσας ατιστοιχεί;,,88 9, 7 9 mmhg,7 7,88 9,8 9 mmhg... ΕΥΚΛΕΙΔΗΣ Β λστ τ./8

9 ,88 8, 8 mmhg β) Έστω το βάθος της θάλασσας και Ρ η πίεση στη επιφάειά της. Τότε: 99,88 99,88,88 Ρ : η πίεση στο φλοιό της γης) Α h το ύψος τω βουώ από τη επιφάεια της θάλασσας τότε: Ρ h,88 (όπου Ρ η ζητούμεη πίεση) Άρα: 99,88,88,88 99,88 h h h Έτσι για το Όλυμπο έχουμε:,97 99,88 68, 9 68 mmhg για το Λευκό όρος: 4,87 99,88 8, 8 mmhg για το Κιλιμάτζαρο:,89 99,88 468, 468 mmhg και για το Έβερεστ: 8,848 99,88, 7 mmhg h,88 h γ),88,88 Για τα προηγούμεα βουά ατίστοιχα έχουμε:,97,88 68,87%, 4,87,88 4,9%,,89,88 47,6%, 8,848,88,6% h,6 δ),88,88 96,7% Άρα: 98 96,7% mmhg 8. Για α προστεθεί ο άθρωπος από τη ι- διαίτερα επικίδυη ακτιοβολία γ χρησιμοποιούται τοιχώματα από πυκό μόλυβδο. Η έταση μιας τέτοιας, ακτιοβολίας ότα εισέρχεται στο μόλυβδο ακολουθεί μια εκθετική μείωση. Σε βάθος, cm η έταση έχει μειωθεί στο μισό της αρχικής. α) Ποια συάρτηση περιγράφει τη μείωση της έτασης της ακτιοβολίας, σε πυκό μόλυβδο; β) Σε τι ποσοστό της αρχικής έχει μειωθεί η έτασης της ακτιοβολίας σε βάθος cm / 8 cm / 4 cm / 9 cm/ μέσα σε πυκό μόλυβδο; γ) Συγκρίετε τα αποτελέσματα αυτά με αυτά που ια προκύψου α ατί για πυκό μόλυβδο προστατευθούμε από γ ακτιοβολία επίσης με ερό, αλουμίιο ή πάγο όπου η έταση υποδιπλασιάζεται σε, 9,, 8 cm ατίστοιχα! β) α) Η συάρτηση είαι της μορφής: c e με c <, η αρχική ακτιοβολία, >. Όμως: c, c e e ή Άρα: = =, > 8 8,9,9%,4% 8 8, 4, 4% γ) Η συάρτηση φυσικά αλλάζει και γίεται για το c ερό: e οπότε c c e e c c e e ή Άρα (), > και (),769 7% 8 εώ (8)=,6 6% Να γίου ως άσκηση τα ποσοστά του αλουμιίου και του πάγο ΕΥΚΛΕΙΔΗΣ Β λστ τ./9

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Να γωρίζει τη έοια της ακολουθίας, τους τρόπους που ορίζεται, τις διαφορές της από μία συάρτηση. Να γωρίζει τους ορισμούς της αριθμητικής και γεωμετρικής

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΓΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A Α.. Α.. Α.. A.4. Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηία:

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΤΑΞΗΣ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2003 ΕΚΦΩΝΗΣΕΙΣ

ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΤΑΞΗΣ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2003 ΕΚΦΩΝΗΣΕΙΣ ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΤΑΞΗΣ ΠΕΜΠΤΗ ΜΑΪΟΥ 003 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α. Να αποδείξετε ότι ο ος όρος µιας αριθµητικής προόδου µε πρώτο όρο α 1 και διαφορά ω είαι α = α 1 + (-1)ω. Μοάδες 7 Β. Να γράψετε

Διαβάστε περισσότερα

Ακολουθίες Αριθµητική Γεωµετρική Πρόοδος

Ακολουθίες Αριθµητική Γεωµετρική Πρόοδος Ακολουθίες Αριθµητική Γεωµετρική Πρόοδος Μία συάρτηση α µε πεδίο ορισµού το Ν * λέγεται ακολουθία και συµβολίζεται µε (α ) δηλ. a : N * R : α = α( ) Ο α 1 λέγεται πρώτος όρος της ακολουθίας, ο α δεύτερος

Διαβάστε περισσότερα

1. * Η ακολουθία είναι µια συνάρτηση µε πεδίο ορισµού το σύνολο Α. Q Β. Ζ* Γ. Ν. Ν* Ε. R

1. * Η ακολουθία είναι µια συνάρτηση µε πεδίο ορισµού το σύνολο Α. Q Β. Ζ* Γ. Ν. Ν* Ε. R Ερωτήσεις πολλαπλής επιλογής 1. * Η ακολουθία είαι µια συάρτηση µε πεδίο ορισµού το σύολο Α. Q Β. Ζ* Γ. Ν. Ν* Ε. R. * Η γραφική παράσταση µιας ακολουθίας είαι Α. Μια ευθεία γραµµή Β. Μια παραβολή Γ. Μια

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Του Κώστα Βακαλόπουλου ΑΣΚΗΣΗ (ΣΤΑΤΙΣΤΙΚΗ) Το εύρος (R) τω παρατηρούμεω υψώ τω 00 πελατώ εός γυμαστηρίου είαι cm. A) Να ομαδοποιήσετε τα δεδομέα

Διαβάστε περισσότερα

Εκφωνήσεις Λύσεις των θεμάτων

Εκφωνήσεις Λύσεις των θεμάτων ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άλγεβρα Α Γεικού Ημερησίου Λυκείου Προσθήκη θεμάτω 6 Οκτωβρίου 04 Εκφωήσεις Λύσεις τω θεμάτω Έκδοση η (3//04) Περιέχοται τα θέματα ΓΗ_Α_ΑΛΓ 480 ΓΗ_Α_ΑΛΓ 3073 ΓΗ_Α_ΑΛΓ 3096 ΓΗ_Α_ΑΛΓ 35 ΓΗ_Α_ΑΛΓ

Διαβάστε περισσότερα

Εκφωνήσεις Λύσεις των θεμάτων

Εκφωνήσεις Λύσεις των θεμάτων ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άλγεβρα Α Γεικού Ημερησίου Λυκείου Προσθήκη θεμάτω 8 Νοεμβρίου 04 Εκφωήσεις Λύσεις τω θεμάτω Έκδοση 3 η (//04) Περιέχοται τα θέματα ΓΗ_Α_ΑΛΓ 480 ΓΗ_Α_ΑΛΓ 3073 ΓΗ_Α_ΑΛΓ 3096 ΓΗ_Α_ΑΛΓ 35

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΑΠΑΝΤΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΑΠΑΝΤΗΣΕΙΣ ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηία: Κυριακή Απριλίου ΑΠΑΝΤΗΣΕΙΣ Α.. Θεωρία Σχολικό Βιβλίο (έκδοση ) σελίδα 9. Α.. Θεωρία Σχολικό Βιβλίο (έκδοση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόπουλου ΣΤΑΤΙΣΤΙΚΗ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόπουλου ΣΤΑΤΙΣΤΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόπουλου ΣΤΑΤΙΣΤΙΚΗ Στο άρθρο αυτό θα παρουσιάσουμε μια μικρή συλλογή ασκήσεω οι οποίες καλύπτου τις έοιες που μάθαμε στο κεφάλαιο της Στατιστικής. Σε

Διαβάστε περισσότερα

4. * Αν α, β, γ, διαδοχικοί όροι αριθμητικής προόδου τότε β - α = γ - β. Σ Λ

4. * Αν α, β, γ, διαδοχικοί όροι αριθμητικής προόδου τότε β - α = γ - β. Σ Λ Κεφάλαιο 3ο: ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΟΟΔΟΙ Ερωτήσεις του τύπου Σωστό-Λάθος. * Ο ιοστός όρος α μιας αριθμητικής προόδου με διαφορά ω είαι α = α + ( - ) ω. Σ Λ (α + α ). * Το άθροισμα τω πρώτω όρω μιας αριθμητικής

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΑΠΑΝΤΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ε_.ΜλΓΑ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηία: Κυριακή Απριλίου ΘΕΜΑ A ΑΠΑΝΤΗΣΕΙΣ Α.. Θεωρία Σχολικό Βιλίο (έκδοση ) σελίδα 9. Α.. Θεωρία Σχολικό Βιλίο

Διαβάστε περισσότερα

ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ

ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ Ρωτήσαμε 50 μαθητές μιας τάξης για το αριθμό τω αδελφώ τους Οι απατήσεις που πήραμε είαι: 0,,,,4,5 Α v, v, v, v4, v5, v 6 είαι οι ατίστοιχες συχότητες τους

Διαβάστε περισσότερα

ΓΙΑ ΜΙΑ ΕΠΑΝΑΛΗΨΗ ΣΤΗΝ ΥΛΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΓΙΑ ΜΙΑ ΕΠΑΝΑΛΗΨΗ ΣΤΗΝ ΥΛΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Περιοδικό ΕΥΚΕΙΔΗ Β Ε.Μ.Ε. (τεύχος 7) ΕΡΩΤΗΕΙ ΚΑΤΑΝΟΗΗ ΓΙΑ ΜΙΑ ΕΠΑΝΑΗΨΗ ΤΗΝ ΥΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ Α) Να χαρακτηρίσετε τις παρακάτω προτάσεις με () α είαι σωστές και με () α είαι λάθος, αιτιολογώτας

Διαβάστε περισσότερα

lim f (x) = +. ΣΗΜΕΙΩΣΕΙΣ Μη πεπερασμένο όριο στο x 0 R

lim f (x) = +. ΣΗΜΕΙΩΣΕΙΣ Μη πεπερασμένο όριο στο x 0 R ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ R - ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ - ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΑΚΟΛΟΥΘΙΑΣ [Κεφ..6: Μη Πεπερασμέο Όριο στο R - Κεφ..7: Όρια Συάρτησης

Διαβάστε περισσότερα

στους μιγαδικούς αριθμούς

στους μιγαδικούς αριθμούς Πράξεις στους μιγαδικούς αριθμούς Πρόσθεση μιγαδικώ αριθμώ Βασικές ασκήσεις Βασική θεωρία α) ) Πώς γίεται η πρόσθεση δύο μιγαδικώ αριθμώ; ) Ποια είαι η γεωμετρική ερμηεία του αθροίσματος δύο μιγαδικώ;

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ 9o ΓΕΛ ΠΕΡΙΣΤΕΡΙΟΥ είναι τέλεια, να υπολογίσετε την τιμή της παράστασης: Α = (1 + i) v - (1 - i) v. 15. Αν z μιγαδικός και f (ν) = i

ΜΙΓΑΔΙΚΟΙ 9o ΓΕΛ ΠΕΡΙΣΤΕΡΙΟΥ είναι τέλεια, να υπολογίσετε την τιμή της παράστασης: Α = (1 + i) v - (1 - i) v. 15. Αν z μιγαδικός και f (ν) = i Να βρεθού οι πραγματικοί αριθμοί κ,λ για τους οποίους οι μιγαδικοί = 4 κ + λ + 7 κ και w = 7 (λ ) α είαι ίσοι Να βρεθού οι κ, λr ώστε ο = (8κ + κ) + 4λ + ( ) α είαι ίσος με το μηδέ Να βρείτε για ποιες

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΜΕΤΑΜΟΡΦΩΣΗΣ 2014 ΒΑΣΙΚΗ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

ΛΥΚΕΙΟ ΜΕΤΑΜΟΡΦΩΣΗΣ 2014 ΒΑΣΙΚΗ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ 1. Τι λέγεται δειγματικός χώρος εός πειράματος τύχης. Το σύολο τω δυατώ αποτελεσμάτω λέγεται δειγματικός χώρος (sample space) και συμολίζεται συήθως με το γράμμα Ω. Α δηλαδή ω 1,ω 2,...,ω κ είαι τα δυατά

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ ΕΠΝΛΗΠΤΙΚΕΣ ΣΚΗΣΕΙΣ ΛΓΕΡΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΘΟΥΣ ΠΙΘΝΟΤΗΤΕΣ 1. Για οποιαδήποτε εδεχόμεα, εός δειγματικού χώρου Ω ισχύει η σχέση PA B= PA+ PB. ( ) ( ) ( ). Ισχύει ότι PA ( B) + PA ( B) = PA ( ) + PB ( )

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÊÏÑÕÖÁÉÏ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÊÏÑÕÖÁÉÏ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 04 Ε_.ΜλΑ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ηµεροµηία: Κυριακή 7 Απριλίου 04 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ Α. α) Λάθος (βλέπε σελίδα 4 του σχολικού βιβλίου, Το σωστό

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. Για να βρούµε την δύναµη i (όπου κ ακέραιος), διαιρούµε το κ µε το 4 και σύµφωνα µε την ταυτότητα της διαίρεσης ισχύει κ=4ρ+υ όπου ρ Ζ

ΑΛΓΕΒΡΑ. Για να βρούµε την δύναµη i (όπου κ ακέραιος), διαιρούµε το κ µε το 4 και σύµφωνα µε την ταυτότητα της διαίρεσης ισχύει κ=4ρ+υ όπου ρ Ζ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ ο ΜΙΓΑΔΙΚΟΙ - ΜΕΘΟΔΟΛΟΓΙΑ κ Για α βρούµε τη δύαµη i (όπου κ ακέραιος), διαιρούµε το κ µε το 4 και σύµφωα µε τη ταυτότητα της διαίρεσης ισχύει κ=4ρ+υ όπου ρ Ζ και υ = 0,,, οπότε i κ 4ρ+

Διαβάστε περισσότερα

1. [0,+ , >0, ) 2. , >0, x ( )

1.  [0,+   ,      >0,   ) 2. ,    >0,  x   ( ) Σελίδα 1 από 5 ΝΙΟΣΤΕΣ ΡΙΖΕΣ ΤΑ ΣΥΜΒΟΛΑ α, α ΣΧΕΤΙΚΑ ΘΕΜΑΤΑ του Ατώη Κυριακόπουλου 1 ΡΙΖΕΣ ΣΤΟ ΣΥΝΟΛΟ R = [, ) Θεώρηµα και ορισµός οθέτος, εός πραγµατικού αριθµού α και εός φυσικού αριθµού >, υπάρχει έας

Διαβάστε περισσότερα

Κι όµως, τα Ρολόγια «κτυπούν» και Εξισώσεις: Η Άλγεβρα των εικτών του Ρολογιού

Κι όµως, τα Ρολόγια «κτυπούν» και Εξισώσεις: Η Άλγεβρα των εικτών του Ρολογιού Κι όµως, τα Ρολόγια «κτυπού» και Εξισώσεις: Η Άλγεβρα τω εικτώ του Ρολογιού Εισαγωγικά ηµήτρης Ι. Μπουάκης Σχ. Σύµβουλος Μαθηµατικώ Σε ορισµέα βιβλία Αριθµητικής, αλλά κυρίως Άλγεβρας Β Γυµασίου και Α

Διαβάστε περισσότερα

Ε 1. Διαφορικός λογισμός (Κανόνες παραγώγισης)

Ε 1. Διαφορικός λογισμός (Κανόνες παραγώγισης) Ε Διαφορικός λογισμός Καόες παραγώγισης Σελίδα από Πότε μια συάρτηση λέγεται παραγωγίσιμη στο σημείο του πεδίου ορισμού της ; Μια συάρτηση λέμε ότι είαι παραγωγίσιμη σ έα σημείο του πεδίου ορισμού της,

Διαβάστε περισσότερα

a lim x 1.7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( x ) ΒΑΣΙΚΑ ΟΡΙΑ , a R * ΠΑΡΑΤΗΡΗΣΗ : Ενώ αν f(x) < g(x) κοντά στο x 0, τότε lim f(x) lim g(x)

a lim x 1.7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( x ) ΒΑΣΙΚΑ ΟΡΙΑ , a R * ΠΑΡΑΤΗΡΗΣΗ : Ενώ αν f(x) < g(x) κοντά στο x 0, τότε lim f(x) lim g(x) 7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( ) ΒΑΣΙΚΑ ΟΡΙΑ + - - a v α άρτιος α περιττός 0 ar * ΠΑΡΑΤΗΡΗΣΗ : Εώ α f() < g() κοτά στο 0 τότε f() g() ότα + εώ f()

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α' ΛΥΚΕΙΟΥ. Η ΕΞΙΣΩΣΗ αx+β=0

ΑΛΓΕΒΡΑ Α' ΛΥΚΕΙΟΥ. Η ΕΞΙΣΩΣΗ αx+β=0 Η ΕΞΙΣΩΣΗ α+β=0 εξισώσεις πρώτου βαθμού. Να λύσετε τις παρακάτω εξισώσεις: α) 5 ( ) = ( ) β) 8( ) ( ) = ( + ) 5(5 ) γ) (5 ) ( ) = ( + ) δ) (-)-(-)=7( -)-(+). Να λύσετε τις παρακάτω εξισώσεις: 5 α) β) 8

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει α είαι σε θέση: 1 Να μπορεί α βρίσκει απο τη γραφική παράσταση μιας συάρτησης το πεδίο ορισμού της το σύολο τιμώ της τη τιμή της σε έα σημείο x 2

Διαβάστε περισσότερα

5 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 41.

5 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 41. ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 5 η ΕΚΑ Α 4. Έστω Ω { ω, ω, ω, ω 4 } ο δειγµατικός χώρος εός πειράµατος τύχης και τα εδεχόµεα Α {ω, ω }, Β {ω, ω 4 } + Α είαι P(A B) και Ρ( Β Α ), όπου θετικός ακέραιος τότε + 4 Να αποδείξετε

Διαβάστε περισσότερα

Γραπτές ανακεφαλαιωτικές προαγωγικές και απολυτήριες εξετάσεις

Γραπτές ανακεφαλαιωτικές προαγωγικές και απολυτήριες εξετάσεις Γραπτές αακεφαλαιωτικές προαγωγικές και απολυτήριες εξετάσεις Δρ. Πααγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Για το υπολογισμό του βαθμού της ετήσιας επίδοσης τω

Διαβάστε περισσότερα

Τι είναι εκτός ύλης. Σχολικό έτος

Τι είναι εκτός ύλης. Σχολικό έτος Τι είαι εκτός ύλης. Σχολικό έτος 06-07 ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε. Το Λεξιλόγιο της Λογικής...9 Ε. Σύολα...3 ΚΕΦΑΛΑΙΟ o: Πιθαότητες. Δειγματικός Χώρος - Εδεχόμεα...0. Έοια της Πιθαότητας...9 ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

3 ΠΡΟΟΔΟΙ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

3 ΠΡΟΟΔΟΙ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΟΔΟΙ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. ΑΚΟΛΟΥΘΙΕΣ. Να βρείτε τους τέσσερις πρώτους όρους τω ακολουθιώ: α) α = + + β) α = 4 γ) α = δ) α = (-) + +. + 4 Να αποδείξετε ότι όλοι οι όροι της ακολουθίας α =

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να βρεθεί ο γεωμετρικός τόπος των εικόνων των μιγαδικών z για τους οποίους ισχύει:

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να βρεθεί ο γεωμετρικός τόπος των εικόνων των μιγαδικών z για τους οποίους ισχύει: ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i. ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ ΕΠΝΛΗΠΤΙΚΕΣ ΣΚΗΣΕΙΣ ΛΓΕΡΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΘΟΥΣ ΠΙΘΝΟΤΗΤΕΣ 1. Για οποιαδήποτε εδεχόμεα, εός δειγματικού χώρου Ω ισχύει η σχέση PA B= PA+ PB. ( ) ( ) ( ). Ισχύει ότι PA ( B) + PA ( B) = PA ( ) + PB ( )

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ. ορισµοί. Ι ΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ (κεφ. 2 )

ΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ. ορισµοί. Ι ΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ (κεφ. 2 ) ΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ 1 ορισµοί Ι ΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ (κεφ. 2 ) Γησίως αύξουσα: σε έα διάστηµα του πεδίου ορισµού της λέγεται µια συάρτηση f ότα για κάθε χ 1,χ 2 µε χ 1

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου Επααληπτικό Διαγώισμα Μαθηματικώ Γεικής Παιδείας Γ Λυκείου Θέμα A Α.α) Τι οομάζουμε συάρτηση και τι οομάζουμε πραγματική συάρτηση πραγματικής μεταβλητής; β) Τι λέγεται τιμή μιας συάρτησης f στο χ ; γ)

Διαβάστε περισσότερα

Παρατηρήσεις 1 Για α ααζητήσουµε το όριο της f στο, πρέπει η f α ορίζεται όσο θέλουµε κοτά στο, δηλαδή η f α είαι ορισµέη σ έα σύολο της µορφής ( α, )

Παρατηρήσεις 1 Για α ααζητήσουµε το όριο της f στο, πρέπει η f α ορίζεται όσο θέλουµε κοτά στο, δηλαδή η f α είαι ορισµέη σ έα σύολο της µορφής ( α, ) Η έοια του ορίου Όριο συάρτησης Ότα οι τιµές µιας συάρτησης f προσεγγίζου όσο θέλουµε έα πραγµατικό αριθµό l, καθώς το προσεγγίζει µε οποιοδήποτε τρόπο το αριθµό, τότε γράφουµε lim f() = l και διαβάζουµε

Διαβάστε περισσότερα

5.3 ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟ ΟΣ

5.3 ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟ ΟΣ 5. ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟ ΟΣ ΘΕΩΡΙΑ. Ορισµός Μια ακολουθία λέγεται γεωµετρική πρόοδος, α και µόο α κάθε όρος της προκύπτει από το προηγούµεό του µε πολλαπλασιασµό επί το ίδιο πάτοτε µη µηδεικό αριθµό.. Μαθηµατική

Διαβάστε περισσότερα

3 ΠΡΟΟΔΟΙ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

3 ΠΡΟΟΔΟΙ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ 3 ΠΡΟΟΔΟΙ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ 3. ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟ 1. Να σημειώσετε το σωστό () ή το λάθος () στους παρακάτω ισχυρισμούς: 1 1 1 1 1 1. Η ακολουθία,,,,,... είαι αριθμητική πρόοδος. 4 6 8 10.

Διαβάστε περισσότερα

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΣΩΣΤΑ ΛΑΘΟΣ

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΣΩΣΤΑ ΛΑΘΟΣ ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΣΩΣΤΑ ΛΑΘΟΣ 1. Στο διπλανό σχήμα δίνεται η γραφική παράσταση της συνάρτησης f( ). 1 5 Να χαρακτηρίσετε ως σωστό (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις.. i) Η f έχει πεδίο

Διαβάστε περισσότερα

1.5 ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ

1.5 ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ ΜΕΡΟΣ Α.5 ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ 67.5 ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ ΟΡΙΣΜΟΣ Οομάζουμε ταυτότητα κάθε ισότητα που περιέχει μεταβλητές και επαληθεύεται για όλες τις τιμές τω μεταβλητώ αυτώ. Τετράγωο αθροίσματος

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΕΚΦΩΝΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α.. Να αποδείξετε ότι η παράγωγος της συάρτησης f ( ), για κάθε R. Α.. Α.. (

Διαβάστε περισσότερα

Μετρήσεις Χρόνου Η ακρίβεια

Μετρήσεις Χρόνου Η ακρίβεια Μετρήσεις Χρόου Η ακρίβεια 1. 1. Παρατηρώτας διάφορες συσκευές μέτρησης του χρόου στις παρακάτω εικόες, ατιστοίχισε ποιες είαι "κλεψύδρα", "ααλογικές", "ηλιακές", "ψηφιακές" και συμπλήρωσε το παρακάτω

Διαβάστε περισσότερα

5.5 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΟ C

5.5 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΟ C 5 55 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΟ C Εισαγωγή Η επίλυση τω εξισώσεω ου και 4ου βαθμού, η ααγκαστική επαφή με τους μιγαδικούς αριθμούς για τη έκφραση τω πραγματικώ ριζώ και η εξέλιξη του αλγεβρικού λογισμού

Διαβάστε περισσότερα

Μαθηματικά για την B Λυκείου. ισχύει: Q 3. c 3. e 2 e 8. Άρα: Οπότε: Q ,2 10. t N 0,5, όπου t σε ώρες. Άρα: 0. Άρα: Γ)

Μαθηματικά για την B Λυκείου. ισχύει: Q 3. c 3. e 2 e 8. Άρα: Οπότε: Q ,2 10. t N 0,5, όπου t σε ώρες. Άρα: 0. Άρα: Γ) Τάξη: Β Εκθετική και Λογαριθμική Συνάρτηση Α. ΕΚΘΕΤΙΚΗ ΜΕΤΑΒΟΛΗ Πολλά φαινόμενα της πραγματικότητας συνδέονται με την έννοια της εκθετικής μεταβολής. Θα αναφέρουμε λίγα τέτοια προβλήματα για κατανόηση

Διαβάστε περισσότερα

ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ( ) Να αποδείξετε ότι για κάθε θετικό ακέραιο ν ισχύει : ! + 2 2! + 3 3! + +ν ν! = (ν + 1)!

ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ( ) Να αποδείξετε ότι για κάθε θετικό ακέραιο ν ισχύει : ! + 2 2! + 3 3! + +ν ν! = (ν + 1)! ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ 1. Να αποδείξετε ότι για κάθε θετικό ακέραιο ισχύει : 1 + 1 1! +! +! + +! = ( + 1)!. Να αποδείξτε ότι 6 10 [ ( 1) ] = ( + 1) ( + ) ( + ) (), για κάθε θετικό ακέραιο.. Να αποδείξετε ότι

Διαβάστε περισσότερα

(Καταληκτική ημερομηνία αποστολής 15/11/2005)

(Καταληκτική ημερομηνία αποστολής 15/11/2005) η Εργασία 005-006 (Καταληκτική ημερομηία αποστολής 5//005) Άσκηση (0 μοάδες). (α) Δείξτε αλγεβρικά πώς βρίσκοται δύο διαύσματα A και B, εά είαι γωστά το άθροισμά τους S και η διαφορά τους D (β) Βρείτε

Διαβάστε περισσότερα

4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ 4.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ. Εισαγωγή

4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ 4.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ. Εισαγωγή 4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ 4.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ Εισαγωγή Η Θεωρία Αριθμώ, δηλαδή η μελέτη τω ιδιοτήτω τω θετικώ ακεραίω, έθεσε από πολύ ωρίς τους μαθηματικούς μπροστά στο εξής πρόβλημα: Κάποια πρόταση αληθεύει

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Ημερομηνία: Σάββατο Μαΐου 09 Διάρκεια Εξέτασης: ώρες ΘΕΜΑ Α A. Σχολικό βιβλίο σελίδα 4. ΑΠΑΝΤΗΣΕΙΣ Α. α. Λάθος, β. Λάθος, γ. Σωστό, δ. Λάθος,

Διαβάστε περισσότερα

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. (Πρόοδοι) ΠΡΟΟΔΟΙ

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. (Πρόοδοι) ΠΡΟΟΔΟΙ ΠΡΟΟΔΟΙ Οι πρόοδοι αποτελού µια ειδική κατηγορία τω ακολουθιώ και είαι τριώ ειδώ : αριθµητικές, αρµοικές και γεωµετρικές. ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΟΟΔΟΙ (ΘΕΩΡΙΑ) Ορισµός Μια ακολουθία αριθµώ α, α,, α, α +, θα λέµε

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΟ ΥΛΙΚΟ. στην ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. Κ Ε Φ Α Λ Α Ι Ο 5 ο

ΔΙΔΑΚΤΙΚΟ ΥΛΙΚΟ. στην ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. Κ Ε Φ Α Λ Α Ι Ο 5 ο ΔΙΔΑΚΤΙΚΟ ΥΛΙΚΟ στην ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κ Ε Φ Α Λ Α Ι Ο 5 ο Ε Κ Θ ΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ Ερωτήσεις αντικειμενικού τύπου Ερωτήσεις Θεωρίας Θέματα της Τράπεζας Θεμάτων του Υπουργείου Προτεινόμενα

Διαβάστε περισσότερα

2.2 ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ R ΤΩΝ ΜΙΓΑΔΙΚΩΝ

2.2 ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ R ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ R ΤΩΝ ΜΙΓΑΔΙΚΩΝ Σύμφωα με το ορισμό του R, η πρόσθεση και ο πολλαπλασιασμός δύο μιγαδικώ αριθμώ γίοται όπως ακριβώς και οι ατίστοιχες πράξεις με διώυμα α + βx στο, όπου βέβαια ατί για

Διαβάστε περισσότερα

1. Το σύνολο των μιγαδικών αριθμών

1. Το σύνολο των μιγαδικών αριθμών Το σύολο τω μιγαδικώ αριθμώ Γωρίζουμε ότι η εξίσωση δε έχει λύση στο σύολο τω πραγματικώ αριθμώ Για α ξεπεράσουμε αυτή τη αδυαμία «μεγαλώσαμε» το σύολο και δημιουργήσαμε το σύολο, έτσι, ώστε α έχει τις

Διαβάστε περισσότερα

2.5 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΟ R

2.5 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΟ R ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ 5 5 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΟ R Εισαγωγή Η επίλυση τω εξισώσεω ου και 4ου βαθμού, η ααγκαστική επαφή με τους μιγαδικούς αριθμούς για τη έκφραση τω πραγματικώ ριζώ και η εξέλιξη του αλγεβρικού

Διαβάστε περισσότερα

Πανελλαδικες Εξετασεις Γ Λυκειου Μαθηµατικα Γενικης Παιδειας

Πανελλαδικες Εξετασεις Γ Λυκειου Μαθηµατικα Γενικης Παιδειας ΘΕΜΑ Α. Παελλαδικες Εξετασεις Γ Λυκειου Μαθηµατικα Γεικης Παιδειας Θέµατα-Εδεικτικές Λύσεις Νικόλαος. Κατσίπης 17 Μαϊου 2010 Α1. Εστω t 1, t 2,..., t οι παρατηρήσεις µιας ποσοτικής µεταβλητής X εός δείγµατος

Διαβάστε περισσότερα

ΜΑΘΗΜΑ Πράξεις Συζυγής

ΜΑΘΗΜΑ Πράξεις Συζυγής ΜΑΘΗΜΑ. Πράξεις Συζυγής Ασκήσεις Εξισώσεις Από σχέση σε σχέση ΑΣΚΗΣΕΙΣ. Α, είαι οι ρίζες της εξίσωσης + i + = + i. 5 = 7 + i + 5 + 7 = 0 + = = = 7, α αποδείξετε ότι =, = 7 = 7 ( + ) + i = + i 5 7 5 = 6

Διαβάστε περισσότερα

Α. Οι Πραγματικοί Αριθμοί

Α. Οι Πραγματικοί Αριθμοί ΠΑΡΑΡΤΗΜΑ Α Οι Πραγματικοί Αριθμοί Α1 Να τοποθετήσετε σε φθίουσα σειρά τους αριθμούς: 01 0 15, 0 15,, 01 5 5 A Να υπολογίσετε τη τιμή της παράστασης 4 1 A Να ρεθού το πηλίκο και το υπόλοιπο της διαίρεσης

Διαβάστε περισσότερα

Αν α θετικός πραγματικός αριθμός, σε κάθε x αντιστοιχεί η

Αν α θετικός πραγματικός αριθμός, σε κάθε x αντιστοιχεί η Εκθετική συνάρτηση Αν α θετικός πραγματικός αριθμός, σε κάθε αντιστοιχεί η δύναμη α. Έτσι ορίζεται η συνάρτηση : f : με f α, 0 α η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α, τότε έχουμε τη σταθερή

Διαβάστε περισσότερα

5.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ

5.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ 5.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ Ασκήσεις σχολικού βιβλίου σελίδας 84 85 A Οµάδας. Στο ίδιο σύστηµα αξόνων να παραστήσετε γραφικά τις συναρτήσεις f() = log και g() = log Τι παρατηρείτε; Να δικαιολογήσετε την

Διαβάστε περισσότερα

Μαθηματικά κατεύθυνσης Γ Λυκείου. Όλη η θεωρία και οι ασκήσεις των πανελλαδικών εξετάσεων. Στέλιος Μιχαήλογλου Δημήτρης Πατσιμάς

Μαθηματικά κατεύθυνσης Γ Λυκείου. Όλη η θεωρία και οι ασκήσεις των πανελλαδικών εξετάσεων. Στέλιος Μιχαήλογλου Δημήτρης Πατσιμάς Μαθηματικά κατεύθυσης Γ Λυκείου Όλη η θεωρία και οι ασκήσεις τω παελλαδικώ εξετάσεω Στέλιος Μιχαήλογλου Δημήτρης Πατσιμάς wwwaskisopolisgr Η θεωρία τω παελλαδικώ εξετάσεω [] [] Ορισμοί ) Πότε μια συάρτηση

Διαβάστε περισσότερα

Ασκήσεις στη Στατιστική

Ασκήσεις στη Στατιστική Σχολείο: ο ΓΕΛ Κοµοτηής Να συµπληρώσετε το παρακάτω πίακα: Ασκήσεις στη Στατιστική 5 0, 3 0 0 Σύολο F % F % Να συµπληρώσετε το παρακάτω πίακα: F % F % 0 0 0 0,5 30 0,0 0 6 50 Σύολο 3 Να συµπληρώσετε το

Διαβάστε περισσότερα

Τυπολόγιο Σχετική συχότητα: = = κ f,,..., Αθροιστική συχότητα: Ν = και Ν, 2... = Ν + = κ Αθροιστική σχετική συχότητα: Ν F = f και F = F + f, = 2,...,

Τυπολόγιο Σχετική συχότητα: = = κ f,,..., Αθροιστική συχότητα: Ν = και Ν, 2... = Ν + = κ Αθροιστική σχετική συχότητα: Ν F = f και F = F + f, = 2,..., Μετά το τέλος της µελέτης του 2ου κεφαλαίου, ο µαθητής θα πρέπει α γωρίζει: Τις βασικές έοιες της στατιστικής όπως πληθυσµός, δείγµα κ.λ.π. καθώς και τις κατηγορίες τω µεταβλητώ. Τους ορισµούς της απόλυτης,

Διαβάστε περισσότερα

xf(y) + yf(x) = (x + y)f(x)f(y)

xf(y) + yf(x) = (x + y)f(x)f(y) ΕΥΡΕΣΗ ΤΥΠΟΥ ΣΥΝΑΡΤΗΣΗΣ Επιμέλεια: Καρράς Ιωάης Μαθηματικός Φίλος μὲ δή, ὡς ἔοικε, τούτῳ τῷ λόγῳ ὁ ἀγαθὸς ἔσται, ἐχθρὸς δὲ ὁ ποηρός. gxkarras@gmail.com 1. Να βρεθού όλες οι συαρτήσεις f : R R για τις οποίες

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ .Να συμπληρώσετε το παρακάτω πίακα. f N F f 0 0 F 0 0 8 0,4 0 5 4 0,9 5 0 Σύολο. Οι μαθητές του Γ για το μήα Νοέμβρη απουσίασα από το σχολείο τους έως τέσσερις μέρες σύμφωα με το παρακάτω πίακα. ) Να συμπληρωθεί

Διαβάστε περισσότερα

1.1 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1.2 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

1.1 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1.2 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Να γίνουν οι γραφικές παραστάσεις των συναρτήσεων : π α) f() = + ηµ β) g() = + συν( ) 6 π π γ) f() = ηµ( ) δ) g() = συν( ) Να γίνει η µελέτη και η γραφική παράσταση

Διαβάστε περισσότερα

) είναι παράλληλη προς στον άξονα x x τότε: α. Να βρείτε την f ( x)

) είναι παράλληλη προς στον άξονα x x τότε: α. Να βρείτε την f ( x) taeeolablogspotcom Άσκηση η Δίεται η συάρτηση f() S + +, R όπου η μέση τιμή και S > η τυπική απόκλιση τω παρατηρήσεω εός δείγματος μεγέθους Α η εφαπτομέη της καμπύλης f στο σημείο της A(,f ( ) ) είαι παράλληλη

Διαβάστε περισσότερα

Δημήτρης Διαμαντίδης, Γεωργία Ευθυμίου, Αναστάσιος Κουπετώρης, Ιωάννης Σταμπόλας. Άλγεβρα Α Λυκείου B ΤΟΜΟΣ

Δημήτρης Διαμαντίδης, Γεωργία Ευθυμίου, Αναστάσιος Κουπετώρης, Ιωάννης Σταμπόλας. Άλγεβρα Α Λυκείου B ΤΟΜΟΣ Δημήτρης Διαματίδης, Γεωργία Ευθυμίου, Ααστάσιος Κουπετώρης, Ιωάης Σταμπόλας Άλγεβρα Α Λυκείου B ΤΟΜΟΣ Θέση υπογραφής δικαιούχου δικαιωμάτω πευματικής ιδιοκτησίας, εφόσο η υπογραφή προβλέπεται από τη σύμβαση.

Διαβάστε περισσότερα

Επομένως μια ακολουθία α είναι γεωμετρική πρόοδος αν και μόνο αν ισχύει α, δηλαδή το πηλίκο δύο διαδοχικών όρων είναι σταθερό.

Επομένως μια ακολουθία α είναι γεωμετρική πρόοδος αν και μόνο αν ισχύει α, δηλαδή το πηλίκο δύο διαδοχικών όρων είναι σταθερό. Ε. 5. Γεωμετρική Πρόοδος Απρίτητες γώσεις Θεωρίς Γεωμετρική πρόοδος Γεωμετρική Πρόοδο (Γ.Π.) οομάζουμε μι κολουθί κάθε όρος της προκύπτει πό το προηγούμεό του με πολλπλσισμό επί το ίδιο πάτοτε μη μηδεικό

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΜΟΙ Ορισμός Συνδυασμός ν στοιχείων ανά κ είναι μια μη διατεταγμένη συλλογή κ στοιχείων από τα ν.

ΣΥΝΔΥΑΣΜΟΙ Ορισμός Συνδυασμός ν στοιχείων ανά κ είναι μια μη διατεταγμένη συλλογή κ στοιχείων από τα ν. 13/10/2010 ΣΥΝΔΥΑΣΜΟΙ Ορισμός Συδυασμός στοιχείω αά κ είαι μια μη διατεταγμέη συλλογή κ στοιχείω από τα. Παράδειγμα 1 Οι συδυασμοί τω τριώ γραμμάτω Α,Β,Γ αά έα είαι οι εξής τρεις: Α, Β, Γ. Οι συδυασμοί

Διαβάστε περισσότερα

Ασκήσεις7 80. AU διαγώνιο. αποτελούμενη από ιδιοδιανύσματα του A. Πρόσθετες ιδιότητες κανονικών πινάκων: Έστω A o

Ασκήσεις7 80. AU διαγώνιο. αποτελούμενη από ιδιοδιανύσματα του A. Πρόσθετες ιδιότητες κανονικών πινάκων: Έστω A o Ασκήσεις7 80 Ασκήσεις7 Διαγωοποίηση Ερμιτιαώ Πιάκω Βασικά σημεία Λήμμα του Schur (μιγαδική και πραγματική εκδοχή) Φασματικό θεώρημα (μιγαδική και πραγματική εκδοχή) Ορισμός και ιδιότητες καοικώ πιάκω Θεώρημα

Διαβάστε περισσότερα

lim lim Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ Ορισµός Μία συνάρτηση f είναι παραγωγίσιµη σε ένα σηµείο x του πεδίου ορισµού της, όταν υπάρχει στο R, το

lim lim Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ Ορισµός Μία συνάρτηση f είναι παραγωγίσιµη σε ένα σηµείο x του πεδίου ορισµού της, όταν υπάρχει στο R, το ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΠΑΡΑΓΡΑΦΟΣ Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ Ορισµός Μία συάρτηση είαι παραγωγίσιµη σε έα σηµείο του πεδίου ορισµού της, ότα υπάρχει στο R, το lim ( ( Το όριο αυτό οοµάζεται παράγωγος της στο και

Διαβάστε περισσότερα

Δυνάμεις πραγματικών αριθμών

Δυνάμεις πραγματικών αριθμών Κεφάλαιο 1 ο 45 Β. Δυάμεις πραγματικώ αριθμώ Α έχουμε έα γιόμεο της μορφής (-) (-) (-) (-) όπου κάθε παράγοτας είαι (δηλαδή ο ίδιος ο αριθμός) μπορούμε α το συμβολίσουμε με μια πιο απλή μορφή : (-) 4.

Διαβάστε περισσότερα

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Θεωρία - Μέθοδοι

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Θεωρία - Μέθοδοι Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχολογική Κατεύθυση Θεωρία - Μέθοδοι ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Μάθημα ο ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ Η εξίσωση x δε έχει λύση στο σύολο τω πραγματικώ αριθμώ, αφού

Διαβάστε περισσότερα

(πολλδ β) = πολλδ + ( 1) ν β ΕΥΣΤΡΑΤΙΟΣ ΚΩΣΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΘΟ ΙΚΟ ΙΑΙΡΕΤΟΤΗΤΑ

(πολλδ β) = πολλδ + ( 1) ν β ΕΥΣΤΡΑΤΙΟΣ ΚΩΣΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΘΟ ΙΚΟ ΙΑΙΡΕΤΟΤΗΤΑ ΙΑΙΡΕΤΟΤΗΤΑ Ορισµός: Λέµε ότι ο ακέραιος β 0διαιρεί το ακέραιο α και γράφουµε β/α, ότα η διαίρεση του α µε το β είαι τέλεια, δηλαδή υπάρχει κ Z τέτοιος ώστε α = κ β. Συµβολίζουµε ότι α = πολβ. Α ο β δε

Διαβάστε περισσότερα

Λογάριθμοι. Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έννοια του λογάριθμου Έστω η εξίσωση αx

Λογάριθμοι. Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έννοια του λογάριθμου Έστω η εξίσωση αx Λογάριθμοι Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έοι του λογάριθμου Έστω η εξίσωση θ, 0, θ 0. Η εξίσωση υτή έχει μοδική λύση φού η εκθετική συάρτηση f είι γησίως μοότοη κι το θ ήκει στο σύολο τιμώ της. Τη μοδική

Διαβάστε περισσότερα

Θέµατα Άλγεβρας Γενικής Παιδείας Β Λυκείου 2000

Θέµατα Άλγεβρας Γενικής Παιδείας Β Λυκείου 2000 Θέµατα Άλγεβρας Γεικής Παιδείας Β Λυκείου 000 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο Α.. Α.. Α.. Να γράψετε το τύο ου δίει το ιοστό όρο α µιας αριθµητικής ροόδου (α ) ου έχει ρώτο όρο α και διαφορά ω. (Μοάδες ) Να γράψετε

Διαβάστε περισσότερα

2.3 ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΙΑΣΠΟΡΑΣ. 1. Μέση τιµή x = Σταθµικός Μέσος x = 3. ιάµεσος (δ) ενός δείγµατος ν παρατηρήσεων, οι οποίες έχουν διαταχθεί σε

2.3 ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΙΑΣΠΟΡΑΣ. 1. Μέση τιµή x = Σταθµικός Μέσος x = 3. ιάµεσος (δ) ενός δείγµατος ν παρατηρήσεων, οι οποίες έχουν διαταχθεί σε .3 ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΙΑΣΠΟΡΑΣ ΘΕΩΡΙΑ. Μέση τιµή x = x = x = + + + t t... t = x + x +... + x + +... + x κ κ = f x κ t κ κ = κ κ x = κ x. Σταθµικός Μέσος x = xw + x w +... + x w w + w +... + w = x w w όπου

Διαβάστε περισσότερα

Γ Λυκείου Μαθηματικά Γενικής Παιδείας o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας Ασκήσεις για λύση. M. Παπαγρηγοράκης 1 11.

Γ Λυκείου Μαθηματικά Γενικής Παιδείας o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας Ασκήσεις για λύση. M. Παπαγρηγοράκης 1 11. Γ Λυκείου Μαθηματικά Γεικής Παιδείας 0-0 4 o Γεικό Λύκειο Χαίω Γ τάξη γ Μαθηματικά Γεικής Παιδείας.09 Ασκήσεις για λύση M. Παπαγρηγοράκης.09 Γ Λυκείου Μαθηματικά Γεικής Παιδείας Επιμέλεια: Μ. Ι. Παπαγρηγοράκης

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΤΗΣ ΕΛΛΑΔΟΣ ΕΤΟΥΣ 007 ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ ΚΑΤΗΓΟΡΙΑ: ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ Απογευματιή εξέταση στα μαθήματα: «. Άλγεβρα» «.5

Διαβάστε περισσότερα

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας . Δίνεται η εξίσωση, (). i) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει μία τουλάχιστον πραγματική ρίζα. ii) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει δύο ίσες πραγματικές ρίζες. iii) Να βρεθεί ο

Διαβάστε περισσότερα

Άλγεβρα Β Λυκείου Επαναληπτικά θέματα ΟΕΦΕ α φάση

Άλγεβρα Β Λυκείου Επαναληπτικά θέματα ΟΕΦΕ α φάση Άλγεβρα Β Λυκείου Επαναληπτικά θέματα ΟΕΦΕ 00-08 α φάση Συναρτήσεις Θεωρούμε τη συνάρτηση Α, 6 wwwaskisopolisgr f κ, με 4,4 και κ η οποία διέρχεται από το σημείο και τμήμα της γραφικής της παράστασης φαίνεται

Διαβάστε περισσότερα

Θέµατα Άλγεβρας Γενικής Παιδείας Β Λυκείου 2000

Θέµατα Άλγεβρας Γενικής Παιδείας Β Λυκείου 2000 Θέµατα Άλγεβρας Γεικής Παιδείας Β Λυκείου 000 Ζήτα ο Α.. Να γράψετε το τύο ου δίει το ιοστό όρο α µιας αριθµητικής ροόδου (α ) ου έχει ρώτο όρο α και διαφορά ω. (Μοάδες ) Α.. Να γράψετε τη σχέση µεταξύ

Διαβάστε περισσότερα

π.χ. 2, 3, π=3,14... Αναλογία λέγεται κάθε ισότητα κλασµάτων και έχουµε τις παρακάτω ιδιότητες : α = 4) β = δ και δ γ β

π.χ. 2, 3, π=3,14... Αναλογία λέγεται κάθε ισότητα κλασµάτων και έχουµε τις παρακάτω ιδιότητες : α = 4) β = δ και δ γ β ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ) ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τ σύολ τω ριθµώ είι τ εξής : ) Οι φυσικοί ριθµοί : Ν {0,,,,... } ) Οι κέριοι ριθµοί : Ζ {...,,,, 0,,,,... } ) Οι ρητοί ριθµοί : Q ρ / κ ρ, κ Z, Z 0 4) Οι άρρητοι

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. ευτέρα, 17 Μα ου 2010 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ. Οµάδα Μαθηµατικών της Ώθησης. Επιµέλεια:

ΑΠΑΝΤΗΣΕΙΣ. ευτέρα, 17 Μα ου 2010 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ. Οµάδα Μαθηµατικών της Ώθησης. Επιµέλεια: ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 00 ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικώ της Ώθησης ευτέρα, 7 Μα ου 00 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 00 ευτέρα, 7 Μα ου 00 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4_095. Δίνονται οι ευθείες ε 1: λx + y = 1 και ε : x + λy = λ α) Να βρείτε για ποιες τιμές του λ οι δύο ευθείες τέμνονται και να γράψετε τις συντεταγμένες του κοινού τους σημείου συναρτήσει

Διαβάστε περισσότερα

1 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 2008

1 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 2008 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 008 α). Να αποδείξετε ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου Ρ(x) με το πρωτοβάθμιο πολυώνυμο x ρ ισούται με την αριθμητική τιμή του Ρ(x) για x =

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ. ηµχ = ηµθ χ=2κπ+θ ή χ=2κπ+π-θ, κ Z συνχ = συνθ χ=2κπ+θ ή χ=2κπ-θ, κ Z εφχ = εφθ χ=κπ+θ, κ Z σφχ = σφθ χ=κπ+θ, κ Z

ΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ. ηµχ = ηµθ χ=2κπ+θ ή χ=2κπ+π-θ, κ Z συνχ = συνθ χ=2κπ+θ ή χ=2κπ-θ, κ Z εφχ = εφθ χ=κπ+θ, κ Z σφχ = σφθ χ=κπ+θ, κ Z ΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Τριγωοµετρικές εξισώσεις ηµχ = ηµθ χ=2κπ+θ ή χ=2κπ+π-θ, κ Z συχ = συθ χ=2κπ+θ ή χ=2κπ-θ, κ Z εφχ = εφθ χ=κπ+θ, κ Z σφχ = σφθ χ=κπ+θ, κ Z Βσικές τριγ. εξισώσεις ηµx = 0

Διαβάστε περισσότερα

Παραδείγµατα στις ακολουθίες. 2. Να γράψετε τους 4 πρώτους όρους των ακολουθιών. 2ν +1. i) α. =, ii)α. = (-1) v. ΛΥΣΗ

Παραδείγµατα στις ακολουθίες. 2. Να γράψετε τους 4 πρώτους όρους των ακολουθιών. 2ν +1. i) α. =, ii)α. = (-1) v. ΛΥΣΗ ΑΚΟΛΟΥΘΙΕΣ - ΠΡΟΟ ΟΙ 6 Ακολουθίες Ορισµός Ακολουθί λέγετι κάθε συάρτηση, η οποί έχει πεδίο ορισµού το σύολο τω φυσικώ ριθµώ N *. Μί κολουθί συµβολίζετι συήθως µε το γράµµ όπου κάτω δεξιά βάζουµε το δείκτη,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ. Κριτήρια διαιρετότητας

ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ. Κριτήρια διαιρετότητας ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ Κριτήρια διαιρετότητας 11 Κριτήρια διαιρετότητας 11 1η Άσκηση Να βρεις ποιοι από τους φυσικούς αριθμούς που είαι αάμεσα από το 120 και το 140 διαιρούται με: το

Διαβάστε περισσότερα

iii. Ακόμα, αλλάζουμε πρόσημα (όλα!) όποτε θέλουμε : α α, α β β α

iii. Ακόμα, αλλάζουμε πρόσημα (όλα!) όποτε θέλουμε : α α, α β β α . ΤΑΥΤΟΤΗΤΕΣ Ετός από τις λασσιές, θυμηθείτε υρίως τις δύο παραάτω : α β α β α αβ β α β α β α αβ β, αλλά αι τη γειότητα: α β α β α α β α β... αβ β, α,β,.. ΑΠΟΛΥΤΕΣ ΤΙΜΕΣ (ορισμοί σχέσεις συμπεράσματα)

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικώ της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 Τετάρτη, 3 Μα ου 0 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α Α. Α οι συαρτήσεις f, g είαι παραγωγίσιμες στο

Διαβάστε περισσότερα

Ι δ ι ο τ η τ ε ς Π ρ ο σ θ ε σ η ς - Π ο λ λ α π λ α σ ι α σ μ ο υ ΙΔΙΟΤΗΤΑ ΠΡΟΣΘΕΣΗ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Ι δ ι ο τ η τ ε ς Π ρ ο σ θ ε σ η ς - Π ο λ λ α π λ α σ ι α σ μ ο υ ΙΔΙΟΤΗΤΑ ΠΡΟΣΘΕΣΗ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1 Π ρ α γ μ α τ ι κ ο ι Α ρ ι θ μ ο ι : Υ π ο σ υ ο λ α του Το συολο τω φυσικω 3. αριθμω: Να δειχτει οτι = α {0,1,,3, } + 110 0α. Ποτε ισχυει το ισο; Το συολο τω. A ακεραιω α, β θετικοι

Διαβάστε περισσότερα

ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω.

ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω. ΘΕΜΑ ΘΕΜΑ Έστω α, β πραγµατικοί αριθµοί για τους οποίους ισχύουν: α β = 4 και αβ + αβ = 0 α) Να αποδείξετε ότι: α + β = 5. (Μονάδες 0) β) Να κατασκευάσετε εξίσωση ου βαθµού µε ρίζες τους αριθµούς α, β

Διαβάστε περισσότερα

β± β 4αγ 2 x1,2 x 0.

β± β 4αγ 2 x1,2 x 0. Ορισµοί, ισότητα, µέτρο, άθροισµα µιγαδικώ αριθµώ Μιγαδικό επίπεδο Γεωµετρική παράσταση του αθροίσµατος µιγαδικώ αριθµώ ax 3 + β x + γ x+ δ = 0 Η προσπάθεια επιλύσεως εξισώσεω 3 ου βαθµού ( ) και δευτεροβαθµίω

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο ΑΡΙΘΜΗΤΙΚΗ ΚΑΙ ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 3 Ο ΑΡΙΘΜΗΤΙΚΗ ΚΑΙ ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΑΡΙΘΜΗΤΙΚΗ ΚΑΙ ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΡΟΟΔΟΙ ΤΥΠΟΛΟΓΙΟ ΠΡΟΟΔΩΝ ΑΡΙΘΜΗΤΙΚΗ ΓΕΩΜΕΤΡΙΚΗ ΓΕΝΙΚΟΣ ΟΡΟΣ ΓΕΝΙΚΟΣ ΟΡΟΣ " ÎÀ-{0}, + ( ν-) ω " ÎÀ-{0}, l - ω : διαφορά προόδου λ : λόγος

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΟ ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ. όπου ν θετικός ακέραιος κ) z = 2 ( 3i 2. > να δείξετε ότι Re( )

ΑΣΚΗΣΕΙΣ ΣΤΟ ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ. όπου ν θετικός ακέραιος κ) z = 2 ( 3i 2. > να δείξετε ότι Re( ) ΑΣΚΗΣΕΙΣ ΣΤΟ ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Ασκήσεις στο ορισμό και τις ιδιότητες 0) Να βρείτε το μέτρο τω μιγαδικώ αριθμώ α) 3i = ε) ( ) 5 β) = 7 στ) γ) = 4 3i ζ) δ) = 4+ 3i η) = = i θ) 3 = + i 3 = i ( α βi)

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου Θέμα Α. Αν α>0 με α, τότε για οποιουσδήποτε θ, θ,θ>0 και κ ισχύει log (θ θ ) log θ log θ Μονάδες 8 α α α Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας

Διαβάστε περισσότερα

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός ςες ΤΕΤΡΑΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παραπάνω φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια κυρίως στους μαθητές

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ

ΒΑΣΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ ΒΑΣΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ 1. Α. Να βρεθού οι κ,λ R για τους οποίους είαι ίσα τα πολυώυµα ( λ + 1) x ( κ ) x λ + 1 (x) = και Q(x) = κx λx + κ Β. Να βρείτε τους πραγµατικούς αριθµούς α, β, γ R για τους

Διαβάστε περισσότερα

Νίκος Καζαντζάκης (Από τον πρόλογο του Καπετάν Μιχάλη )

Νίκος Καζαντζάκης (Από τον πρόλογο του Καπετάν Μιχάλη ) Η ψυχή του αθρώπου γίεται πατοδύαμη, ότα συεπαρθεί από μια μεγάλη ιδέα Τρομάζεις ότα ύστερα από πικρές δοκιμασίες, καταλάβεις πως μέσα μας υπάρχει μια δύαμη που μπορεί α ξεπεράσει τη δύαμη του αθρώπου

Διαβάστε περισσότερα