ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 1: Εξισώσεις διατήρησης

Σχετικά έγγραφα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 16: O αλγόριθμος SIMPLE (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 8: Ανάλυση ευστάθειας & Συναγωγή και διάχυση

1. Στοιχεία Μεταφοράς Μάζας και Εξισώσεις Διατήρησης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια)

ΥΠΟΛΟΓΙΣΤΙΚΗ ΡΕΥΣΤΟΔΥΝΑΜΙΚΗ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 4: Εξίσωση διάχυσης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 15: O αλγόριθμος SIMPLE

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 7: Εξίσωση μη-μόνιμης διάχυσης (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 9: Συναγωγή και διάχυση (συνέχεια)

Διάλεξη 13: Σχήματα ανώτερης τάξης Οριακές συνθήκες για προβλήματα συναγωγήςδιάχυσης

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Περιεχόμενα. Εξίσωση Συνέχειας Αστρόβιλη Ροή Εξισώσεις Κίνησης. Σειρά ΙΙ 2

Μακροσκοπική ανάλυση ροής

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων

Ανασκόπηση εννοιών ρευστομηχανικής

Σφαιρικές συντεταγμένες (r, θ, φ).

Πίνακας Περιεχομένων 7

ΑΡΧΕΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ

ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ (Equations of Motion)

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ

p = p n, (2) website:

Φόρτος εργασίας. 4 ( ώρες): Επίπ εδο μαθήματος: Ώρες διδασκαλίας: 7 διδασκαλίας εβδομαδιαίως:

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΟΛΥΦΑΣΙΚΑ, ΠΟΛΥΣΥΣΤΑΤΙΚΑ & ΑΝΤΙΔΡΩΝΤΑ ΣΥΣΤΗΜΑΤΑ

ΑΣΚΗΣΗ m 5.13 ΛΥΣΗ. Α. (Γυμνός αγωγός) ΤΕΙ ΚΡΗΤΗΣ Τμήμα Μηχανολογίας ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ Καθηγητής : Μιχ. Κτενιαδάκης - Σπουδαστής : Ζάνη Γιώργος

ΑΣΦΑΛΕΙΑ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΠΑΡΑΔΕΙΓΜΑΤΑ ΛΥΜΕΝΩΝ ΑΣΚΗΣΕΩΝ

Υπολογιστική Μοντελοποίηση Διάδοσης Φωτιάς σε Κτίρια

Δισδιάστατη Αγωγή Θερμότητας: Γραφικές Μέθοδοι Ανάλυσης

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ

ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES

w 1, z = 2 και r = 1

Χειμερινό εξάμηνο

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ. Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 9 η : Μεταφορά Μάζας

Υδρομετεωρολογία Διεργασίες μεταφοράς

Υδρομετεωρολογία Διεργασίες μεταφοράς

Χειμερινό εξάμηνο

ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙΙ. Διάχυση Συναγωγή. Δημήτριος Τσιπλακίδης e mail: dtsiplak@chem.auth.gr url: users.auth.gr/~dtsiplak

ΘΕΡΜΙΚΕΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ. Κυριάκος Χ. Γιαννάκογλου Kαθηγητής ΕΜΠ

ΟΛΟΚΛΗΡΩΜΑΤΙΚΕΣ ΜΕΘΟΔΟΙ ΥΠΟΛΟΓΙΣΜΟΥ ΣΥΝΕΚΤΙΚΩΝ ΣΤΡΩΜΑΤΩΝ

Φαινόμενα Μεταφοράς Μάζας θερμότητας

Διάλεξη 11: Ανώτερης τάξης σχήματα στη μόνιμη συναγωγή

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς

Ανάλυση Φαινομένων Μετάδοσης Θερμότητας Στο Εσωτερικό Γυψοσανίδας Εκτεθειμένης Σε Φωτιά

ΘΕΜΑ Α. Α1. δ Α2. γ Α3. β Α4. γ Α5. α. Λ, β. Λ, γ. Σ, δ. Λ, ε. Σ ΘΕΜΑ Β. B1. Σωστή απάντηση η ( β) Η επιτάχυνση του κάθε ηλεκτρικού φορτίου είναι:

2. Στο ηλιακό στέµµα η ϑερµότητα διαδίδεται µε αγωγιµότητα και η ϱοή ϑερµικής ενέργειας (heat flux)είναι

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΕΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ

ΘΕΜΑ Α. Α1. δ Α2. γ Α3. β Α4. γ Α5. α. Λ, β. Λ, γ. Σ, δ. Λ, ε. Σ ΘΕΜΑ Β. B1. Σωστή απάντηση η ( β) Η επιτάχυνση του κάθε ηλεκτρικού φορτίου είναι:

ΘΕΡΜΟΔΥΝΑΜΙΚΗ II Χειμερινό Εξάμηνο Η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ

ΘΕΡΜΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ. όπου το κ εξαρτάται από το υλικό και τη θερμοκρασία.

Σχεδιασμός Χημικών Διεργασιών και Βιομηχανιών Διάλεξη 6

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Στραγγίσεις (Θεωρία) Ενότητα 9 : Η ασταθής στράγγιση των εδαφών Ι Δρ.

Ρευστομηχανική. Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής. Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

Κινηματική ρευστών. Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του

Μοντέλα Boussinesq. Σειρά V 2

Διαφορική ανάλυση ροής

Υπολογισµός ιδιοτήτων ροής ιδιοτήτων µεταφοράς µε µεθόδους Μοριακής υναµικής

Εξισώσεις Κίνησης (Equations of Motion)

ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

προβλήµατα ανάλυσης ροής

Σύνοψη ΜΗΧΑΝΙΚΗΣ ΧΗΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Χημική αντίδραση : a 1. + α 2 Α (-a 1 ) A 1. +(-a 2

Αστροφυσική. Ενότητα # 1 (Εισαγωγική): Εισαγωγή στη Ρευστομηχανική. Νικόλαος Στεργιούλας Τμήμα Φυσικής ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ. Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 2 η : Αγωγή Μονοδιάστατη αγωγή

ΠΑΡΑΤΗΡΗΣΕΙΣ ΕΠΙ ΤΩΝ ΠΡΟΓΡΑΜΜΑΤΩΝ

Ομογενή Χημικά Συστήματα

Ροη αέρα σε Επίπεδη Πλάκα

Παρουσίαση δεδομένων πεδίου: Υφαλμύρινση παράκτιων υδροφορέων

Διασπορά ατμοσφαιρικών ρύπων

Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων. Quiz 3. Σύντομες Λύσεις

Θερμοδυναμική Ενότητα 4:

Εισαγωγή στην Μεταφορά Θερμότητας

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ. Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 9 η : Μεταφορά Μάζας. Διάχυση Νόμος Fick

ΥΠΟΛΟΓΙΣΤΙΚΗ Υ ΡΑΥΛΙΚΗ ΚΑΙ ΜΕΤΑΦΟΡΑ ΡΥΠΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΘΕΡΜΟΤΗΤΑΣ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ Ι ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ

(1) ταχύτητα, v δεδομένη την πιο πάνω κατανομή θερμοκρασίας; 6. Γιατί είναι σωστή η προσέγγιση του ερωτήματος [2]; Ποια είναι η

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

2g z z f k k z z f k k z z V D 2g 2g 2g D 2g f L ka D

Προσεγγιστικός υπολογισµός άνωσης και επαγόµενης αντίστασης µε θεωρία φέρουσας γραµµής.

Φυσική των Ανεμογεννητριών

Σύστημα. Ανοικτά Συστήματα. Περιβάλλον. Γενικό Ροϊκό Πεδίο. Όγκος Ελέγχου, Επιφάνεια Ελέγχου. Θερμότητα. Ροή Μάζας. Ροή Μάζας.

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

Χειμερινό εξάμηνο

ΑΣΦΑΛΕΙΑ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΠΑΡΑΔΕΙΓΜΑΤΑ ΛΥΜΕΝΩΝ ΑΣΚΗΣΕΩΝ

ΘΕΡΜΟΔΥΝΑΜΙΚΗ. Χαροκόπειο Πανεπιστήμιο. 11 Μαΐου 2006

website:

Προσομοίωση διεργασιών και διατάξεων

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα

Εντροπία (1/3) Ανισότητα Clausius. ds T. = αντιστρεπτές < αναντίστρεπτες

Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΘΕΡΜΙΚΗ ΑΓΩΓΙΜΟΤΗΤΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

(1.1) Ακόμη επειδή ο αεριοκυκλώνας είναι τυπικών διαστάσεων, θα ισχύει: b= D/4 h= D/2 N e= 3D/h

2) Κυλινδρικό δοχείο ύψους H είναι γεμάτο με υγρό που θεωρείται ιδανικό.

Υποθέστε ότι ο ρυθμός ροής από ένα ακροφύσιο είναι γραμμική συνάρτηση της διαφοράς στάθμης στα δύο άκρα του ακροφυσίου.

κατά το χειµερινό εξάµηνο του ακαδηµαϊκού έτους ΕΜ-351 του Τµήµατος Εφαρµοσµένων Μαθηµατικών της Σχολής Θετικών

ΕΝΟΤΗΤΑ ΕΡΓΑΣΙΑΣ (Ε.Ε.) 5

Transcript:

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 1: Εξισώσεις διατήρησης Χειμερινό εξάμηνο 2008

Οργάνωση παρουσίασης 1. Ιστορία της υπολογιστικής ρευστομηχανικής 2. Εξισώσεις διατήρησης 3. Γενική εξίσωση μεταφοράς 4. Συντηρητική μορφή 5. Χαρακτηριστικά γενικής εξίσωσης μεταφοράς 6. Εξίσωση συνέχειας 7. Εξίσωση ενέργειας 8. Εξίσωση ορμής 9. Εξίσωση μεταφοράς συστατικών 10.Επίλογος

Ιστορία της υπολογιστικής ρευστομηχανικής Πρώτη εργασία υπολογιστικής ρευστομηχανικής (CFD) από τον L.F. Richardson (1910) Χρήση ανθρώπων στους υπολογισμούς Επαναληπτική επίλυση της εξίσωσης Laplace χρησιμοποιώντας μέθοδο πεπερασμένων διαφορών για τη ροή γύρο από κύλινδρο, κλπ. προσδιορισμός λάθους Lewis F. Richardson (1881-1953) So far I have paid piece rates for the operation (Laplacian) of about n/18 pence per coordinate point, n being the number of digits one of the quickest boys averaged 2000 operations (Laplacian) per week for numbers of 3 digits, those done wrong being discounted Richardson, 1910

Ιστορία της υπολογιστικής ρευστομηχανικής Μέθοδοι χαλάρωσης (1920-50) Βασικό άρθρο από τους Courant, Friedrichs και Lewy για τις υπερβολικές εξισώσεις (1928) Ανάλυση ευστάθειας κατά Von Neumann για παραβολικά προβλήματα (1950) Οι Harlow και Fromm (1963) υπολόγισαν χρονικά μεταβαλλόμενη ροή (vortex street) με υπολογιστή. Δημοσίευσαν ένα άρθρο στο Scientific America (1965) για τη χρήση του CFD σε αριθμητικά πειράματα. John von Neumann (1903-1957) Richard Courant (1888-1972) 1960-1970, δημιουργία κωδίκων οριακού στρώματος (boundary layer) πχ, GENMIX από τους Patankar και Spalding στα 1972 Τεχνικές επίλυσης για ασυμπίεστες ροές στη δεκαετία 1970 (πχ. αλγόριθμοι SIMPLE από Patankar και Spalding) Ο Jameson υπολόγισε ροή τύπου Euler σε ένα ολόκληρο αεροπλάνο (1981)

Εξισώσεις διατήρησης 1. Όλες σχεδόν οι φυσικές διεργασίες που μας ενδιαφέρουν διέπονται από εξισώσεις διατήρησης Διατήρηση μάζας, ορμής, ενέργειας 2. Μπορούν να γραφούν με όρους ειδικής ποσότητας (δηλαδή ανά μονάδα μάζας) Ορμή ανά μονάδα μάζας (ταχύτητα) Ενέργεια ανά μονάδα μάζας e 3. Θεωρούμε μια ειδική ποσότητα φ Μπορεί να είναι ορμή ανά μονάδα μάζας, ενέργεια ανά μονάδα μάζας.. 4. Γράφουμε την εξίσωση διατήρησης για την ποσότητα φ στον όγκο ελέγχου (control volume) μεγέθους Δx x Δy x Δz

Εξισώσεις διατήρησης (συνέχεια) Μεταβολή της φ στον όγκο ελέγχου σε κάθε χρονικό βήμα Δt = Καθαρή εισροή της ποσότητας φ στον όγκο ελέγχου - Καθαρή εκροή της ποσότητας φ από τον όγκο ελέγχου + Καθαρή γέννηση (generation) της φ μέσα στον όγκο ελέγχου

Εξισώσεις διατήρησης (συνέχεια) Αποθήκευση της φ: ( ρϕδv) ( ρϕδv) t+δt t Παραγωγή: SΔVΔt Εισροή και εκροή: ( J J ) ΔyΔzΔ t+ ( J J ) ΔxΔzΔ t+ ( J J ) ΔxΔyΔt x x+δ x y y+δ y z z+δz

Ροές (Flux) διάχυσης και συναγωγής Ροή διάχυσης: Ροή συναγωγής: J diffusion, x Jconvection, x ϕ = Γ x = ρuϕ Καθαρή ροή: J x = ρϕ u Γ ϕ x x Διάνυσμα ταχύτητας: V = ui+ vj + wk Συντελεστής διάχυσης: Γ

Συνδυάζοντας ( ρϕ) t+δ t ( ρϕ) t ( Jx Jx+Δx) = + Δt Δx ( Jy Jy+Δ y) ( Jz Jz+Δ z) + + Δy Δz S Παίρνοντας το όριο Δx, Δy, Δz και Δt -> 0 ( ρϕ) J J x y J z = + t x y z S

Γενική εξίσωση μεταφοράς της ποσότητας φ ( ρϕ) + ( ρuϕ ) + ( ρvϕ ) + ( ρwϕ ) = t x y z ϕ ϕ ϕ Γ + Γ + Γ + x x y y z z S Σε διανυσματική μορφή: ( ρϕ) t ( ) + ρvϕ = Γ ϕ + S

Συντηρητική μορφή Υποθέτουμε μόνιμη κατάσταση (steady state). Η συντηρητική μορφή της εξίσωσης μεταφοράς είναι: =0 J = J i+ J j+ J k J x y z Μη-συντηρητική μορφή: ( ρϕ) t + ρv ϕ =Γ ϕ+ Γ ϕ+ S Η μέθοδος των πεπερασμένων όγκων (Finite volume method) πάντα χρησιμοποιεί την συντηρητική μορφή των εξισώσεων

Χαρακτηριστικά της γενικής εξίσωσης μεταφοράς ( ρϕ) t ( ) + ρvϕ = Γ ϕ + S Αποθήκευση Συναγωγή Διάχυση Παραγωγή Όπου: φ είναι μια ειδική ποσότητα (πχ. θερμότητα ανά μονάδα μάζας) V : διάνυσμα ταχύτητας Γ : Συντελεστής διάχυσης ρ: πυκνότητα S: όρος πηγής (πχ. Παραγωγή θερμότητας ανά μονάδα όγκου W/m 3 )

Εξίσωση συνέχειας Όπου, φ= 1 Γ= 0 S = 0 ( ρϕ) t ( ) + ρvϕ = Γ ϕ + S ρ + = t ( ρv) 0

Εξίσωση ενέργειας ( ρh) t ( ρv ) ( ) + h = k T + S h h = ενθαλπία ανά μονάδα μάζας, J/kg k = θερμική αγωγιμότητα S h = παραγωγή ενέργειας W/m3 Σημείωση: η ενθαλπία h υπάρχει στους όρους της συναγωγής και της αποθήκευσης. Το σύμβολο Τ στους όρους διάχυσης αντιπροσωπεύει τη θερμοκρασία. Ερώτημα: Πώς μπορούμε να σχηματίσουμε την εξίσωση ενέργειας όπωςηγενικήεξίσωσημεταφοράς;

Εξίσωση ενέργειας (συνέχεια) Καταστατική εξίσωση: dh = C dt p Αντικαθιστώντας: ( ρh) k + ( ρvh) = h + S t C p h Άρα, φ= h Γ= k/c p S = S h

Εξίσωση ορμής Εξίσωση ορμής στη διεύθυνση x ( ρu) t p + ( ρvu) = ( μ u) + S x u u u i j τij μ = + x j x i Άρα, φ= u Γ= μ S p x = Su Σημείωση: Ο πηγαίος όρος S είναι πολύ βολικός για να περιγράφει οποιονδήποτε όρο δεν ταιριάζει με τους υπόλοιπους

Εξίσωση μεταφοράς συστατικών ρy t i ( ρv ) ( ) + Y = Γ Y + R i i i i Όπου: Y i = kg του συστατικού i ανά kg του μίγματος Γ i = συντελεστής διάχυσης του συστατικού i του μίγματος R i = πηγή αντιδράσεων

Επίλογος Σε αυτή τη διάλεξη Περιγράψαμε τη διαδικασία δημιουργίας της εξίσωσης μεταφοράς της ποσότητας φ Αναγνωρίσαμε τα κοινά χαρακτηριστικά της μεταφοράς μάζας, ορμής, ενέργειας και χημικών συστατικών Ο συνδυασμός όλων των διαφορετικών εξισώσεων σε απλή μορφή είναι πολύ χρήσιμο Μπορούμε να κατασκευάσουμε μία απλή μέθοδο για να επιλύσουμε όλη αυτή την τάξη των εξισώσεων διατήρησης