Κινητά Δίκτυα Επικοινωνιών. Συμπληρωματικό υλικό. Προσαρμοστική Ισοστάθμιση Καναλιού

Σχετικά έγγραφα
Κινητά Δίκτυα Υπολογιστών

Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Κινητά Δίκτυα Επικοινωνιών

Εισαγωγή. Προχωρημένα Θέματα Τηλεπικοινωνιών. Ζωνοπεριορισμένο Κανάλι. Ψηφιακή Μετάδοση μέσω Καναλιών. είναι περιορισμένου εύρους ζώνης:

Στοχαστικά Σήματα και Τηλεπικοινωνιές

ΠΜΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

Εξίσωση Τηλεπικοινωνιακών Διαύλων

Εισαγωγή στα Προσαρµοστικά Συστήµατα

ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ

Εισαγωγή. Προχωρημένα Θέματα Τηλεπικοινωνιών. Ανάκτηση Χρονισμού. Τρόποι Συγχρονισμού Συμβόλων. Συγχρονισμός Συμβόλων. t mt

Στοχαστικά Σήματα και Τηλεπικοινωνιές

Στοχαστικά Σήματα και Τηλεπικοινωνιές

Το Πολυεπίπεδο Perceptron. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Μέθοδοι πολυδιάστατης ελαχιστοποίησης

Αφαίρεση του Φαινομένου του Μικροφωνισμού σε Ακουστικά Βαρηκοΐας

Το μοντέλο Perceptron

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

Αναγνώριση Προτύπων Ι

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 4 o Φροντιστήριο

Τηλεπικοινωνιακά Συστήματα ΙΙ

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 5

Ψηφιακές Τηλεπικοινωνίες. Βέλτιστος Δέκτης

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

Εκπαίδευση ΤΝΔ με ελαχιστοποίηση του τετραγωνικού σφάλματος εκπαίδευσης. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν.

Παρουσίαση Νο. 6 Αποκατάσταση εικόνας

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Στοχαστικά Σήματα και Τηλεπικοινωνιές

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Στα πλαίσια αυτής της άσκησης θα υλοποιηθούν στην αναπτυξιακή κάρτα TMS320C6711. Iσοστάθμιση τηλεπικοινωνιακού καναλιού.

Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Οαλγόριθµος Least Mean Square (LMS)

Αριθμητική Ανάλυση & Εφαρμογές

Τεχνητή Νοημοσύνη. 17η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1

Συστήματα Επικοινωνιών ΙI

Non Linear Equations (2)

Μοντέλο Perceptron πολλών στρωμάτων Multi Layer Perceptron (MLP)

Εργαστήριο Επεξεργασίας Σηµάτων και Τηλεπικοινωνιών Κινητά ίκτυα Επικοινωνιών Ακαδηµαϊκό Ετος

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Παρουσίαση Νο. 3. Δισδιάστατα σήματα και συστήματα #2

Ψηφιακές Τηλεπικοινωνίες

EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ. Γραµµική Εκτίµηση Τυχαίων Σηµάτων

Διαμόρφωση μιας Φέρουσας. Προχωρημένα Θέματα Τηλεπικοινωνιών. Διαίρεση εύρους ζώνης καναλιού. Διαμόρφωση Πολλών Φερουσών OFDM

Στοχαστικά Σήµατα και Εφαρµογές. Προσαρµοστικά φίλτρα. ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος , 8ο Εξάμηνο. Ρομποτική II. Ευφυή και Επιδέξια Ρομποτικά Συστήματα

MATLAB. Εισαγωγή στο SIMULINK. Μονάδα Αυτόματης Ρύθμισης και Πληροφορικής

Αναγνώριση Προτύπων Ι

Τμήμα Μηχανικών Η/Υ και Πληροφορικής. Κινητά Δίκτυα Επικοινωνιών

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

ΕΛΕΓΧΟΣ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΚΕΦΑΛΑΙΟ 4 ΚΕΦΑΛΑΙΟ 5. ΑΝΑΓΝΩΡΙΣΗ ΔΙΕΡΓΑΣΙΑΣ ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ (Process Identifications)

Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 13

ΔΙΚΤΥO RBF. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Σύνδεση με τα Προηγούμενα. Προχωρημένα Θέματα Τηλεπικοινωνιών. Εισαγωγή (2) Εισαγωγή. Βέλτιστος Δέκτης. παρουσία AWGN.

Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αναδροµικός αλγόριθµος ελάχιστων τετραγώνων (RLS Recursive Least Squares)

Ψηφιακές Τηλεπικοινωνίες. Πιθανότητα Σφάλματος για Δυαδική Διαμόρφωση

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ

Δέκτες ΑΜ ΘΟΡΥΒΟΣ ΣΕ ΔΙΑΜΟΡΦΩΣΗ CW

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Μάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1

ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ. Αριθμητικές μέθοδοι ελαχιστοποίησης ΕΛΑΧΙΣΤΟΠΟΙΗΣΗ ΧΩΡΙΣ ΠΕΡΙΟΡΙΣΜΟΥΣ

Μάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 4

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 15-16

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο

Έλεγχος Κίνησης

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Επαναληπτικές μέθοδοι

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 5 η : Αποκατάσταση Εικόνας

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

HMY 799 1: Αναγνώριση Συστημάτων

Κινητά Δίκτυα Επικοινωνιών

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ

Δυαδικά Αντίποδα Σήματα. Προχωρημένα Θέματα Τηλεπικοινωνιών. Πιθανότητα Σφάλματος σε AWGN Κανάλι. r s n E n. P r s P r s.

27/4/2009. Για την υλοποίηση τέτοιων αλγορίθμων επεξεργασίας απαιτείται η χρήση μνήμης. T η περίοδος δειγματοληψίας. Επίκ. Καθηγητής.

Παρουσίαση 2 η : Αρχές εκτίμησης παραμέτρων Μέρος 1 ο

10-Μαρτ-2009 ΗΜΥ Παραθύρωση Ψηφιακά φίλτρα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Παράμετροι σχεδίασης παλμών (Μορφοποίηση παλμών)

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Mελέτη υλοποίησης τεχνικών κατανεμημένου προσανατολισμού σε πραγματικές συνθήκες

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

Είδη Διορθωτών: Υπάρχουν πολλών ειδών διορθωτές. Μία βασική ταξινόμησή τους είναι οι «Ειδικοί Διορθωτές» και οι «Κλασσικοί Διορθωτές».

Ψηφιακές Τηλεπικοινωνίες

Υπολογιστική Νοημοσύνη. Μάθημα 6: Μάθηση με Οπισθοδιάδοση Σφάλματος Backpropagation Learning

Για τις λύσεις των προβλημάτων υπάρχει τρόπος εκτίμησης της επίδοσης (performance) και της αποδοτικότητας (efficiency). Ερωτήματα για την επίδοση

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ. Καραγιώργου Σοφία

Προσαρµοστικοί αλγόριθµοι στο πεδίο της συχνότητας: ΟταχύςLMS (Fast Least Mean Square - FLMS)

E [ -x ^2 z] = E[x z]

Ασκήσεις στα Συστήµατα Ηλεκτρονικών Επικοινωνιών Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ

24-Μαρ-2009 ΗΜΥ Φίλτρα απόκρισης πεπερασμένου παλμού (FIR)

ΚΕΦΑΛΑΙΟ 6 ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΥΠΟΔΕΙΓΜΑΤΑ ΧΡΟΝΟΣΕΙΡΩΝ

Transcript:

Κινητά Δίκτυα Επικοινωνιών Συμπληρωματικό υλικό Προσαρμοστική Ισοστάθμιση Καναλιού

Προσαρμοστικοί Ισοσταθμιστές Για να υπολογίσουμε τους συντελεστές του ισοσταθμιστή MMSE, απαιτείται να λύσουμε ένα γραμμικό σύστημα (2Ν+1)x(2N+1) R c=r Η λύση του συστήματος είναι y ay c = opt R 1 y r ay Συχνά σε πρακτικές εφαρμογές ισοσταθμιστών:» προσπαθούμε να αποφύγουμε την άμεση αντιστροφή του R» και για να βρούμε τον ισοσταθμιστή συνήθως εφαρμόζουμε μια επαναληπτική διαδικασία Η ιδέα της επαναληπτικής διαδικασίας θα οδηγήσει στους προσαρμοστικούς ισοσταθμιστές Με παρόμοιο τρόπο μπορούν να σχεδιαστούν προσαρμοστικοί ισοσταθμιστές βασισμένοι στο κριτήριο ZF ΤΜΗΥΠ / ΕΕΣΤ 2

Μέθοδος της πιο Απότομης Καθόδου (Steepest Descent) Ξεκινάμε από ένα αυθαίρετο σημείο c 0 του διανύσματος συντελεστών πάνω στην επιφάνεια της συνάρτησης κόστους MMSE: έχουμε επιφάνεια 2 ου βαθμού στο (2Ν+1)- διάστατο χώρο Σε κάθε επανάληψη k, υπολογίζουμε την παράγωγο της συνάρτησης κόστους ως προς τους συντελεστές MMSE: η παράγωγος του MMSE g = k R y c k r ay και κάθε συντελεστής αλλάζει σε κατεύθυνση αντίθετη από την αντίστοιχη συνιστώσα του διανύσματος κλίσης c =c g + k 1 k k όπου Δ, η παράμετρος «μέγεθος βήματος» (step-size) ΤΜΗΥΠ / ΕΕΣΤ 3

Σύγκλιση Απότομης Καθόδου Σύγκλιση αλγορίθμου απότομης καθόδου στην επιφάνεια της συνάρτησης κόστους (Δισδιάστατος Χώρος) ΤΜΗΥΠ / ΕΕΣΤ 4

Μέθοδος πιο Απότομης Καθόδου Για να έχουμε σύγκλιση, ως Δ επιλέγεται μικρός θετικός αριθμός (μέσα στην περιοχή σύγκλισης) Αν k, τότε g k 0 (το διάνυσμα κλίσης μηδενίζεται) c k c 0 (οι συντελεστές τείνουν στους βέλτιστους) Η σύγκλιση στη βέλτιστη τιμή c 0 απαιτεί άπειρο αριθμό επαναλήψεων Οι ποσότητες R y και r ay υπολογίζονται μια φορά στην αρχή λαμβάνοντας υπόψη όλα τα δεδομένα και στη συνέχεια αρχίζουν οι επαναλήψεις. Ωστόσο, η βέλτιστη λύση προσεγγίζεται ικανοποιητικά σε μερικές εκατοντάδες επαναλήψεων Η πολυπλοκότητα είναι Ο(Ν 2 )/επανάληψη ΤΜΗΥΠ / ΕΕΣΤ 5

Προσαρμοστική Ισοστάθμιση Η προσαρμοστική ισοστάθμιση καναλιού απαιτείται όταν τα χαρακτηριστικά του καναλιού είναι χρονικά μεταβαλλόμενα Τότε, το ISI αλλάζει χρονικά η βέλτιστη λύση c 0 αλλάζει χρονικά χρησιμοποιείται εκτίμηση του διανύσματος κλίσης c ˆ =c + ˆ g ˆ k 1 k k Για το κριτήριο MMSE, ισχύει g = E[ ey ] k k k Μια απλή εκτίμηση του g k είναι η στιγμιαία τιμή του gˆ = e y k k k ΤΜΗΥΠ / ΕΕΣΤ 6

Ισοσταθμιστής LMS Με τη στιγμιαία εκτίμηση του g k προκύπτει ο προσαρμοστικός αλγόριθμος των Ελαχίστων Μέσων Τετραγώνων (Least Mean Squares - LMS) Ο LMS βασίζεται στο κριτήριο ελαχιστοποίησης του MSE Επειδή χρησιμοποιούμε μια εκτίμηση του διανύσματος κλίσης, ονομάζεται και αλγόριθμος στοχαστικής κλίσης (stochastic gradient) Κάθε φορά που λαμβάνεται ένα νέο δείγμα έχουμε και ένα βήμα επανάληψης Κατά την επανάληψη k, συγκεντρώνω τις 2Ν+1 τιμές λαμβανόμενου σήματος που βρίσκονται μέσα στον ισοσταθμιστή yk = y kt + N y kt y kt N ( τ) ( ) ( τ) T ΤΜΗΥΠ / ΕΕΣΤ 7

Αλγόριθμος LMS Τρόπος Eκπαίδευσης (Training Mode) c 0 = [0...010...0] for k = 0,... z = c y H k k k e = a z k k k * k+ 1 k k k αρχικά στέλνουμε μια ακολουθία εκμάθησης, δηλαδή μια ακολουθία γνωστών συμβόλων Τρόπος οδηγούμενος από αποφάσεις (Decision-directed mode) μετά στέλνουμε τα κανονικά προς μετάδοση δεδομένα εμπιστευόμαστε τον ισοσταθμιστή και θεωρούμε ως επιθυμητά σύμβολα τις αποφάσεις του φωρατή T c = c + y a k = Q z ( ) k e = a z e ΤΜΗΥΠ / ΕΕΣΤ 8 k k k

LMS Equalizer Γραμμικός προσαρμοστικός ισοσταθμιστής βασιζόμενος στο κριτήριο MMSE ΤΜΗΥΠ / ΕΕΣΤ 9

Επιλογή του Step Size Δ Το μέγεθος βήματος έχει πολύ σημαντικό ρόλο στην επίδραση του αλγορίθμου Αν το Δ είναι μικρό, τότε ο αλγόριθμος: συγκλίνει με αργό τρόπο αλλά συγκλίνει πιο κοντά στη βέλτιστη τιμή Αν το Δ είναι μεγάλο, τότε ο αλγόριθμος: συγκλίνει πιο γρήγορα αλλά πιο μακριά από τη βέλτιστη τιμή Αν το Δ είναι πολύ μεγάλο, τότε ο αλγόριθμος αποκλίνει Ένας εμπειρικός κανόνας για καλή σύγκλιση και καλή ιχνηλάτηση σε αργά μεταβαλλόμενα κανάλια είναι 0 < < 2N + 1 k = 1 2 λ ( R) k = όπου P R είναι η ισχύς του σήματος εισόδου 52 ( N + 1) P R ΤΜΗΥΠ / ΕΕΣΤ 10 1

Σύγκλιση του LMS Σύγκλιση του αλγορίθμου LMS για διαφορετικά μεγέθη βήματος ΤΜΗΥΠ / ΕΕΣΤ 11

Adaptive ZF Equalizer Προσαρμοστικός ισοσταθμιστής επιβολής μηδενισμών όπως ο ισοσταθμιστής MMSE μπορεί να υλοποιηθεί προσαρμοστικά, κατά αντίστοιχο τρόπο υλοποιείται και ένας ZF ισοσταθμιστής ΤΜΗΥΠ / ΕΕΣΤ 12

Κριτήρια αξιολόγησης προσαρμοστικών αλγορίθμων Σφάλμα μόνιμης κατάστασης (steady-state error) Ταχύτητα σύγκλισης (convergence) Δυνατότητα παρακολούθησης αλλαγών (tracking) Υπολογιστική πολυπλοκότητα (complexity) Χρονική καθυστέρηση (processing delay) Ευρωστία (robustness) (σχετίζεται με την ευστάθεια) Άλλες αριθμητικές ιδιότητες (όπως η ακρίβεια λύσης) Δυνατότητα αποδοτικών υλοποιήσεων (DSP, parallel, pipeline) ΤΜΗΥΠ / ΕΕΣΤ 13

Ένταση της ISI Η ένταση της ISI σχετίζεται κυρίως με τα φασματικά χαρακτηριστικά του καναλιού και δευτερευόντως με την έκταση της ISI (το μήκος του καναλιού) Όταν η απόκριση συχνότητας του καναλιού έχει φασματικά βυθίσματα, τότε δημιουργείται έντονη ISI Σε αυτές τις περιπτώσεις, οι γραμμικοί ισοσταθμιστές προσπαθούν να εφαρμόσουν το αντίστροφο φίλτρο, οπότε ενισχύεται σημαντικά ο θόρυβος σε αυτήν την περιοχή (ακόμη και όταν έχουμε κριτήριο MMSE) Συμπέρασμα: οι γραμμικοί ισοσταθμιστές είναι κατάλληλοι για κανάλια χωρίς έντονα συχνοτικά βυθίσματα Ακολουθούν χαρακτηριστικά παραδείγματα ΤΜΗΥΠ / ΕΕΣΤ 14

Παραδείγματα Καναλιών: Κρουστική Απόκριση Κανάλι Α Κανάλι Β ΤΜΗΥΠ / ΕΕΣΤ 15

Παραδείγματα Καναλιών: Απόκριση Συχνότητας Κανάλι Α Κανάλι Β ΤΜΗΥΠ / ΕΕΣΤ 16

Επίδοση ρυθμού σφαλμάτων (BER) γραμμικού MMSE ισοσταθμιστή ΤΜΗΥΠ / ΕΕΣΤ 17

Ισοσταθμιστής DFE DFE: Ισοσταθμιστής Ανατροφοδότησης Αποφάσεων (Decision Feedback Equalizer) μη γραμμικός ισοσταθμιστής To feed-forward filter σε σειρά με το υπερσύστημα x(t) δίνει ένα αιτιατό σύστημα (ISI μόνο από προηγούμενα σύμβολα) Το feedback filter χρησιμοποιεί τις αποφάσεις του φωρατή για προηγούμενα σύμβολα προκείμενου να εξαλείψει την (αιτιατή) ISI που αυτά εισάγουν στο τρέχον σύμβολο ΤΜΗΥΠ / ΕΕΣΤ 18

Ισοσταθμιστής DFE φίλτρο πρόσθιας τροφοδότησης (feedforward filter, FF) συνήθως είναι fractionally-spaced είναι προσαρμοστικό ή σταθερό είναι αντίστοιχο των γραμμικών ισοσταθμιστών Ν 1 συντελεστές, {c n } φίλτρο ανατροφοδότησης (feedback filter, FB) symbol-spaced είναι προσαρμοστικό ή σταθερό ως είσοδο δέχεται τις αποφάσεις του φωρατή Ν 2 συντελεστές, {b n } Έξοδος DFE N 1 2 z = c y (( m + N ) 1) T nt + b a m n n m n n= 1 n= 1 c y H = m + H b am N ΤΜΗΥΠ / ΕΕΣΤ 19

Adaptive DFE Συνήθως χρησιμοποιείται το κριτήριο MMSE και κάποιος αλγόριθμος στοχαστικής κλίσης (π.χ. LMS) ΤΜΗΥΠ / ΕΕΣΤ 20

Adaptive DFE algorithm Aλγόριθμος στοχαστικής κλίσης - LMS c 0 = [0...01] T for m = 0,... z = c y + b a H H m m m e = Qz [ ] z m m m cm+ 1 cm * ym = + em bm+ 1 bm a m ΤΜΗΥΠ / ΕΕΣΤ 21

Επίδοση DFE με και χωρίς διάδοση σφαλμάτων για το κανάλι Β και Ν 1 =Ν 2 =15 ΤΜΗΥΠ / ΕΕΣΤ 22

Διάδοση Σφαλμάτων Διάδοση Σφάλματος (Error Propagation): αν ο φωρατής αποφασίσει λανθασμένα για κάποιο σύμβολο, τότε αυτό τροφοδοτείται μέσω του FB και επηρεάζει τη φώραση και των επόμενων συμβόλων η επίδραση του σφάλματος δεν είναι καταστροφική (με την έννοια του μέσου όρου) συνεπάγεται απώλεια επίδοσης κατά 1-2dB για BER<10-2 ΤΜΗΥΠ / ΕΕΣΤ 23