Φύλλο Εργασίας για την y=αx 2

Σχετικά έγγραφα
Στοιχεία Συναρτήσεων. 1. Να βρεθεί το πεδίο ορισμού των παρακάτω συναρτήσεων: στ. x 1

7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0.

Μελέτη της συνάρτησης ψ = α χ 2

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

4.2 Η ΣΥΝΑΡΤΗΣΗ y = αx 2 + βx + γ µε α 0

ΣΥΝΑΡΤΗΣΕΩΝ. f3 x = και

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

4. 1 Η ΣΥΝΑΡΤΗΣΗ Y=AX 2 ME A 0

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 ΑΒ ΒΓ ΓΔ ΔΑ ΟΑ ΟΓ ΒΔ

Παιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx

ΣΧΕ ΙΟ ΜΑΘΗΜΑΤΟΣ : Μαθηµατικά Θετικής και Τεχνολογικής κατεύθυνσης : Β Ενιαίου Λυκείου

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας

Η συνάρτηση y = αχ 2 + βχ + γ

Ερωτήσεις κατανόησης σελίδας Κεφ. 1

Σύντομος οδηγός αναφοράς Για Windows Έκδοση 4.0

Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση;

Γρήγορη Εκκίνηση. Όταν ξεκινήσετε το GeoGebra, εμφανίζεται το παρακάτω παράθυρο:

ΑΣΚΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΟΜΕΝΗ ΚΙΝΗΣΗ. Κινητική του υλικού σηµείου Ερωτήσεις Ασκήσεις

2.8. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1.i)

3. α) Να λύσετε την εξίσωση x 2 = 3. β) Να σχηματίσετε εξίσωση δευτέρου βαθμού με ρίζες, τις ρίζες της εξίσωσης του α) ερωτήματος.

2. Ιδιότητες Συναρτήσεων

ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ

[H έννοια της συνάρτησης]

Geogebra. Μακρή Βαρβάρα. Λογισµικό Geogebra

α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν β) γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις

Εργαστή ριο 1 ο (παρα μετροι και κι νήσή)

5. Σε ορθογώνιο σύστημα αξόνων να σχεδιαστούν οι ευθείες που έχουν εξισώσεις τις: β. y = 4 δ. x = y

1 ο Διαγώνισμα Α Λυκείου Σάββατο 18 Νοεμβρίου 2017

ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

Περιεχόμενα ΠΡΟΛΟΓΟΣ... 9 ΕΙΣΑΓΩΓΗ... 11

GeoGebra4. Τετράδιο εργασίας 2 ο. Περισσότερες κατασκευές Μετρήσεις και Δρομείς. Σταμάτης Μακρής Μαθηματικός Πίνακας περιεχομένων

Μαθηματικά Γενικής Παιδείας Κεφάλαιο 1ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ

Γεωµετρικές Κατασκευές & Χρήση εντολών

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (42)

7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f(x) = αx 2

i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,,

1. Nα λυθούν οι ανισώσεις. 2. Nα λυθούν οι ανισώσεις. 3. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: 4. Nα βρεθούν οι κοινές λύσεις των ανισώσεων:

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

1. Η γραφική παράσταση της συνάρτησης y = 2x + β διέρχεται από το σημείο Α( 1, 2). Να βρείτε τον αριθμό β.

3.1 Η ΕΝΝΟΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=..

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

Λυμένες Ασκήσεις. Λύση

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ

A Λυκείου 9 Μαρτίου 2013

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

Εμβαδά. 1) Με βάση το παρακάτω διάγραμμα όπου το εμβαδόν των περιοχών είναι Α1=8 και Α2=2, να. 2) Να εκφράσετε το εμβαδόν του γραμμοσκιασμένου

Ονοµατεπώνυµο:... 3 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ. ραστηριότητα 1 η : (Γνωριµία µε το πρόγραµµα προσοµοίωσης)

Οι θέσεις ενός σημείου στο επίπεδο και στο χώρο Φύλλο εργασίας 1

Συνάρτηση, Τιμές συνάρτησης, Πίνακας Τιμών. Τι ονομάζουμε πίνακα τιμών μιας συνάρτησης;

ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

Ιπτάμενες Μηχανές. Οδηγός για το Μαθητή

0 ένα εσωτερικό σημείο του Δ. Αν η f παρουσιάζει τοπικό ακρότατο στο x

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης:

Επαναληπτικές ασκήσεις για το Πάσχα.

f( x 1, x ( ) ( ) f x > f x. ( ) ( )

Qwertyuiopasdfghjklzxcvbnmq. wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty. uiopasdfghjklzxcvbnmqwertyui

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή

1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση:

1 x και y = - λx είναι κάθετες

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος:

F x h F x f x h f x g x h g x h h h. lim lim lim f x

ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0.

Το διαστημόπλοιο. Γνωστικό Αντικείμενο: Φυσική (Δυναμική σε μία διάσταση - Δυναμική στο επίπεδο) Τάξη: Α Λυκείου

ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ

GeoGebra4. Τετράδιο εργασίας 3 ο. Εισαγωγή αλγεβρικών δεδομένων Συναρτήσεις και Βασικές αρχές. Σταμάτης Μακρής Μαθηματικός

ΘΕΜΑ 2 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο.

με παραμέτρους α, β, γ R α) Να επιλέξετε τιμές για τις παραμέτρους α, β, γ, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1,-4).

METΡΗΣΗ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΟ ΑΠΛΟ ΕΚΚΡΕΜΕΣ

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

Βασικές ασκήσεις στην ευθύγραμμη ομαλή κίνηση. 1. Να δίνονται βασικά στοιχεία της κίνησης.

Κατακόρυφη - Οριζόντια μετατόπιση συνάρτησης

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης

Ιπτάμενες Μηχανές. Οδηγός για το Μαθητή

f(x ) 0 O) = 0, τότε το x

Β Γυμνασίου. Θέματα Εξετάσεων

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ

ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

Κεφάλαιο 2 ο ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

Το φτερό του αεροπλάνου

Φύλλο εργασίας. Τα κύρια στοιχεία ενός τριγώνου είναι:...

Κίνηση σε Ηλεκτρικό Πεδίο.

O πύραυλος. Γνωστικό Αντικείμενο: Φυσική (Δύναμη Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου

Οδηγίες για το CABRI - GEOMETRY II Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας

lim είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο x 0. β) Να εξετάσετε τη συνέχεια της συνάρτησης f (x) =

3.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα

Ζ ΕΝΟΤΗΤΑ. Μελέτη βασικών συναρτήσεων. Ζ.1 (7.1 παρ/φος σχολικού βιβλίου) Ζ.2 (7.2 παρ/φος σχολικού βιβλίου) Ζ.3 (7.3 παρ/φος σχολικού βιβλίου) 2

Transcript:

Πρόβλημα Σε ένα τετραγωνικό περιβόλι πλευράς 10m πρόκειται να χτιστεί μια αποθήκη σχήματος ορθογωνίου, όπως φαίνεται στο διπλανό σχήμα. Α) Να βρεθούν οι διαστάσεις της αποθήκης συναρτήσει του x, αν γνωρίζετε ότι θα πρέπει να έχει περίμετρο 6m. B) Να βρεθεί ο x, ώστε το εμβαδόν της αποθήκης να γίνει μέγιστο. Ποιες είναι τότε οι διαστάσεις της αποθήκης; Γ) Πώς η μεταβολή του x επηρεάζει το εμβαδόν της αποθήκης; Δ) Ποιες είναι οι τιμές που μπορεί να πάρει ο x και ποιες τιμές μπορεί να πάρει το εμβαδόν της αποθήκης; Ε) Υπάρχουν διαφορετικές τιμές του x για τις οποίες το εμβαδόν της αποθήκης να είναι το ίδιο; Δραστηριότητα 1 Μελέτη της y=x 2 Φύλλο Εργασίας για την y=αx 2 1. Συμπληρώστε τον ακόλουθο πίνακα με τις τιμές που λείπουν x 0 1 2 3 4 5 6 7 y=x 2 Από το μενού «Προβολή» του Geogebra επιλέξτε «Προβολή Λογιστικού Φύλλου» και δημιουργήστε τον πίνακα που φαίνεται στη διπλανή εικόνα και αφορά στις τιμές της συνάρτησης y=x 2. Να μεταφέρετε τα σημεία από το «Λογιστικό Φύλλο» στο Γράφημα (Επιλέγοντας τα κελιά Α1:Β8 του Λογιστικού φύλλου και κάνοντας δεξί κλικ επιλέξτε «Δημιουργία Λίστας Σημείων» όπως φαίνεται στο διπλανό σχήμα.) Αλλάξτε τη μονάδα κάθε άξονα ώστε να βλέπετε όλα τα σημεία που δημιουργήθηκαν. (Επιλέξτε το εργαλείο της «Μετακίνησης της προβολής των Γραφικών», κάντε κλικ σε κάθε έναν από τους άξονες και σύρτε το ποντίκι κατά μήκος του. Στον άξονα y y να φαίνονται οι μονάδες από -20 έως 100 και στον x x από -10 έως 10). Τέλος, επιλέξτε το εργαλείο «Τμήμα μεταξύ δύο σημείων» και δημιουργήστε τα ευθύγραμμα τμήματα που συνδέουν τα σημεία που έχουν δημιουργηθεί στο Γράφημα με φορά από τα αριστερά προς τα δεξιά. 2. Παρατηρώντας το σχήμα που δημιουργήθηκε προσπαθήστε να περιγράψετε τη μορφή της γραφικής παράστασης της y=x 2. (Μπορείτε να φανταστείτε πώς να την επεκτείνετε για τιμές του x μεγαλύτερες από 7 και μικρότερες από 0;) [1]

3. Χρησιμοποιώντας το εργαλεία «Νέο σημείο» από την Εργαλειοθήκη, να σχεδιάσετε σημεία που πιστεύετε ότι βρίσκονται πάνω στη γραφική παράσταση της συνάρτησης y=x 2 α) για τιμές του x μεγαλύτερες του 7, και β) για αρνητικές τιμές του x. Επαληθεύστε την ενέργειά σας, δημιουργώντας τη γραφική παράσταση της συνάρτησης y=x 2 εισάγοντας τον τύπο της στο πλαίσιο «Εισαγωγή» στο κάτω μέρος του παραθύρου του Geogebra. 4. Παρατηρώντας τη νέα μορφή της γραφικής παράστασης της y=x 2 που παρουσιάζεται στο παράθυρο «Γράφημα», απαντήστε στις ακόλουθες ερωτήσεις: Ποιες τιμές μπορεί να πάρει το x; Ποιες τιμές παίρνει το y; Υπάρχει μέγιστη τιμή που παίρνει το y; Υπάρχει ελάχιστη τιμή που παίρνει το y; Μπορείτε να περιγράψετε πώς μεταβάλλονται (αυξάνονται ή μειώνονται) οι τιμές του y καθώς αυξάνεται η τιμή x; 5. Κατά λάθος σβήστηκε ένα μέρος της γραφικής παράστασης της y=x 2 και οι μονάδες στους άξονες (όπως φαίνεται στο διπλανό σχήμα). Περιγράψτε ένα τρόπο για να σχεδιαστεί και το μέρος που λείπει; Τι συμπεραίνετε; [2]

Δραστηριότητα 2 Από το μενού «Αρχείο» επιλέξτε «Νέο». Με χρήση του εργαλείου του δρομέα, δημιουργήστε έναν δρομέα, ορίζοντας ως ελάχιστη τιμή το 0, μέγιστη τιμή το 7 και ως αύξηση το 0.5. Στο πεδίο Εισαγωγή, που βρίσκεται στο κάτω μέρος του παραθύρου εισάγετε τη συνάρτηση y=αx 2. Κυλήστε το δρομέα ώστε να πάρει διάφορες τιμές από το 0 ως το 7 και προσπαθήστε να προσδιορίσετε τις αλλαγές που συμβαίνουν στη γραφική παράσταση της συνάρτησης καθώς αλλάζουν οι τιμές του. 1. Δίνοντας στο δρομέα την κατάλληλη τιμή κάθε φορά, συμπληρώστε τον ακόλουθο πίνακα. y=x 2 y=2x 2 y= x 2 Ποιές είναι οι τιμές που μπορεί να πάρει το x; Ποιες είναι οι τιμές που παίρνει το y; Υπάρχει μέγιστη τιμή που παίρνει το y; Υπάρχει ελάχιστη τιμή που παίρνει το y; Υπάρχει άξονας συμμετρίας της γραφικής παράστασης και αν ναι ποιος είναι; 2. Περιγράψετε πώς μεταβάλλονται οι τιμές του y καθώς οι αντίστοιχες τιμές του x αυξάνονται για κάθε μια από τις συναρτήσεις. Α) Προσπαθήστε να προσδιορίσετε ομοιότητες και διαφορές των μεταβολών αυτών για τις τρεις συναρτήσεις. Ομοιότητες Διαφορές Β) Πού πιστεύετε ότι οφείλονται οι διαφορές; [3]

Δραστηριότητα 3 Αφού επιλέξετε το εργαλείο της μετακίνησης, κάντε δεξί κλικ πάνω στο δρομέα και από το μενού που εμφανίζεται επιλέξτε «Ιδιότητες.». Στο παράθυρο που παρουσιάζεται, ορίστε ως ελάχιστη τιμή του δρομέα το -5, μέγιστο το 5 και αύξηση το 1. Κυλήστε το δρομέα ώστε να πάρει διάφορες τιμές από το -5 ως το 5 και προσπαθήστε να προσδιορίσετε τις αλλαγές που συμβαίνουν στη γραφική παράσταση της συνάρτησης καθώς αλλάζουν οι τιμές του. 1. Δίνοντας στο δρομέα την κατάλληλη τιμή κάθε φορά, συμπληρώστε τον ακόλουθο πίνακα. y=2x 2 y=-2x 2 Ποιες είναι οι τιμές που μπορεί να πάρει το x; Ποιες είναι οι τιμές που παίρνει το y; Υπάρχει μέγιστη τιμή που παίρνει το y; Υπάρχει ελάχιστη τιμή που παίρνει το y; Υπάρχει άξονας συμμετρίας της γραφικής παράστασης και αν ναι ποιος είναι; Η γραφική παράσταση της y=2x 2 είναι συμμετρική προς τη γραφική παράσταση της y=-2x 2 ; Αν, ναι ποιος είναι ο άξονας συμμετρίας; 2. Περιγράψετε πώς μεταβάλλονται οι τιμές του y καθώς οι αντίστοιχες τιμές του x αυξάνονται για κάθε μια από τις συναρτήσεις. Α) Προσπαθήστε να προσδιορίσετε ομοιότητες και διαφορές των μεταβολών αυτών για τις δύο αυτές συναρτήσεις. Ομοιότητες Διαφορές Β) Πού πιστεύετε ότι οφείλονται οι διαφορές; [4]

Γενίκευση των συμπερασμάτων για την Παραβολή με εξίσωση: Πεδίο Ορισμού: Ποιες είναι οι τιμές που μπορεί να πάρει το x; Σύνολο Τιμών: Ποιες είναι οι τιμές που παίρνει το y; Ακρότατα συνάρτησης: Υπάρχει μέγιστη ή/και ελάχιστη τιμή που παίρνει το y; Κορυφή Παραβολής: Οι συντεταγμένες της κορυφής της γραφικής παράστασης της Άξονας συμμετρίας της γραφικής παράστασης της Μονοτονία της συνάρτησης: πώς μεταβάλλονται οι τιμές του y καθώς μεταβάλλονται οι τιμές του x. [5]