HY118- ιακριτά Μαθηµατικά. Σχέσεις. Κλάσεις ισοδυναµίας. Σχέσεις ισοδυναµίας. 15 -Σχέσεις

Σχετικά έγγραφα
HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά. Σχέσεις. Σχέσεις ισοδυναµίας. 15 Σχέσεις

Μερικές διατάξεις. HY118- ιακριτά Μαθηµατικά. Μερικές διατάξεις, παράδειγµα. ιαγράµµατα Hasse: Αναπαράσταση σχέσεων µερικής διάταξης

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά. Σχέσεις. Την προηγούµενη φορά. Αντισυµµετρικότητα. 13 Σχέσεις

ιµελής σχέση HY118- ιακριτά Μαθηµατικά n-µελείς σχέσεις Σχέσεις 13 - Σχέσεις

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά. Σχέσεις. ιµελής σχέση. 12 Εισαγωγή στις Σχέσεις. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο 2017.

HY118-Διακριτά Μαθηματικά

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά

HY118-Διακριτά Μαθηματικά

HY118- ιακριτά Μαθηµατικά. Συναρτήσεις. Συνάρτηση. Συνάρτηση: Τυπικός ορισµός Συναρτήσεις

HY118- ιακριτά Μαθηµατικά

a. a + b = 3. b. a διαιρεί τ ο b. c. a - b = 0. d. ΜΚΔ(a, b) = 1. e. ΕΚΠ(a, b) = 6.

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά

Σύνοψη Προηγούµενου. Ισοδυναµίες, Μερικές ιατάξεις. Σχέσεις Ισοδυναµίας. Σχέσεις, Ιδιότητες, Αναπαράσταση. Ανακλαστικές (a, a) R

Ισοδυναµίες, Μερικές ιατάξεις

Υπολογιστικά & Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά

Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 07/04/2016

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Σχέση Μερικής ιάταξης Σχέση Μερικής ιάταξης (ή µερική διάταξη): ανακλαστική, αντισυµµετρική, και µεταβατική. Αριθµοί: α β (αλλά όχι α < β), α β, Σύνολ

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά. Σχέσεις. Σύνθεση σχέσεων Σχέσεις

Μαθηµατική επαγωγή. HY118- ιακριτά Μαθηµατικά. 2 η αρχή της επαγωγής Ισχυρή επαγωγή Χαρακτηρίζεται από ένα άλλο κανόνα:

HY118- ιακριτά Μαθηµατικά. Παράδειγµα. Από τα συµπεράσµατα στις υποθέσεις Αποδείξεις - Θεωρία συνόλων. Από τις υποθέσεις στα συµπεράσµατα...

Πέμπτη 8 εκεμβρίου 2016 Θεόδωρος Τζουραμάνης Επίκουρος Καθηγητής. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων

HY118- ιακριτά Μαθηµατικά. Μαθηµατική επαγωγή. 11 Επαγωγή

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων Γράφοι

Σχέσεις Μερικής ιάταξης

HY118- ιακριτά Μαθηµατικά. Ένα παράδειγµα... Έχουµε δει. Κατηγορηµατικός Λογισµός. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο Πέµπτη, 23/02/2017

Παράδειγμα άμεσης απόδειξης. HY118-Διακριτά Μαθηματικά. Μέθοδοι αποδείξεως για προτάσεις της μορφής εάν-τότε

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2019 Λύσεις ασκήσεων προόδου

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε Αποδείξεις

Σχέσεις Μερικής ιάταξης

HY118- ιακριτά Μαθηµατικά. Θεωρία Συνόλων. Το δυναµοσύνολο ενός συνόλου. Προηγούµενη φορά. 10 Θεωρία συνόλων. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο 2016

Σχέσεις Μερικής ιάταξης

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 30/03/2017

Θεώρηµα: Z ( Απόδειξη: Περ. #1: Περ. #2: *1, *2: αποδεικνύονται εύκολα, διερευνώντας τις περιπτώσεις ο k να είναι άρτιος ή περιττός

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων Γράφοι

HY118- ιακριτά Μαθηµατικά. Θεωρία Συνόλων. Προηγούµενη φορά. «ανήκει» 10 Θεωρία συνόλων

Τι είναι σύνολο; Ο ορισμός αυτός είναι σύμφωνος με τη διαισθητική μας κατανόηση για το τι είναι σύνολο

HY118- ιακριτά Μαθηµατικά

HY118-Διακριτά Μαθηματικά

HY118- ιακριτά Μαθηµατικά. Νόµοι ισοδυναµίας. Κατηγορηµατικός Λογισµός. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο Παρασκευή, 24/02/2017

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2018 Τελική Εξέταση Ιουνίου Λύσεις

ΑΛΕΞΑΝΔΡΑ ΠΟΥΛΟΠΟΥΛΟΥ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ SUDOKU

Σύνολα, Σχέσεις, Συναρτήσεις

HY118- ιακριτά Μαθηµατικά

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 7: Σχέσεις και Συναρτήσεις

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου

HY118- ιακριτά Μαθηµατικά

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 1

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Πόσες από αυτές τις σκακιέρες είναι αλήθεια διαφορετικές;

Φροντιστήριο #5 Λυμένες Ασκήσεις σε Σχέσεις 22/3/2018

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

HY118-Διακριτά Μαθηματικά

HY118- ιακριτά Μαθηµατικά

ιµελής Σχέση ιατεταγµένο ζεύγος (α, β): ύο αντικείµενα (όχι κατ ανάγκη διαφορετικά) σε καθορισµένη σειρά. Γενίκευση: διατεταγµένη τριάδα (α, β, γ), δι

HY118- ιακριτά Μαθηµατικά

Σχέσεις. ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

HY118-Διακριτά Μαθηματικά. Προτασιακός Λογισμός. Προηγούμενη φορά. Βάσεις της Μαθηματικής Λογικής. 02 Προτασιακός Λογισμός

HY118-Διακριτά Μαθηματικά

HY118- ιακριτά Μαθηµατικά

Σχέσεις Μερικής Διάταξης

Φροντιστήριο #8 Ασκήσεις σε Γράφους 24/5/2016

HY118-Διακριτά Μαθηματικά

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο

Σχέσεις, Ιδιότητες, Κλειστότητες

i) Για να δείξουμε την επιθυμητή ισότητα, δείχνουμε πως A B {A x : x B} και πως {A x : x B} A B. Για τον πρώτο εγκλεισμό, έστω a A B, δηλάδη a A και a

HY118- ιακριτά Μαθηµατικά

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

HY118-Διακριτά Μαθηματικά

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά

ιαδικαστικά θέµατα HY118- ιακριτά Μαθηµατικά Συνάρτηση: Τυπικός ορισµός Ορολογία 17 - Η αρχή του περιστερώνα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Εφαρμοσμένη Κρυπτογραφία Ι

HY118- ιακριτά Μαθηµατικά

Φροντιστήριο #9 Λυμένες Ασκήσεις σε Γράφους

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά

Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Φροντιστήριο #8 Ασκήσεις σε Γράφους 16/5/2017

Θεωρητικά Θέµατα. Ι. Θεωρία Οµάδων. x R y ή x R y ή x y(r) [x] R = { y X y R x } X. Μέρος Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις

Γραµµική Αλγεβρα Ι. Ενότητα: Εισαγωγικές Εννοιες. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

HY118- ιακριτά Μαθηµατικά

, για κάθε n N. και P είναι αριθμήσιμα.

Κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Πολυγραφήµατα (Multigraphs)

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι έχουµε δει µέχρι τώρα. Υπογράφηµα Γράφοι

Transcript:

HY118- ιακριτά Μαθηµατικά Τρίτη, 05/04/2016 Σχέσεις Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/6/2016 1 4/6/2016 2 Σχέσεις ισοδυναµίας Ορισµός: Μίαδιµελήςσχέση επί ενός συνόλου A είναι σχέση ισοδυναµίας αν και µόνο αν έχει την ανακλαστική, συµµετρική και µεταβατική ιδιότητα. Κλάσεις ισοδυναµίας Έστω Rµία σχέση ισοδυναµίαςεπί ενός συνόλου Α. Ηκλάση ισοδυναµίας [a] R του a Αως προς τη σχέση R ορίζεται ως [a] R : { x arx} ιαισθητικά, το σύνολο όλων των στοιχείων που είναι ισοδύναµα µε το aως προς την R. Κάθε τέτοιο x (συµπεριλαµβανοµένου και του a) µπορεί να θεωρηθεί ως αντιπρόσωποςτης [a] R. 4/6/2016 3 4/6/2016 4 1

Κλάσεις ισοδυναµίας Κλάσεις ισοδυναµίας Εφόσον arb [a] R =[b] R [a] R [b] R arb Ισχύει ότι arb [a] R =[b] R [a] R [b] R Τώρα ξέρουµε ότι Εάν arbτότε { x arx } = { x brx }... Με άλλα λόγια, µία κλάση ισοδυναµίας βασισµένη στην R είναι απλά ένα µέγιστο σύνολο αντικειµένωνπου σχετίζονται µεταξύ τους µέσω της R 4/6/2016 5 4/6/2016 6 ιαµερίσεις Μίαδιαµέρισηενός συνόλου Aείναι µία συλλογή από ξένα, µη κενά υποσύνολα του Aπου η ένωσή τους είναι ίση µε το A. Τα ξένα, µη κενά υποσύνολα που αποτελούν µία διαµέρισητου Α ονοµάζονται σύµπλοκατης διαµέρισης. Πχ. Τα σύνολα Α 1 ={1,2,3}, Α 2 ={4,5}, Α 3 ={6} αποτελούν µία διαµέριση του Α={1,2,3,4,5,6} ιαµερίσεις και κλάσεις ισοδυναµίας Μία σχέση ισοδυναµίας στο A επιφέρειµία διαµέριση του A... δηλαδή για µία δοσµένη σχέση ισοδυναµίας R επί ενός συνόλου Α, µπορώ να βρω τη διαµέριση του Α που η Rεπιφέρει Μία διαµέριση του A αντιστοιχεί σεµία σχέση ισοδυναµίας στο A... δηλαδή για µία συγκεκριµένη διαµέριση ενός συνόλου, µπορώ να περιγράψω τη σχέση ισοδυναµίας R που επιφέρει αυτή τη διαµέριση 4/6/2016 7 4/6/2016 8 2

ιαµερίσεις και κλάσεις ισοδυναµίας Μίαδιαµέρισηενός συνόλου Aµπορεί να θεωρηθείσαν το σύνολο όλων των κλάσεων ισοδυναµίας {A 1, A 2, } για κάποια σχέση ισοδυναµίας επί του A. Τα A i είναι όλα ξένα: x,i,j (( x A i x A j ) A i = A j ) Η ένωση όλων των A i µας δίνει το σύνολο A γιατί κάθε x στο A είναι µέλος κάποιας κλάσης ισοδυναµίας (της [x] R ) Από τη σχέση στα σύµπλοκα Έστω R(w1, w2) = Η λέξη w1 έχει τους δύο τελευταίους χαρακτήρες της ίδιους µε τους δύο τελευταίους χαρακτήρες της λέξης w2. Όλες οι λέξειςπου έχουν τους ίδιους 2 τελευταίους χαρακτήρες αποτελούν ένα σύµπλοκο ύο σύµπλοκα είναι ξένα µεταξύ τους Η ένωση όλων των σύµπλοκωνµας δίνει το σύνολο όλων των λέξεων 4/6/2016 9 4/6/2016 10 Από τα σύµπλοκα στη σχέση Για παράδειγµα, θεωρείστε το σύνολο A={1,2,3,4,5,6} και τη διαµέρισήτου {{1,2,3},{4},{5,6}} Από ποια σχέση ισοδυναµίας προκύπτει αυτή η διαµέριση του Α; Από τα σύµπλοκα στη σχέση Για παράδειγµα, θεωρείστε το σύνολο A={1,2,3,4,5,6} και τη διαµέρισήτου {{1,2,3},{4},{5,6}} R = {(1,1),(2,2),(3,3),(1,2),(1,3),(2,3),(2,1),(3,1), (3,2),(4,4), (5,5),(6,6),(5,6),(6,5) } 4/6/2016 11 4/6/2016 12 3

Ερωτήσεις Ποια είναι η αναπαράσταση πίνακα µιας σχέσης ισοδυναµίας; Ποια είναι η αναπαράσταση γράφου µιας σχέσης ισοδυναµίας; Μερικές διατάξεις Μία σχέση Rεπί του Aλέγεταισχέση µερικής διάταξηςεάν και µόνο αν έχει τηνανακλαστική, αντισυµµετρική, και µεταβατική ιδιότητα. Συχνά χρησιµοποιούµε το σύµβολο για τέτοιες σχέσεις. Σηµειώστε ότι δεν είναι απαραίτητο να ισχύει κάποιο από τα a bήb a. Γι αυτό το λόγο η διάταξη λέγεται µερική Ένα σύνολο Aµαζί µε µία µερική διάταξη επί του Aονοµάζεται µερικώς διατεταγµένο σύνολοκαι συµβολίζεται µε τη διατεταγµένη δυάδα (A, ). 4/6/2016 13 4/6/2016 14 Μερικές διατάξεις, παράδειγµα R(A,B) = {A B} (a,bσύνολα) Ανακλαστική: A A Αντισυµµετρική: Αν A B και B Aτότε A=B Μεταβατική: Αν A B και B Cτότε A C Άρα η σχέση είναι σχέση µερικής διάταξης προσέξτε ότι για δύο σύνολα, µπορεί να ισχύει ότι ούτε A B, ούτε B A. (µερική διάταξη) Εάν µία σχέση R είναι σχέση µερικής διάταξης, η παράσταση της ως γράφος µπορεί να απλοποιηθεί: Οι ακµές από ένα κόµβο στον εαυτό τους µπορούν να παραλειφθούν, γιατί µπορούµε να τις θεωρήσουµε ως δεδοµένες (γιατί;) 4/6/2016 15 4/6/2016 16 4

Εάν µία σχέση R είναι σχέση µερικής διάταξης, η παράσταση της ως γράφος µπορεί να απλοποιηθεί: Οι ακµές από ένα κόµβο στον εαυτό τους µπορούν να παραλειφθούν, γιατί µπορούµε να τις θεωρήσουµε ως δεδοµένες (ανακλαστική) Εάν µία σχέση R είναι σχέση µερικής διάταξης, η παράσταση της ως γράφος µπορεί να απλοποιηθεί: Οι ακµές από ένα κόµβο στον εαυτό τους µπορούν να παραλειφθούν, γιατί µπορούµε να τις θεωρήσουµε ως δεδοµένες (ανακλαστική) Αν στο γράφο υπάρχουν οι ακµές που αντιστοιχούν στα R(a,b), R(b,c) τότε µπορούµε να παραλείπουµε τις ακµές R(a,c) (γιατί;) 4/6/2016 17 4/6/2016 18 Εάν µία σχέση R είναι σχέση µερικής διάταξης, η παράσταση της ως γράφος µπορεί να απλοποιηθεί: Οι ακµές από ένα κόµβο στον εαυτό τους µπορούν να παραλειφθούν, γιατί µπορούµε να τις θεωρήσουµε ως δεδοµένες (ανακλαστική) Αν στο γράφο υπάρχουν οι ακµές που αντιστοιχούν στα R(a,b), R(b,c) τότε µπορούµε να παραλείπουµε τις ακµές R(a,c) (µεταβατική) Παράδειγµα: Θεωρείστε το ({1, 2, 3, 4, 6, 8, 12}, ) 4/6/2016 19 4/6/2016 20 5

Παράδειγµα: Τα υποσύνολα του συνόλου {x, y, z} µε τη σχέση υποσυνόλου {x,y,z} {x,y} {x,z} {y,z} Μερικές διατάξεις Η σχέση < είναι σχέση µερικής διάταξης; Ανακλαστική; Αντισυµµετρική; Μεταβατική; {x} {y} {z} {} 4/6/2016 21 4/6/2016 22 Μερικές διατάξεις Η σχέση < είναι σχέση µερικής διάταξης; Ανακλαστική: OXI! Αντισυµµετρική: ΝΑΙ! Μεταβατική: NAI Αυστηρή σχέση µερικής διάταξης Μία σχέση R επί του A λέγεταιαυστηρή σχέση µερικής διάταξηςεάν και µόνο αν είναιµηανακλαστική, ασύµµετρη, και µεταβατική. Πχ. Η σχέση < 4/6/2016 23 4/6/2016 24 6

Αλυσίδες -Αντιαλυσίδες Έστω (A, R) µε Α µερικώς διατεταγµένο (είτε αυστηρά, είτε όχι) ως προς την R.Ένα υποσύνολο του Aονοµάζεται αλυσίδα ανγια κάθε ζεύγος στοιχείων του, ισχύει ότιείναι συγκρίσιµα (σχετίζονται) µέσω της R. Έστω (A, R) µε Α µερικώς διατεταγµένο ως προς την R.Ένα υποσύνολο του Aονοµάζεται αντιαλυσίδα ανγια κάθε ζεύγος στοιχείων του, ισχύει ότιείναι µη συγκρίσιµα µέσω της R. Παράδειγµα Έστω Α={α 1, α 2,...α n } το σύνολο των µαθηµάτωνπου πρέπει κανείς να περάσει για να πάρει πτυχίο. Έστω η σχέσηπροαπαιτούµενο(x,y) = {Tο µάθηµα x, είναι προαπαιτούµενο του µαθήµατος y} Τι σχέση είναι η σχέση Προαπαιτούµενο(x,y); 4/6/2016 25 4/6/2016 26 Παράδειγµα Προαπαιτούµενα... Έστω Α={α 1, α 2,...α n } το σύνολο των µαθηµάτωνπου πρέπει κανείς να περάσει για να πάρει πτυχίο. Έστω η σχέσηπροαπαιτούµενο(x,y) = {Για να περάσω το µάθηµα x, πρέπει να περάσω το µάθηµα y} Τι σχέση είναι η σχέση Προαπαιτούµενο(x,y); Αυστηρή σχέση µερικής διάταξης Το µέγεθος της µεγαλύτερης αλυσίδας προσδιορίζει το ελάχιστο πλήθος εξαµήνων για να πάρει κανείς πτυχίο. Το µέγεθος της µεγαλύτερης αντιαλυσίδαςπροσδιορίζει το µέγιστο πλήθος µαθηµάτων που µπορεί κανείς να πάρει σε ένα εξάµηνο. HY001 HY011 HY021 HY031 HY012 HY013 HY022 HY023 HY024 HY014 HY041 4/6/2016 27 4/6/2016 28 7

Αλυσίδες/αντιαλυσίδες Παράδειγµα: Τα υποσύνολα του συνόλου {x, y, z} µε τη σχέση υποσυνόλου {x,y,z} {x,y} {x,z} {y,z} {x} {y} {z} Σχέσεις ολικής διάταξης Έστω µία µερική διάταξη (A, ). Εάν x,y Α (x y y x) δηλαδή εάν όλα τα στοιχεία του Α είναι συγκρίσιµα µεταξύ τους, τότε η σχέση ονοµάζεται σχέση ολικής διάταξης, και το σύνολο Α ολικά διατεταγµένο ως προς την {} 4/6/2016 29 4/6/2016 30 Ολικές διατάξεις, παράδειγµα R(a,b) = {a b} (a,bπραγµατικοί) Ανακλαστική: a a Αντισυµµετρική: Αν a b και b aτότε a=b Μεταβατική: Αν a b και b cτότε a c Άρα η σχέση είναι σχέση µερικής διάταξης αλλά και σχέση ολικής διάταξης, αφού οποιοιδήποτε πραγµατικοί αριθµοί είναι συγκρίσιµοι µέσω της σχέσης Τι σχέσεις είναι οι παρακάτω; (N, ) Σχέση ολικής διάταξης (N, ) (όπου σηµαίνει διαιρεί ) Σχέση µερικής διάταξης Σχέση µερικής διάταξης 4/6/2016 31 4/6/2016 32 8