ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ. Κριτήρια διαιρετότητας
|
|
- Μαργαρίτες Γεωργίου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ Κριτήρια διαιρετότητας 11
2 Κριτήρια διαιρετότητας 11 1η Άσκηση Να βρεις ποιοι από τους φυσικούς αριθμούς που είαι αάμεσα από το 120 και το 140 διαιρούται με: το 2: 122, 124, 126, 128, 130, 132, 134, 136, 138. το 3: 123, 126, 129, 132, 135, 138. το 5: 125, 130, 135. το 9: 126, η Άσκηση Να βρεις το αμέσως προηγούμεο και το αμέσως επόμεο φυσικό αριθμό του 366, που διαιρείται με: Ο αμέσως προηγούμεος φ. αριθμός είαι ο 360 & ο αμέσως επόμεος ο 370. το 10: το 9: Ο αμέσως προηγούμεος φ. αριθμός είαι ο 360 & ο αμέσως επόμεος ο 369.
3 3η Άσκηση Να συμπληρώσεις το τελευταίο ψηφίο κάθε αριθμού, έτσι ώστε οι αριθμοί που προκύπτου α διαιρούται με το 2 και με το 9: Α Β Γ η Άσκηση Να βάλεις στο πίακα για τους αριθμούς που διαιρούται με: Αριθμοί το 2 το 5 το 10 το 3 το
4 5η Άσκηση Ο φυσικός αριθμός 2 5 είαι τριψήφιος. Να συμπληρώσεις στο έα ψηφίο που α είαι περιττός αριθμός, έτσι ώστε ο τριψήφιος α διαιρείται με το 3 και με το 5. Αφού είαι τριψήφιος μπορούμε α βάλουμε στη θέση τω δεκάδω τα ψηφία: 0, 1, 2, 3, 4, 5, 6, 7, 8 και 9. Οι τριψήφιοι αριθμοί που προκύπτου είαι ατίστοιχα: 205, 215, 225, 235, 245, 255, 265, 275, 285, 295. Από αυτούς διαιρούται με το 5 όλοι και με το 3 οι αριθμοί: 225, 255, 285. Τελικά μόο στο αριθμό 255 το ψηφίο τω δεκάδω είαι περιττός. Άρα πρέπει α συμπληρώσεις το ψηφίο 5 στο τετράγωο και ο τριψήφιος φυσικός αριθμός που σχηματίζεται είαι ο 255.
5 Κριτήρια διαιρετότητας Εότητα 2 6η Άσκηση Να γράψεις πότε έας φυσικός αριθμός διαιρείται με: το 100: Έας φ. αριθμός διαιρείται με το 100 ότα τα δύο τελευταία ψηφία του είαι 0. το 1.000: Έας φ. αριθμός διαιρείται με το ότα τα τρία τελευταία ψηφία του είαι 0. το : Έας φ. αριθμός διαιρείται με το ότα τα τέσσερα τελευταία ψηφία του είαι 0.
6 1ο Πρόβλημα Να βρεις α μπορείς α μοιράσεις εξίσου 459 καραμέλες σε 3 ή 9 φίλους σου. Α αι, πόσες καραμέλες θα πάρει ο καθέας; Υπεθύμιση: Έας φυσικός αριθμός διαιρείται με το 3, α το άθροισμα τω ψηφίω του διαιρείται με το 3. Έας φυσικός αριθμός διαιρείται με το 9, α το άθροισμα τω ψηφίω του διαιρείται με το 9. Το άθροισμα τω ψηφίω του φ. αριθμού 459 είαι: = 18 Άρα ο φ. αριθμός 459 διαιρείται και με το 3 και με το 9. Επομέως μπορούμε α μοιράσουμε 459 καραμέλες σε 3 φίλους και ο καθέας α πάρει 459 : 3 = 153. Επίσης μπορούμε και α μοιράσουμε 459 και σε 9 φίλους και ο καθέας α πάρει 459 : 9 = 51.
7 2ο Πρόβλημα Ο Νίκος έχει μια συλλογή από αυτοκιητάκια, που είαι περισσότερα από 248 και λιγότερα από 358. Α τα μετρήσει αά 9, δε περισσεύει καέα. Πόσα αυτοκιητάκια μπορεί α έχει ο Νίκος στη συλλογή του; Υπεθύμιση: Έας φυσικός αριθμός διαιρείται με το 9, α το άθροισμα τω ψηφίω του διαιρείται με το 9. Επομέως οι φ. αριθμοί αάμεσα στο 248 και το 358 που διαιρούται με το 9 είαι: 252(άθροισμα ψηφίω 2+5+2=9), (*) 261(άθρ. ψ. 9), 270(άθρ. ψ. 9), 279(άθρ. ψ. 18), 288(άθρ. ψ. 18), 297(άθρ. ψ. 18), 306(άθρ. ψ. 9), 315(άθρ. ψ. 9), 324(άθρ. ψ. 9), 333(άθρ. ψ. 9), 342(άθρ. ψ. 9) και 351(άθρ. ψ. 9). Απατάμε στο πρόβλημα. : Ο Νίκος στη συλλογή του μπορεί α έχει: 252, 261, 270, 279, 288, 297, 306, 315, 324, 333, 342 ή 351 αυτοκιητάκια. Το αποτέλεσμα είαι κοτά στο αρχικό μου υπολογισμό και είαι λογικό. (*) άθρ. ψ. = άθροισμα ψηφίω
8 3ο Πρόβλημα Σε μια δεξίωση συμμετέχου 150 άτομα. Σε κάθε τραπέζι κάθεται ο ίδιος αριθμός από άδρες, γυαίκες και παιδιά. Πόσα τραπέζια χρειάζοται και πόσοι άδρες, γυαίκες και παιδιά κάθοται σε καθέα από αυτά; ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΟΣ Τι προσπαθούμε α βρούμε; Πόσα τραπέζια χρειάζοται. Πόσοι άδρες, γυαίκες και παιδιά κάθοται σε κάθε τραπέζι. Τι γωρίζουμε; Σε μια δεξίωση συμμετέχου 150 άτομα. Σε κάθε τραπέζι κάθεται ο ίδιος αριθμός από άδρες, γυαίκες και παιδιά. Στρατηγικές Παρουσιάζω το πρόβλημα Δοκιμάζω, ελέγχω, ααθεωρώ Επιχειρηματολογώ Ααζητώ έα μοτίβο Εργαλεία ζωγραφιά πίακας θεατρικό παιχίδι καόας
9 Υπεθύμιση: Δ150 : 1, 2, 3, 5, 6, 10, 15, 25, 30, 50, 75, : 1 = τραπέζι με 150 άτομα 150 : 3 = 50 άτομα 50 άτρες, 50 γυαίκες, 50 παιδιά. 150 : 2 = 75 2 τραπέζια με 75 άτομα στο καθέα 75 : 3 = 25 άτ. 25 άτρ., 25 γυ., 25 π. 150 : 3 = 50 3 τραπέζια με 50 άτομα στο καθέα 50 : 3 = 16,6 άτ. Δε είαι εφικτό. 150 : 5 = 30 5 τραπέζια με 30 άτομα στο καθέα 30 : 3 = 10 άτ. 10 άτρ., 10 γυ., 10 π. 150 : 6 = 25 6 τραπέζια με 25 άτομα στο καθέα 25 : 3 = 8,3 άτ. Δε είαι εφικτό. 150 : 10 = τραπέζια με 15 άτομα στο καθέα 15 : 3 = 5 άτ. 5 άτρ., 5 γυ., 5 π. 150 : 15 = τραπέζια με 10 άτομα στο καθέα 10 : 3 = 3,3 άτ. Δε είαι εφικτό. 150 : 25 = 6 25 τραπέζια με 6 άτομα στο καθέα 6 : 3 = 2 άτ. 2 άτρ., 2 γυ., 2 π. 150 : 30 = 5 30 τραπέζια με 5 άτομα στο καθέα 5 : 3 = 1,6 άτ. Δε είαι εφικτό. 150 : 50 = 3 50 τραπέζια με 3 άτομα στο καθέα 3 : 3 = 1 άτ. 1 άτρ., 1 γυ., 1 π. 150 : 75 = 2 75 τραπέζια με 2 άτομα στο καθέα 2 : 3 = 0,6 άτ. Δε είαι εφικτό. 150 : 150 = τραπέζια με 1 άτομο στο καθέα 1 : 3 = 0,3 άτ. Δε είαι εφικτό. Απατάμε στο πρόβλημα. : Χρειάζοται 1 τραπέζι όπου κάθοται 50 άτρες, 50 γυαίκες και 50 παιδιά ή 2 τρ. με 25 άτρ., 25 γυ. και 25 π. στο καθέα, Συζητάμε πώς μπορούμε α ελέγξουμε τη ή 5 τρ. με 10 άτρ, 10 γυ. και 10 π. στο καθέα, απάτησή μας. : ή 10 τρ. με 5 άτρ, 5 γυ. και 5 π. στο καθέα, Το αποτέλεσμα είαι κοτά ή 25 τρ. με 2 άτρ, 2 γυ. και 2 π. στο καθέα, στο αρχικό μου υπολογισμό και είαι λογικό. ή 50 τρ. με 1 άτρ, 1 γυ. και 1 π. στο καθέα.
10 Διερεύηση Επέκταση Συζητάμε ποιο είαι το αριθμητικό μοτίβο του τελευταίου διψήφιου τμήματος εός αριθμού που διαιρείται με το 5: Αριθμητικό μοτίβο : 05, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 00. Ή αριθμητικό μοτίβο : + 5 από το προηγούμεο πολλαπλάσιο. Συζητάμε ποιο είαι το αριθμητικό μοτίβο του τελευταίου διψήφιου τμήματος εός αριθμού που διαιρείται με το 10: Αριθμητικό μοτίβο : 10, 20, 30, 40, 50, 60, 70, 80, 90, 00. Ή αριθμητικό μοτίβο : + 10 από το προηγούμεο πολλαπλάσιο. Συζητάμε ποιο είαι το αριθμητικό μοτίβο του τελευταίου τριψήφιου τμήματος εός αριθμού που διαιρείται με το 100: Αριθμητικό μοτίβο : 100, 200, 300, 400, 500, 600, 700, 800, 900, 000. Ή αριθμητικό μοτίβο : από το προηγούμεο πολλαπλάσιο.
11
12
ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ. Πολλαπλάσια και διαιρέτες
ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ Πολλαπλάσια και διαιρέτες 10 Πολλαπλάσια και διαιρέτες 1η Άσκηση Να βρεις πέτε πολλαπλάσια για κάθε αριθμό: Αριθμός 3 4 8 7 Πολλαπλάσια 3, 6, 9, 60, 300 8, 88,
ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ. Πώς λύνουμε ένα πρόβλημα
ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ Πώς λύουμε έα πρόβλημα Διαβάζουμε προσεκτικά το πρόβλημα, έτσι ώστε α διακρίουμε: Τι προσπαθούμε α βρούμε; Τι γωρίζουμε; Προτείουμε στρατηγικές με τις οποίες ομίζουμε
ΒΙΒΛΙΟ ΜΑΘΗΤΗ ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ. Κεφάλαια 1-7. επαναληπτικό 1
ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΒΙΒΛΙΟ ΜΑΘΗΤΗ Κεφάλαια 1-7 επααληπτικό 1 12.453.090 12.453.000 12.500.000 10.000.000 1. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΟΣ Διαβάζουμε προσεκτικά το πρόβλημα, έτσι ώστε α διακρίουμε:
ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΒΙΒΛΙΟ ΜΑΘΗΤΗ. Η διαίρεση στους φυσικούς αριθμούς
ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΒΙΒΛΙΟ ΜΑΘΗΤΗ Η διαίρεση στους φυσικούς αριθμούς 12 Η διαίρεση στους φυσικούς αριθμούς 12 Διερεύηση 1. 1. Έας χώρος στάθμευσης έχει 21 σειρές, καθεμιά από τις οποίες έχει 8 θέσεις.
(πολλδ β) = πολλδ + ( 1) ν β ΕΥΣΤΡΑΤΙΟΣ ΚΩΣΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΘΟ ΙΚΟ ΙΑΙΡΕΤΟΤΗΤΑ
ΙΑΙΡΕΤΟΤΗΤΑ Ορισµός: Λέµε ότι ο ακέραιος β 0διαιρεί το ακέραιο α και γράφουµε β/α, ότα η διαίρεση του α µε το β είαι τέλεια, δηλαδή υπάρχει κ Z τέτοιος ώστε α = κ β. Συµβολίζουµε ότι α = πολβ. Α ο β δε
Α. Οι Πραγματικοί Αριθμοί
ΠΑΡΑΡΤΗΜΑ Α Οι Πραγματικοί Αριθμοί Α1 Να τοποθετήσετε σε φθίουσα σειρά τους αριθμούς: 01 0 15, 0 15,, 01 5 5 A Να υπολογίσετε τη τιμή της παράστασης 4 1 A Να ρεθού το πηλίκο και το υπόλοιπο της διαίρεσης
4.7 ΙΣΟΫΠΟΛΟΙΠΟΙ ΑΡΙΘΜΟΙ
174 47 ΙΣΟΫΠΟΛΟΙΠΟΙ ΑΡΙΘΜΟΙ Το ζήτημα της διαιρετότητας τω αεραίω είαι υρίαρχο θέμα στη Θεωρία τω Αριθμώ Μια έοια που βοηθάει στη μελέτη αι επίλυση προβλημάτω διαιρετότητας είαι η έοια τω ισοϋπόλοιπω αριθμώ
ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ( ) Να αποδείξετε ότι για κάθε θετικό ακέραιο ν ισχύει : ! + 2 2! + 3 3! + +ν ν! = (ν + 1)!
ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ 1. Να αποδείξετε ότι για κάθε θετικό ακέραιο ισχύει : 1 + 1 1! +! +! + +! = ( + 1)!. Να αποδείξτε ότι 6 10 [ ( 1) ] = ( + 1) ( + ) ( + ) (), για κάθε θετικό ακέραιο.. Να αποδείξετε ότι
Κριτήρια διαιρετότητας. Κριτήριο για το 2. Κριτήριο για το 5. Κριτήριο για το 10,100, Θεωρία. Όνομα: Μαθηματικά Κεφάλαιο 11.
Μαθηματικά Κεφάλαιο 11 Κριτήρια διαιρετότητας Όνομα: Ημερομηνία: / / Θεωρία Κριτήρια διαιρετότητας Κριτήρια διαιρετότητας λέγονται οι κανόνες με τους οποίους μπορώ να συμπεράνω χωρίς να κάνω τη διαίρεση
στους μιγαδικούς αριθμούς
Πράξεις στους μιγαδικούς αριθμούς Πρόσθεση μιγαδικώ αριθμώ Βασικές ασκήσεις Βασική θεωρία α) ) Πώς γίεται η πρόσθεση δύο μιγαδικώ αριθμώ; ) Ποια είαι η γεωμετρική ερμηεία του αθροίσματος δύο μιγαδικώ;
4.3 ΔΙΑΙΡΕΤΟΤΗΤΑ. Εισαγωγή
49 43 ΔΙΑΙΡΕΤΟΤΗΤΑ Εισαγωγή Στα Στοιχεία του Ευκλείδη, βιβλία VII, VIII και IX (περίπου 300 πχ), οι θετικοί ακέραιοι παριστάοται ως ευθύγραμμα τμήματα και η έοια της διαιρετότητας συδέεται άμεσα με τη
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ
ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 0 ΙΟΥΝΙΟΥ 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
+ + = + + α ( β γ) ( )
ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ Αριθµητική παράσταση Αριθµητική παράσταση λέγεται µια σειρά αριθµώ που συδέοται µεταξύ τους µε πράξεις. Η σειρά τω πράξεω σε µια αριθµητική παράσταση είαι η εξής: 1. Υπολογίζουµε
Ακολουθίες Αριθµητική Γεωµετρική Πρόοδος
Ακολουθίες Αριθµητική Γεωµετρική Πρόοδος Μία συάρτηση α µε πεδίο ορισµού το Ν * λέγεται ακολουθία και συµβολίζεται µε (α ) δηλ. a : N * R : α = α( ) Ο α 1 λέγεται πρώτος όρος της ακολουθίας, ο α δεύτερος
ΓΙΑ ΜΙΑ ΕΠΑΝΑΛΗΨΗ ΣΤΗΝ ΥΛΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
Περιοδικό ΕΥΚΕΙΔΗ Β Ε.Μ.Ε. (τεύχος 7) ΕΡΩΤΗΕΙ ΚΑΤΑΝΟΗΗ ΓΙΑ ΜΙΑ ΕΠΑΝΑΗΨΗ ΤΗΝ ΥΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ Α) Να χαρακτηρίσετε τις παρακάτω προτάσεις με () α είαι σωστές και με () α είαι λάθος, αιτιολογώτας
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 12 Νοεμβρίου 2016 Β ΓΥΜΝΑΣΙΟΥ ˆ ΑΔΒ.
Τηλ 361653-3617784 - Fax: 364105 Tel 361653-3617784 - Fax: 364105 1 Νοεμβρίου 016 Β ΓΥΜΝΑΣΙΟΥ Να υπολογίσετε τη τιμή της αριθμητικής παράστασης: ( ) ( 5) ( ) 3 3 3 0 15 8 3 Α= + + 3 5 3 9 Πρόβλημα Δίεται
Γωνία και κεντρική γωνία κανονικού πολυγώνου
ΜΕΡΟΣ Β 3.2 ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 327 3.2 ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ Κατασκευή καοικώ πολυγώω Η διαδικασία κατασκευής εός καοικού πολυγώου µε πλευρές (καοικό -γωο) ακολουθεί τα εξής βήματα: 1ο Βήμα: 3 Υπολογίζουμε
ΣΥΝΔΥΑΣΜΟΙ Ορισμός Συνδυασμός ν στοιχείων ανά κ είναι μια μη διατεταγμένη συλλογή κ στοιχείων από τα ν.
13/10/2010 ΣΥΝΔΥΑΣΜΟΙ Ορισμός Συδυασμός στοιχείω αά κ είαι μια μη διατεταγμέη συλλογή κ στοιχείω από τα. Παράδειγμα 1 Οι συδυασμοί τω τριώ γραμμάτω Α,Β,Γ αά έα είαι οι εξής τρεις: Α, Β, Γ. Οι συδυασμοί
2.2 ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ R ΤΩΝ ΜΙΓΑΔΙΚΩΝ
ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ R ΤΩΝ ΜΙΓΑΔΙΚΩΝ Σύμφωα με το ορισμό του R, η πρόσθεση και ο πολλαπλασιασμός δύο μιγαδικώ αριθμώ γίοται όπως ακριβώς και οι ατίστοιχες πράξεις με διώυμα α + βx στο, όπου βέβαια ατί για
ΑΛΓΕΒΡΑ Α' ΛΥΚΕΙΟΥ. Η ΕΞΙΣΩΣΗ αx+β=0
Η ΕΞΙΣΩΣΗ α+β=0 εξισώσεις πρώτου βαθμού. Να λύσετε τις παρακάτω εξισώσεις: α) 5 ( ) = ( ) β) 8( ) ( ) = ( + ) 5(5 ) γ) (5 ) ( ) = ( + ) δ) (-)-(-)=7( -)-(+). Να λύσετε τις παρακάτω εξισώσεις: 5 α) β) 8
υπολογισθούν οι πιθανότητες των ενδεχομένων: Α, Β, ΑΒ, Α, Β, Α Β, Α Β, ΑΒ,
Προβλήματα Πιθαοτήτω Προβλήματα Πιθαοτήτω Από εξετάσεις που έγια σε 5000 ζώα μιας κτηοτροφικής μοάδας, διαπιστώθηκε ότι 000 είχα προσβληθεί από μια ασθέεια Α, 800 είχα προσβληθεί από μια ασθέεια Β εώ 00
ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ
ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ Ρωτήσαμε 50 μαθητές μιας τάξης για το αριθμό τω αδελφώ τους Οι απατήσεις που πήραμε είαι: 0,,,,4,5 Α v, v, v, v4, v5, v 6 είαι οι ατίστοιχες συχότητες τους
1.5 ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ
ΜΕΡΟΣ Α.5 ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ 67.5 ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ ΟΡΙΣΜΟΣ Οομάζουμε ταυτότητα κάθε ισότητα που περιέχει μεταβλητές και επαληθεύεται για όλες τις τιμές τω μεταβλητώ αυτώ. Τετράγωο αθροίσματος
Γραπτές ανακεφαλαιωτικές προαγωγικές και απολυτήριες εξετάσεις
Γραπτές αακεφαλαιωτικές προαγωγικές και απολυτήριες εξετάσεις Δρ. Πααγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Για το υπολογισμό του βαθμού της ετήσιας επίδοσης τω
Δυνάμεις πραγματικών αριθμών
Κεφάλαιο 1 ο 45 Β. Δυάμεις πραγματικώ αριθμώ Α έχουμε έα γιόμεο της μορφής (-) (-) (-) (-) όπου κάθε παράγοτας είαι (δηλαδή ο ίδιος ο αριθμός) μπορούμε α το συμβολίσουμε με μια πιο απλή μορφή : (-) 4.
ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΤΑΞΗΣ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2003 ΕΚΦΩΝΗΣΕΙΣ
ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΤΑΞΗΣ ΠΕΜΠΤΗ ΜΑΪΟΥ 003 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α. Να αποδείξετε ότι ο ος όρος µιας αριθµητικής προόδου µε πρώτο όρο α 1 και διαφορά ω είαι α = α 1 + (-1)ω. Μοάδες 7 Β. Να γράψετε
a lim x 1.7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( x ) ΒΑΣΙΚΑ ΟΡΙΑ , a R * ΠΑΡΑΤΗΡΗΣΗ : Ενώ αν f(x) < g(x) κοντά στο x 0, τότε lim f(x) lim g(x)
7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( ) ΒΑΣΙΚΑ ΟΡΙΑ + - - a v α άρτιος α περιττός 0 ar * ΠΑΡΑΤΗΡΗΣΗ : Εώ α f() < g() κοτά στο 0 τότε f() g() ότα + εώ f()
Ασκήσεις7 80. AU διαγώνιο. αποτελούμενη από ιδιοδιανύσματα του A. Πρόσθετες ιδιότητες κανονικών πινάκων: Έστω A o
Ασκήσεις7 80 Ασκήσεις7 Διαγωοποίηση Ερμιτιαώ Πιάκω Βασικά σημεία Λήμμα του Schur (μιγαδική και πραγματική εκδοχή) Φασματικό θεώρημα (μιγαδική και πραγματική εκδοχή) Ορισμός και ιδιότητες καοικώ πιάκω Θεώρημα
Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. (Πρόοδοι) ΠΡΟΟΔΟΙ
ΠΡΟΟΔΟΙ Οι πρόοδοι αποτελού µια ειδική κατηγορία τω ακολουθιώ και είαι τριώ ειδώ : αριθµητικές, αρµοικές και γεωµετρικές. ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΟΟΔΟΙ (ΘΕΩΡΙΑ) Ορισµός Μια ακολουθία αριθµώ α, α,, α, α +, θα λέµε
www.fr-anodos.gr (, )
ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ. Το lim f ( ) έχει όηµα σε γειτοικά σηµεία µε το δηλαδή ότα ( a, ) (, β ) a. Δε µε εδιαφέρει α το ίδιο το αήκει η όχι στο πεδίο ορισµού της f αλλά µε εδιαφέρει α υπάρχου στο πεδίο ορισµού
2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση
- 4 o Γεικό Λύκειο Χαίω Γ τάξη Μαθηματικά Γεικής Παιδείας γ Ασκήσεις για λύση Επιμέλεια: Μ. Ι. Παπαγρηγοράκης http://users.sch.gr/mpapagr 4 ο Γεικό Λύκειο Χαίω ΚΑΤΑΝΟΜΕΣ ΣΥΧΝΟΤΗΤΩΝ 95 ΝΑ ΣΥΜΠΛΗΡΩΘΟΥΝ ΟΙ
Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ
Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Στατιστική είαι ο κλάδος τω μαθηματικώ, ο οποίος ως έργο έχει τη συγκέτρωση στοιχείω, τη ταξιόμησή τους και τη παρουσίασή τους σε κατάλληλη μορφή, ώστε α μπορού
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 79 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 10 Νοεμβρίου 2018 Β ΓΥΜΝΑΣΙΟΥ
Β ΓΥΜΝΑΣΙΟΥ Να υπολογίσετε τη τιμή της αριθμητικής παράστασης: 3 3 ( 8) ( 12) ( 8) ( 12) Α= + + 10 + 22. 3 3 2 2 2 ( 3) 2 ( 3) Στο διπλαό σχήμα το τρίγωο ΑΒΓ είαι ισοσκελές (ΑΒ = ΑΓ), με, και ΑΔ είαι η
4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ 4.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ. Εισαγωγή
4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ 4.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ Εισαγωγή Η Θεωρία Αριθμώ, δηλαδή η μελέτη τω ιδιοτήτω τω θετικώ ακεραίω, έθεσε από πολύ ωρίς τους μαθηματικούς μπροστά στο εξής πρόβλημα: Κάποια πρόταση αληθεύει
Ανάλυση φασµάτων. σύζευξης πολύ µεγαλύτερη σε µέγεθος από τη χηµική µετατόπιση, δηλαδή ν / J <<
Αάλυση φασµάτω Στα προηγούµεα µαθήµατα συζητήσαµε τη σύζευξη πρώτης τάξης και τη εφαρµογή του καόα Ν για τη αάλυσή τω ατιστοίχω φασµάτω πρώτης τάξης. Στα φάσµατα πρώτης τάξης η σύζευξη σπι-σπι είαι ασθεής
ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ
015 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ 0. ΕΙΣΑΓΩΓΗ - ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Περιεχόμεα 0. ΕΙΣΑΓΩΓΗ - ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ... 1. ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ... 5. ΕΥΚΛΕΙΔΙΑ ΔΙΑΙΡΕΣΗ... 1. ΔΙΑΙΡΕΤΟΤΗΤΑ... 1 4 ΜΕΓΙΣΤΟΣ
5 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 41.
ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 5 η ΕΚΑ Α 4. Έστω Ω { ω, ω, ω, ω 4 } ο δειγµατικός χώρος εός πειράµατος τύχης και τα εδεχόµεα Α {ω, ω }, Β {ω, ω 4 } + Α είαι P(A B) και Ρ( Β Α ), όπου θετικός ακέραιος τότε + 4 Να αποδείξετε
Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:
Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Να γωρίζει τη έοια της ακολουθίας, τους τρόπους που ορίζεται, τις διαφορές της από μία συάρτηση. Να γωρίζει τους ορισμούς της αριθμητικής και γεωμετρικής
ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να βρεθεί ο γεωμετρικός τόπος των εικόνων των μιγαδικών z για τους οποίους ισχύει:
ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i. ΙΔΙΟΤΗΤΕΣ
είναι οι τιμές μιας μεταβλητής Χ, που αφορά τα άτομα ενός δείγματος μεγέθους v,. Συχνότητα (απόλυτη) νi
ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός λέγεται έα σύολο που θέλουμε α εξετάσουμε τα στοιχεία του ως προς έα ή περισσότερα χαρακτηριστικά τους Μεταβλητές λέγοται τα χαρακτηριστικά ως προς τα οποία εξετάζουμε
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ
Διαιρετότητα Μαθαίνω Πολλαπλάσια ενός φυσικού αριθμού α είναι όλοι οι αριθμοί που προκύπτουν από τον πολλαπλασιασμό του με όλους τους φυσικούς αριθμούς, δηλαδή οι αριθμοί: 0, α, 2 α, 3 α, 4 α,... Το μηδέν
3 ΠΡΟΟΔΟΙ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ
3 ΠΡΟΟΔΟΙ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ 3. ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟ 1. Να σημειώσετε το σωστό () ή το λάθος () στους παρακάτω ισχυρισμούς: 1 1 1 1 1 1. Η ακολουθία,,,,,... είαι αριθμητική πρόοδος. 4 6 8 10.
4. * Αν α, β, γ, διαδοχικοί όροι αριθμητικής προόδου τότε β - α = γ - β. Σ Λ
Κεφάλαιο 3ο: ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΟΟΔΟΙ Ερωτήσεις του τύπου Σωστό-Λάθος. * Ο ιοστός όρος α μιας αριθμητικής προόδου με διαφορά ω είαι α = α + ( - ) ω. Σ Λ (α + α ). * Το άθροισμα τω πρώτω όρω μιας αριθμητικής
5.3 ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟ ΟΣ
5. ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟ ΟΣ ΘΕΩΡΙΑ. Ορισµός Μια ακολουθία λέγεται γεωµετρική πρόοδος, α και µόο α κάθε όρος της προκύπτει από το προηγούµεό του µε πολλαπλασιασµό επί το ίδιο πάτοτε µη µηδεικό αριθµό.. Μαθηµατική
Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων
Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Ορισμός Ευκλείδεια διαίρεση ονομάζεται η πράξη κατά την οποία ένας αριθμός
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ
.Να συμπληρώσετε το παρακάτω πίακα. f N F f 0 0 F 0 0 8 0,4 0 5 4 0,9 5 0 Σύολο. Οι μαθητές του Γ για το μήα Νοέμβρη απουσίασα από το σχολείο τους έως τέσσερις μέρες σύμφωα με το παρακάτω πίακα. ) Να συμπληρωθεί
Ε 1. Διαφορικός λογισμός (Κανόνες παραγώγισης)
Ε Διαφορικός λογισμός Καόες παραγώγισης Σελίδα από Πότε μια συάρτηση λέγεται παραγωγίσιμη στο σημείο του πεδίου ορισμού της ; Μια συάρτηση λέμε ότι είαι παραγωγίσιμη σ έα σημείο του πεδίου ορισμού της,
Α. ΓΛΩΣΣΑ ΚΑΙ ΛΟΓΟΤΕΧΝΙΑ
ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 2006 ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ Κλάδος: ΠΕ 70 ΔΑΣΚΑΛΩΝ ΕΞΕΤΑΣΗ ΣΤΗΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ (Γωστικό ατικείμεο) Σάββατο 27-1-2007
ΜΕΤΡΑ ΘΕΣΗΣ ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ
Παγόσμιο χωριό γώσης 0 ο ΜΑΘΗΜΑ ΕΝΟΤΗΤΑ 2.3. ΜΕΤΡΑ ΘΕΣΗΣ ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ Σοπός: Στη εότητα αυτή παρουσιάζοται τα μέτρα θέσης αι τα μέτρα διασποράς. Ο ορισμός τους αι διάφοροι μέθοδοι υπολογισμού. Γίεται
Κι όµως, τα Ρολόγια «κτυπούν» και Εξισώσεις: Η Άλγεβρα των εικτών του Ρολογιού
Κι όµως, τα Ρολόγια «κτυπού» και Εξισώσεις: Η Άλγεβρα τω εικτώ του Ρολογιού Εισαγωγικά ηµήτρης Ι. Μπουάκης Σχ. Σύµβουλος Μαθηµατικώ Σε ορισµέα βιβλία Αριθµητικής, αλλά κυρίως Άλγεβρας Β Γυµασίου και Α
Αθανασίου Ανδρέας, Αντωνιάδης Μ., Γιασουµής Ν., Ιωάννου Ι., Ματθαίου Κ., Μουσουλίδου M., Παπαγιάννης Κ., Φιλίππου Α. (2013). Μαθηµατικά Α Γυµνασίου,
Αθανασίου Ανδρέας, Αντωνιάδης Μ., Γιασουµής Ν., Ιωάννου Ι., Ματθαίου Κ., Μουσουλίδου M., Παπαγιάννης Κ., Φιλίππου Α. (2013). Μαθηµατικά Α Γυµνασίου, ISBN: 978-9963-0-4611-9) Και Βανδουλάκης Ι., Καλλιγάς
Α. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ ΠΡΑΞΕΙΣ ΤΟΥΣ
ΜΑΘΗΜΑ Κεφάλαιο o : Αλγεβρικές Παραστάσεις Υποεότητα.: Πράξεις µε πραγµατικούς αριθµούς (Επααλήψεις- Συµπληρώσεις) Θεµατικές Εότητες:. Οι πραγµατικοί αριθµοί και οι πράξεις τους.. υάµεις πραγµατικώ αριθµώ..
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΓΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A Α.. Α.. Α.. A.4. Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηία:
lim f (x) = +. ΣΗΜΕΙΩΣΕΙΣ Μη πεπερασμένο όριο στο x 0 R
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ R - ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ - ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΑΚΟΛΟΥΘΙΑΣ [Κεφ..6: Μη Πεπερασμέο Όριο στο R - Κεφ..7: Όρια Συάρτησης
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ
Ασκήσεις στη Στατιστική
Σχολείο: ο ΓΕΛ Κοµοτηής Να συµπληρώσετε το παρακάτω πίακα: Ασκήσεις στη Στατιστική 5 0, 3 0 0 Σύολο F % F % Να συµπληρώσετε το παρακάτω πίακα: F % F % 0 0 0 0,5 30 0,0 0 6 50 Σύολο 3 Να συµπληρώσετε το
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Του Κώστα Βακαλόπουλου ΑΣΚΗΣΗ (ΣΤΑΤΙΣΤΙΚΗ) Το εύρος (R) τω παρατηρούμεω υψώ τω 00 πελατώ εός γυμαστηρίου είαι cm. A) Να ομαδοποιήσετε τα δεδομέα
ΛΥΚΕΙΟ ΜΕΤΑΜΟΡΦΩΣΗΣ 2014 ΒΑΣΙΚΗ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ
1. Τι λέγεται δειγματικός χώρος εός πειράματος τύχης. Το σύολο τω δυατώ αποτελεσμάτω λέγεται δειγματικός χώρος (sample space) και συμολίζεται συήθως με το γράμμα Ω. Α δηλαδή ω 1,ω 2,...,ω κ είαι τα δυατά
Α2. Πότε μια συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της; Μονάδες 4
(http://edu.klmaka.gr) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
3 ΠΡΟΟΔΟΙ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ
ΠΡΟΟΔΟΙ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. ΑΚΟΛΟΥΘΙΕΣ. Να βρείτε τους τέσσερις πρώτους όρους τω ακολουθιώ: α) α = + + β) α = 4 γ) α = δ) α = (-) + +. + 4 Να αποδείξετε ότι όλοι οι όροι της ακολουθίας α =
ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ
ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ Χαρακτηριστικές τιμές δεδομένων - Mέση τιμή 23 Χαρακτηριστικές τιμές δεδομένων Mέση τιμή 23 1η Άσκηση Οι παίκτες της βασικής πεντάδας μιας ομάδας μπάσκετ έχουν
1. * Η ακολουθία είναι µια συνάρτηση µε πεδίο ορισµού το σύνολο Α. Q Β. Ζ* Γ. Ν. Ν* Ε. R
Ερωτήσεις πολλαπλής επιλογής 1. * Η ακολουθία είαι µια συάρτηση µε πεδίο ορισµού το σύολο Α. Q Β. Ζ* Γ. Ν. Ν* Ε. R. * Η γραφική παράσταση µιας ακολουθίας είαι Α. Μια ευθεία γραµµή Β. Μια παραβολή Γ. Μια
ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης
ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικώ της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 Τετάρτη, 3 Μα ου 0 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α Α. Α οι συαρτήσεις f, g είαι παραγωγίσιμες στο
c f(x) = c f (x), για κάθε x R
(http://edu.klmaka.gr) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 7 MAΪΟΥ 00 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ
Επαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου
Επααληπτικό Διαγώισμα Μαθηματικώ Γεικής Παιδείας Γ Λυκείου Θέμα A Α.α) Τι οομάζουμε συάρτηση και τι οομάζουμε πραγματική συάρτηση πραγματικής μεταβλητής; β) Τι λέγεται τιμή μιας συάρτησης f στο χ ; γ)
Ασκήσεις και δραστηριότητες
Ασκήσεις και δραστηριότητες 1. Ποιος είναι ο Ευκλείδης, συγγραφέας των Στοιχείων; Πότε έζησε; Τι γνωρίζουμε γι αυτόν και για το έργο του; Από πού; Να διαβάσεις σχετικά σε μιαν εγκυκλοπαίδεια ή ένα βιβλίο
4.2 ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ
. ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ Ασκήσεις σχολικού βιβλίου σελίδας 9 0 A Οµάδας.i) Να κάετε τη διαίρεση ( x + 6x 7x+ 0 ) : ( x+ ) και α γράψετε τη ταυτότητα της διαίρεσης. x + 6x 7x+ 0 x+ x 9x + + x + 9x 8x+ 0 + 8x+
Σ Τ Α Τ Ι Σ Τ Ι Κ Η Μέτρα Θέσης
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ / ΕΠΑΝΑΛΗΨΗΣ Σ Τ Α Τ Ι Σ Τ Ι Κ Η Μέτρα Θέσης. Ποιους ορισμούς πρέπει α ξέρω; Τι οομάζουμε αι πώς συμβολίζεται: η επιρατούσα τιμή μιας μεταβλητής ; Οομάζεται η τιμή της μεταβλητής, που παρουσιάζει
Κανόνας, για να λύσεις αυτό το μαθηματικό σταυρόλεξο. Μια πρακτική συμβουλή για τη λύση του σταυρόλεξου:
ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Κανόνας, για να λύσεις αυτό το μαθηματικό σταυρόλεξο. Όλα τα κενά τετράγωνα με ροζ χρώμα πρέπει συμπληρωθούν είτε με μονοψήφιους αριθμούς είτε με ένα από τα μαθηματικά σύμβολα: +, -, >,
1. * Δύο κανονικά οκτάγωνα είναι όμοια. Σ Λ 2. * Δύο κανονικά πολύγωνα με τον ίδιο αριθμό πλευρών είναι όμοια.
Κεφάλαιο 11: ΚΑΝΟΝΙΚΑ ΠΟΥΓΩΝΑ Ερωτήσεις του τύπου «ωστό - άθος» 1. * Δύο καοικά οκτάγωα είαι όμοια.. * Δύο καοικά πολύγωα με το ίδιο αριθμό πλευρώ είαι όμοια.. * Έα κυρτό πολύγωο που έχει όλες του τις
{[ 140,150 ),[ 160,170 ),...,[ 200, 210]
Σημειώσεις στη Πληροφορική ΙΙΙ 1. Πείραμα τύχης και πιθαότητα Έα φυσικό φαιόμεο με χαρακτηριστικά που δε μπορούμε α τα προβλέψουμε, οομάζεται στοχαστικό ή τυχαίο. Για παράδειγμα το ύψος τω κυμάτω στη θάλασσα,
φ = 2ω = = 2 2(ν 2) + 4 = 2 + 4
Γιατί οι μέλισσες κάου εξαγωικές τις κηρήθρες τους ; Χριστία Δασκαλάκη Α.Μ. 99 Ημερομηία παράδοσης 9-10-014 Θεωρούμε έα καοικό -γωο και σημειώουμε μια γωία του καθώς και τις γωίες του ισοσκελούς τριγώου
Εκφωνήσεις Λύσεις των θεμάτων
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άλγεβρα Α Γεικού Ημερησίου Λυκείου Προσθήκη θεμάτω 8 Νοεμβρίου 04 Εκφωήσεις Λύσεις τω θεμάτω Έκδοση 3 η (//04) Περιέχοται τα θέματα ΓΗ_Α_ΑΛΓ 480 ΓΗ_Α_ΑΛΓ 3073 ΓΗ_Α_ΑΛΓ 3096 ΓΗ_Α_ΑΛΓ 35
ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Διεύθυνση: Προξένου Κορομηλά 51 Τ.Κ. 54622, Θεσσαλονίκη Τηλέφωνο και Fax 2310 285377 e-mail: emethes@otenet.gr http://www.emethes.gr ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ
Μαθηµατική Επαγωγή 175.
Μαθηµατική Επαγωγή 75. Μαθηµατική Επαγωγή Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ Στο κεφάλαιο τω προόδω έχει αποδειχθεί ότι ο ισχυρισµός v( v+ ) P( v ):+ + 3 +... + v, v N είαι αληθής (ως άθροισµα
Εκφωνήσεις Λύσεις των θεμάτων
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άλγεβρα Α Γεικού Ημερησίου Λυκείου Προσθήκη θεμάτω 6 Οκτωβρίου 04 Εκφωήσεις Λύσεις τω θεμάτω Έκδοση η (3//04) Περιέχοται τα θέματα ΓΗ_Α_ΑΛΓ 480 ΓΗ_Α_ΑΛΓ 3073 ΓΗ_Α_ΑΛΓ 3096 ΓΗ_Α_ΑΛΓ 35 ΓΗ_Α_ΑΛΓ
c f(x) = c f (x), για κάθε x R
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ
ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΤΗΣ ΕΛΛΑΔΟΣ ΕΤΟΥΣ 007 ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ ΚΑΤΗΓΟΡΙΑ: ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ Απογευματιή εξέταση στα μαθήματα: «. Άλγεβρα» «.5
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 04 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ
ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ δ υ α σ τ ι κ ή Πειραιάς 7 Μάθημα 8ο ΣΥΝΔΥΑΣΤΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ Μ. Κούτρας Συδυαστική 7-8 8 Το διωυμικό θεώρημα μπορεί α αποτελέσει τη βάση για τη απόδειξη
2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ
1 2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΘΕΩΡΙΑ 1. Κλάσµα : Είαι το µαθηµατιό σύµβολο το οποίο δηλώει σε πόσα ίσα µέρη χωρίσαµε το όλο αι πόσα µέρη πήραµε Κλάσµα : πόσα µέρη πήραµε σε πόσα ίσα µέρη χωρίσαµε : αριθµητής
Γραμμική Άλγεβρα ΙΙ. Εξέταση Σεπτεμβρίου Επώνυμο συνοπτικές ενδεικτικές λύσεις. Όνομα. ΑΜ_(13 ψηφία) Σύνολο
Γραμμική Άλγεβρα ΙΙ Εξέταση Σεπτεμβρίου 00 Επώυμο συοπτικές εδεικτικές λύσεις Όομα ΑΜ_( ψηφία) Ημ/ία Αίθουσα Α 4 Σύολο Η εξέταση αποτελείται από 4 Θέματα Κάθε θέμα αξίζει μοάδες Το άριστα είαι 0 μοάδες
Πανελλαδικες Εξετασεις Γ Λυκειου Μαθηµατικα Γενικης Παιδειας
ΘΕΜΑ Α. Παελλαδικες Εξετασεις Γ Λυκειου Μαθηµατικα Γεικης Παιδειας Θέµατα-Εδεικτικές Λύσεις Νικόλαος. Κατσίπης 17 Μαϊου 2010 Α1. Εστω t 1, t 2,..., t οι παρατηρήσεις µιας ποσοτικής µεταβλητής X εός δείγµατος
Σωστό - Λάθος Επαναληπτικές
ΘΕΩΡΙΑ ΣΤΑΤΙΣΤΙΚΗ ΟΛΩΝ ΤΩΝ ΕΤΩΝ ημιτελές(veron 6-4-206) ΠΡΟΣΟΧΗ! Επισημαίω ότι οι λύσεις ούτε πλήρεις είαι ούτε έχου διπλοελεγχθεί τουλάχιστο μέχρι τώρα.ετσι ο ααγώστης πρέπει α έχει υπόψη του ότι μπορεί
ΠΑΡΟΥΣΙΑΣΗ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ Ε ΟΜΕΝΩΝ. Εισαγωγή
Μέρος πέµπτο ΠΑΡΟΥΣΙΑΣΗ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ Ε ΟΜΕΝΩΝ Εισαγωγή Στα προηγούµεα κεφάλαια είδαµε τις διάφορες µεθόδους συλλογής και επεξεργασίας του βιοµετρικού υλικού. Κάθε βιοµετρική επεξεργασία όµως έχει
1.5 ΧΑΡΑΚΤΗΡΕΣ ΙΑΙΡΕΤΟΤΗΤΑΣ
1 1.5 ΧΑΡΑΚΤΗΡΕΣ ΙΑΙΡΕΤΟΤΗΤΑΣ ΜΚ ΕΚΠ ΑΝΑΛΥΣΗ ΑΡΙΘΜΟΥ ΣΕ ΓΙΝΟΜΕΝΟ ΠΡΩΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΘΕΩΡΙΑ 1. Πολλαπλάσια του α : Είναι οι αριθµοί που προκύπτουν αν πολλαπλασιάσουµε τον α µε όλους τους φυσικούς. Είναι
5.5 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΟ C
5 55 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΟ C Εισαγωγή Η επίλυση τω εξισώσεω ου και 4ου βαθμού, η ααγκαστική επαφή με τους μιγαδικούς αριθμούς για τη έκφραση τω πραγματικώ ριζώ και η εξέλιξη του αλγεβρικού λογισμού
Οι Φυσικοί Αριθμοί. Παρατήρηση: Δεν στρογγυλοποιούνται αριθμοί τηλεφώνων, Α.Φ.Μ., κωδικοί αριθμοί κλπ. Πρόσθεση Φυσικών αριθμών
Οι Φυσικοί Αριθμοί Γνωρίζουμε ότι οι αριθμοί είναι ποσοτικές έννοιες και για να τους γράψουμε χρησιμοποιούμε τα αριθμητικά σύμβολα. Οι αριθμοί μετρούν συγκεκριμένα πράγματα και φανερώνουν το πλήθος της
2. Οι ζητούμενοι αριθμοί είναι οι : 1.541, 7.686, 3.352, (8)
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 Επιτροπή Διαγωνισμού του περιοδικού «Ο μικρός Ευκλείδης» 2 ος Μαθητικός Διαγωνισμός
Μετρήσεις Χρόνου Η ακρίβεια
Μετρήσεις Χρόου Η ακρίβεια 1. 1. Παρατηρώτας διάφορες συσκευές μέτρησης του χρόου στις παρακάτω εικόες, ατιστοίχισε ποιες είαι "κλεψύδρα", "ααλογικές", "ηλιακές", "ψηφιακές" και συμπλήρωσε το παρακάτω
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ. Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ 1)Ποιοι αριθμοί ονομάζονται άρτιοι και ποιοι περιττοί ; Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι που δεν διαιρούνται
(Καταληκτική ημερομηνία αποστολής 15/11/2005)
η Εργασία 005-006 (Καταληκτική ημερομηία αποστολής 5//005) Άσκηση (0 μοάδες). (α) Δείξτε αλγεβρικά πώς βρίσκοται δύο διαύσματα A και B, εά είαι γωστά το άθροισμά τους S και η διαφορά τους D (β) Βρείτε
ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Γ Δημοτικού Γ 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ
ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά Γ Δημοτικού Γ 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - Γ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 01, Εκδόσεις Κυριάκος
1. [0,+ , >0, ) 2. , >0, x ( )
Σελίδα 1 από 5 ΝΙΟΣΤΕΣ ΡΙΖΕΣ ΤΑ ΣΥΜΒΟΛΑ α, α ΣΧΕΤΙΚΑ ΘΕΜΑΤΑ του Ατώη Κυριακόπουλου 1 ΡΙΖΕΣ ΣΤΟ ΣΥΝΟΛΟ R = [, ) Θεώρηµα και ορισµός οθέτος, εός πραγµατικού αριθµού α και εός φυσικού αριθµού >, υπάρχει έας
Ασκήσεις. Ασκήσεις και προβλήματα στα κεφάλαια
Ασκήσεις και προβλήματα στα κεφάλαια - Διαιρέτες, ΜΚΔ - Κριτήρια διαιρετότητας - Πρώτοι και σύνθετοι - Παραγοντοποίηση αριθμών - Πολλαπλάσια ΕΚΠ - Δυνάμεις - Δυνάμεις του 10 Οι ασκήσεις είναι προσφορά
Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Θεωρία - Μέθοδοι
Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχολογική Κατεύθυση Θεωρία - Μέθοδοι ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Μάθημα ο ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ Η εξίσωση x δε έχει λύση στο σύολο τω πραγματικώ αριθμώ, αφού
τα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ΕΥΣΤΡΑΤΙΟΣ ΚΩΣΤΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΧΡΗΣΗ ΑΚΟΛΟΥΘΙΩΝ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ. ΘΕΜΑ Ι ίνεται η συνεχής συνάρτηση f : R
ΧΡΗΣΗ ΑΚΟΛΟΥΘΙΩΝ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΜΑ Ι ίεται η συεχής συάρτηση f : R Να δείξετε ότι f = ΛΥΣΗ R µε τη ιδιότητα αf α = f + α α+, α Η αρχική γράφεται: α f α α + = f + Έστω g = f +.Τότε: g g Η () α ( α ) =α