ΜΑΘΗΜΑΤΙΚΑ. Β ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θετική και Τεχνολογική Κατεύθυνση

Σχετικά έγγραφα
1 ΔΙΑΝΥΣΜΑΤΑ. Εισαγωγή

ΜΑΘΗΜΑΤΙΚΑ. Β ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θετική και Τεχνολογική Κατεύθυνση

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

Μαθηματικά Θετικής και Τεχνολογικής κατεύθυνσης Διανύσματα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μαθηματικά. Β μέρος

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

1.1 Η Έννοια του Διανύσματος

AB. Αν το διάνυσμα AB έχει μέτρο 1, τότε λέγεται

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ B ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΔΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΜΑΘΗΜΑΤΙΚΑ. Β ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θετική και Τεχνολογική Κατεύθυνση

Μαθηματικά προσανατολισμού Β Λυκείου

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

1 Ο ΚΕΦΑΛΑΙΟ Ενότητα 1.

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

Αγαπητοί μαθητές, Κάθε κεφάλαιο περιέχει :

ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. 1 ο ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΊΑ ΠΙΘΑΝΟΤΉΤΩΝ

Σημειώσεις Μαθηματικών 1

Μαθηματικά Προσανατολισμού Β Λυκείου Στάμου Γιάννης

ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ

ΜΑΘΗΜΑΤΙΚΑ. Γ' Τάξης Γενικού Λυκείου Θετική και Τεχνολογική Κατεύθυνση

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Β ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. α. Τι ονομάζουμε εσωτερικό γινόμενο δύο διανυσμάτων, β

ΦΥΕ 14 Διανύσματα. 1 Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ. Επιμέλεια Αυγερινός Βασίλης

= π 3 και a = 2, β =2 2. a, β

ιάνυσµα ονοµάζεται το µαθηµατικό µέγεθος που περιγράφεται από µιατριάδαστοιχείων: το

ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ

ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

1.2 Συντεταγμένες στο Επίπεδο

ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ

Η ΚΙΝΗΣΗ ΣΩΜΑΤΙΟ Ή ΥΛΙΚΟ ΣΗΜΕΙΟ Ή ΣΗΜΕΙΑΚΟ ΑΝΤΙΚΕΙΜΕΝΟ

Μαθηµατικά Β Λυκείου Θετικής - τεχνολογικής κατεύθυνσης. Διανύσματα ΚΑΤΗΓΟΡΙΑ 8. Εσωτερικό γινόµενο διανυσµάτων. Ασκήσεις προς λύση 1-50

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

Μονάδες 5,5 γ) Αν τα διανύσματα a, είναι μη μηδενικά και θ είναι η γωνία των a. λ 0. Για ποια από τις παρακάτω τιμές του λ τα διανύσματα a.

ÅÓÙÔÅÑÉÊÏ ÃÉÍÏÌÅÍÏ ÄÉÁÍÕÓÌÁÔÙÍ ΟΡΙΣΜΟΣ

β = (9, x) να είναι ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ...Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΣΗΣ...

Εισαγωγή 1. Εξωτερικά του παραλληλογράμμου ΑΒΓΔ κατασκευάζουμε τα τετράγωνα ΑΒΕΖ και ΔΓΘΗ. Να αποδείξετε ότι : α. ZH E, H

117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά. Μαθηματικού

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΣΤΙΤΟΥΤΟ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ

Φυλλάδιο 1 - Σημεία Προσοχής στις Παραγράφους 1.1, 1.2 και 1.3

1,y 1) είναι η C : xx yy 0.

π (α,β). Έστω τα διανύσματα π (α,β) να βρεθούν:

Μαθηματικά. Β'Λυκείου. Προσανατολισµού Θετικών Σπουδών. Μαρίνος Παπαδόπουλος

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

Μαθηματικά Κατεύθυνσης (Προσανατολισμού)

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2

Β Λυκείου- Μαθηματικά Κατεύθυνσης. Μέρος Α Θεωρία. (Ορισμοί, θεωρήματα, αποδείξεις, παρατηρήσεις)

ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. 1. Να αποδείξετε ότι για οποιαδήποτε σημεία Α,Β,Γ,Δ ισχύει ότι :

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 4 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (19/11/2014)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ. Επανάληψη Επιμέλεια Αυγερινός Βασίλης. Επιμέλεια : Αυγερινός Βασίλης

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΊΑ ΠΙΘΑΝΟΤΉΤΩΝ

Τράπεζα συναρτήσει των διανυσμάτων α,β,γ. Μονάδες 13 β) να αποδείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά. Μονάδες 12

Ιωάννης Σ. Μιχέλης Μαθηματικός

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

Ο μαθητής που έχει μελετήσει το κεφάλαιο των διανυσμάτων θα πρέπει να είναι σε θέση:

Επαναληπτικές Ασκήσεις

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

τα βιβλία των επιτυχιών

ΛΥΣΗ Έστω x = λ-1 και y = 2λ+3, τότε λ = x+1 (1) και λ = (2). Αυτό σημαίνει ότι ο γεωμετρικός τόπος των σημείων Μ είναι η ευθεία y = 2x+5.

Μαθηματική Εισαγωγή - Διανύσματα 25/7/2014

11. Η έννοια του διανύσµατος 22. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2

Μαθηματικά προσανατολισμού Β Λυκείου. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΟΕΦΕ α φάση. Διανύσματα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η

32 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Ο Α1) Έστω το διάνυσμα a=

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015

δίου ορισμού, μέσου του τύπου εξαρτημένης μεταβλητής του πεδίου τιμών που λέγεται εικόνα της f για x α f α.

Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

Διανύσματα ΚΑΤΗΓΟΡΙΑ 6. Μαθηµατικά Β Λυκείου Θετικής - τεχνολογικής κατεύθυνσης. Ασκήσεις προς λύση Παράλληλα διανύσµατα. Οµόρροπα διανύσµατα.

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ

ΜΑΘΗΜΑΤΙΚΑ. Β Τάξη Γενικού Λυκείου Θετική και Τεχνολογική Κατεύθυνση ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

1.3 Εσωτερικό Γινόμενο

Ευκλείδεια Γεωμετρία

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

( AB) + ( BC) = ( AC).

Θέση-Μετατόπιση -ταχύτητα

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

kg(χιλιόγραμμο) s(δευτερόλεπτο) Ένταση ηλεκτρικού πεδίου Α(Αμπέρ) Ένταση φωτεινής πηγής cd (καντέλα) Ποσότητα χημικής ουσίας mole(μόλ)

ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

) = Απόσταση σημείου από ευθεία. Υπολογισμός Εμβαδού Τριγώνου. και A

ΜΕΘΟΔΙΚΗ ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ Β ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Transcript:

ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θετική και Τεχνολογική Κατεύθυνση

ΣΤΟΙΧΕΙΑ ΑΡΧΙΚΗΣ ΕΚ ΟΣΗΣ ΣΥΓΓΡΑΦΕΙΣ: Αδαμόπουλος Λεωνίδας Βισκαδουράκης Βασίλειος Γαβαλάς Δημήτριος Πολύζος Γεώργιος Σβέρκος Ανδρέας Σύμβουλος Παιδαγωγικού Ινστιτούτου Καθηγητής Β/θμιας Εκπαίδευσης Καθηγητής Β/θμιας Εκπαίδευσης Καθηγητής Β/θμιας Εκπαίδευσης Καθηγητής Β/θμιας Εκπαίδευσης Ιστορικά Σημειώματα: ΚΡΙΤΕΣ: Μακρής Κωνσταντίνος Τσικαλουδάκης Γεώργιος Φελούρης Ανάργυρος Θωμαΐδης Ιωάννης Καθηγητής Β/θμιας Εκπαίδευσης Σχολικός Σύμβουλος Β/θμιας Εκπαίδευσης Καθηγητής Β/θμιας Εκπαίδευσης Επίκουρος Καθηγητής Ε.Μ.Π. Γλωσσική Επιμέλεια: Μπουσούνη Λία Καθηγήτρια Β/θμιας Εκπαίδευσης Δακτυλογράφηση: Σχήματα: Μπολιώτη Πόπη Μπούτσικας Μιχάλης ΣΤΟΙΧΕΙΑ ΕΠΑΝΕΚ ΟΣΗΣ Η επανέκδοση του παρόντος βιβλίου πραγματοποιήθηκε από το Ινστιτούτο Τεχνολογίας Υπολογιστών & Εκδόσεων «Διόφαντος» μέσω ψηφιακής μακέτας, η οποία δημιουργήθηκε με χρηματοδότηση από το ΕΣΠΑ / ΕΠ «Εκπαίδευση & Διά Βίου Μάθηση» / Πράξη «ΣΤΗΡΙΖΩ». Οι αλλαγές που ενσωματώθηκαν στην παρούσα επανέκδοση έγιναν με βάση τις διορθώσεις του Παιδαγωγικού Ινστιτούτου.

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ KAI ΑΘΛΗΤΙΣΜΟΥ ΑΔΑΜΟΠΟΥΛΟΣ ΛΕΩΝΙΔΑΣ ΒΙΣΚΑΔΟΥΡΑΚΗΣ ΒΑΣΙΛΕΙΟΣ ΓΑΒΑΛΑΣ ΔΗΜΗΤΡΙΟΣ ΠΟΛΥΖΟΣ ΓΕΩΡΓΙΟΣ ΣΒΕΡΚΟΣ ΑΝΔΡΕΑΣ Η συγγραφή και η επιμέλεια του βιβλίου πραγματοποιήθηκε υπό την αιγίδα του Παιδαγωγικού Ινστιτούτου ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θετική και Τεχνολογική Κατεύθυνση ΙΝΣΤΙΤΟΥΤΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΕΚΔΟΣΕΩΝ «ΔΙΟΦΑΝΤΟΣ»

ΠΡΟΛΟΓΟΣ Το βιβλίο αυτό περιλαμβάνει την ύλη των Μαθηματικών, που προβλέπεται από το πρόγραμμα σπουδών της Θετικής Κατεύθυνσης της Β τάξης του Ενιαίου Λυκείου, του οποίου η εφαρμογή αρχίζει από το σχολικό έτος 1998-1999. Κατά τη συγγραφή του καταβλήθηκε προσπάθεια, ώστε το περιεχόμενό του να ανταποκρίνεται στις δυνατότητες των μαθητών, για τους οποίους προορίζεται, και να είναι δυνατή η ολοκλήρωση της διδασκαλίας του στο χρόνο, που προβλέπεται από το ωρολόγιο πρόγραμμα. Το βιβλίο αποτελείται από τέσσερα κεφάλαια. Το πρώτο κεφάλαιο αποτελεί μια εισαγωγή στο Διανυσματικό Λογισμό και στην Αναλυτική Γεωμετρία. Τα διανύσματα έχουν ιδιαίτερη σημασία όχι μόνο για τα Μαθηματικά αλλά και για πολλές άλλες επιστήμες, αφού προσφέρουν τη δυνατότητα μαθηματικοποίησης μεγεθών, τα οποία δεν ορίζονται μόνο με την αριθμητική τιμή τους. Εξάλλου, η αμφιμονοσήμαντη αντιστοιχία ενός σημείου του επιπέδου με ένα διατεταγμένο ζεύγος πραγματικών αριθμών οδηγεί στην αλγεβροποίηση της Γεωμετρίας, δηλαδή στη μελέτη των γεωμετρικών σχημάτων με αλγεβρικές μεθόδους. Στο δεύτερο κεφάλαιο, αφού δοθεί ο ορισμός της εξίσωσης μιας γραμμής, μελετώνται οι ιδιότητες της ευθείας. Στο τρίτο κεφάλαιο συνεχίζεται η ύλη της Αναλυτικής Γεωμετρίας με τη σπουδή των κωνικών τομών, οι οποίες για πρώτη φορά μελετήθηκαν από τους Αρχαίους Έλληνες. Σήμερα το ενδιαφέρον για τις κωνικές τομές είναι αυξημένο εξαιτίας του μεγάλου αριθμού των θεωρητικών και πρακτικών εφαρμογών τους. Το τέταρτο κεφάλαιο αποτελεί μία εισαγωγή στη Θεωρία Αριθμών, στην ανάπτυξη της οποίας μεγάλη είναι η συμβολή των Αρχαίων Ελλήνων. Κύριος στόχος της διδασκαλίας της ενότητας αυτής είναι η άσκηση των μαθητών στην αποδεικτική διαδικασία. Τα οποιαδήποτε σχόλια, παρατηρήσεις ή κρίσεις για το βιβλίο, από συναδέλφους, από μαθητές και από κάθε πολίτη που ενδιαφέρεται για τα ζητήματα της παιδείας, θα είναι πολύ ευπρόσδεκτα από τη συγγραφική ομάδα. Οι παρατηρήσεις να αποστέλλονται στο Παιδαγωγικό Ινστιτούτο, Μεσογείων 396, 153 10 Αγία Παρασκευή Μάρτιος 1998.

ΠΕΡΙΕΧΟΜΕΝΑ Σελίδα ΚΕΦΑΛΑΙΟ 1ο : Διανύσματα 1.1 Η Έννοια του Διανύσματος 11 1.2 Πρόσθεση και Αφαίρεση Διανυσμάτων 16 1.3 Πολλαπλασιασμός Αριθμού με Διάνυσμα 21 1.4 Συντεταγμένες στο Επίπεδο 29 1.5 Εσωτερικό Γινόμενο Διανυσμάτων 41 ΚΕΦΑΛΑΙΟ 2ο : Η Ευθεία στο Επίπεδο 2.1 Εξίσωση Ευθείας 57 2.2 Γενική Μορφή Εξίσωσης Ευθείας 65 2.3 Εμβαδόν Τριγώνου 70 ΚΕΦΑΛΑΙΟ 3ο : Κωνικές Τομές 3.1 Ο Κύκλος 81 3.2 Η Παραβολή 89 3.3 Η Έλλειψη 100 3.4 Η Υπερβολή 113 3.5 Η Εξίσωση Αx 2 + By 2 + Γx + Δy + E = 0 125 ΚΕΦΑΛΑΙΟ 4ο : Θεωρία Αριθμών 4.1 Η Μαθηματική Επαγωγή 135 4.2 Ευκλείδεια Διαίρεση 140 4.3 Διαιρετότητα 145 4.4 Μέγιστος Κοινός Διαιρέτης - Ελάχιστο Κοινό Πολλαπλάσιο 150 4.5 Πρώτοι Αριθμοί 161 4.6 Η Γραμμική Διοφαντική Εξίσωση 170 4.7 Ισοϋπόλοιποι Αριθμοί 175 ΥΠΟΔΕΙΞΕΙΣ - ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 185

1 ΔΙΑΝΥΣΜΑΤΑ Εισαγωγή Το διάνυσμα είναι ένα χαρακτηριστικό παράδειγμα έννοιας που αναπτύχθηκε μέσα από τη στενή αλληλεπίδραση Μαθηματικών και Φυσικής. Ο κανόνας του παραλληλόγραμμου, σύμφωνα με τον οποίο το μέτρο και η κατεύθυνση δύο δυνάμεων που ασκούνται σε ένα σώμα εκφράζονται από τη διαγώνιο του παραλληλόγραμμου που σχηματίζουν, ήταν γνωστός με διάφορες μορφές στους Αρχαίους Έλληνες επιστήμονες. Ο Ήρων ο Αλεξανδρεύς, για παράδειγμα, στο έργο του Μηχανικά αποδεικνύει με χρήση αναλογιών την ακόλουθη γεωμετρική πρόταση: Αν ένα σημείο Σ κινείται με ομαλή κίνηση κατά μήκος μιας ευθείας ΑΒ, ενώ συγχρόνως η ΑΒ κινείται παράλληλα προς τον εαυτό της με το άκρο Α να διαγράφει μια ευθεία ΑΓ, τότε η πραγματική τροχιά του Σ (η συνισταμένη κίνηση ) θα είναι η διαγώνιος ΑΔ του παραλληλόγραμμου ΑΒΓΔ. Αυτός ο κανόνας χρησιμοποιήθηκε πολλούς αιώνες για το γεωμετρικό προσδιορισμό της συνισταμένης, χωρίς όμως να θεωρείται ένα νέο είδος πρόσθεσης ευθυγράμμων τμημάτων, διαφορετικό από εκείνο που χρησιμοποιείται στην Ευκλείδεια Γεωμετρία. Για να γίνει αυτό, χρειάστηκε από τη μια μεριά η αποδοχή και συστηματική χρήση των αρνητικών αριθμών στα Μαθηματικά και από την άλλη η μελέτη φυσικών ποσοτήτων όπως η ταχύτητα, η δύναμη, η ορμή και η επιτάχυνση, που χαρακτηρίζονται τόσο από το μέτρο όσο και από τη διεύθυνσή τους. Αυτές οι εξελίξεις έφεραν στο προσκήνιο τις έννοιες της προσανατολισμένης κίνησης και του προσανατολισμένου ευθύγραμμου τμήματος, τις πρώτες ιδέες των οποίων συναντάμε σε έργα επιστημόνων του 17ου αιώνα όπως οι J. Wallis, I. Newton και G.W. Leibniz. Η ανάπτυξη ενός συστηματικού λογισμού με προσανατολισμένα ευθύγραμμα τμήματα άρχισε στα τέλη του 18ου αιώνα, για να δοθεί μια γεωμετρική ερμηνεία στους αρνητικούς αριθμούς, αλλά και για να βρεθεί ένας τρόπος αναλυτικής έκφρασης του μήκους και της διεύθυνσης των ευθύγραμμων τμημάτων. Πρωτοποριακό υπήρξε προς αυτή την κατεύθυνση το έργο των C. Wessel (1799) και R.

10 Argand (1806). Ξεκινώντας από την απλή περίπτωση των προσανατολισμένων τμημάτων που βρίσκονται στην ίδια ευθεία, προχώρησαν στον ορισμό των πράξεων με τυχαία τμήματα του επιπέδου. Συγκεκριμένα, οι ορισμοί του Wessel ήταν οι εξής: Το άθροισμα διαδοχικών προσανατολισμένων τμημάτων είναι το τμήμα που ενώνει την αρχή του πρώτου με το τέλος του τελευταίου. Το γινόμενο δύο προσανατολισμένων τμημάτων που σχηματίζουν γωνίες φ και ω αντιστοίχως με ένα μοναδιαίο τμήμα, είναι το τμήμα που έχει μήκος το γινόμενο των μηκών των δύο τμημάτων και σχηματίζει γωνία ϕ+ ω με το μοναδιαίο τμήμα. Στις εργασίες των Wessel και Argand (και ορισμένες άλλες που δημοσιεύτηκαν εκείνη την εποχή) υπάρχουν οι βασικές ιδέες που συγκροτούν σήμερα το Διανυσματικό Λογισμό του επιπέδου. Η ουσιαστική ανάπτυξη του κλάδου αρχίζει όμως μερικές δεκαετίες αργότερα, όταν επιχειρείται η γενίκευση αυτών των ιδεών στον τρισδιάστατο χώρο και η θεμελίωση μιας γενικής μαθηματικής θεωρίας. Καθοριστικό υπήρξε προς αυτήν την κατεύθυνση του έργο του W. Hamilton (1843) και του H. Grassmann (1844). Ο W. Hamilton χρησιμοποίησε τον όρο διάνυσμα (vector). Ο όρος vector προέρχεται κατά μία εκδοχή από το λατινικό ρήμα vehere που σημαίνει μεταφέρω. Ο H. Grassmann χρησιμοποίησε τους όρους εσωτερικό και εξωτερικό γινόμενο. Η παραπέρα εξέλιξη του Διανυσματικού Λογισμού επηρεάστηκε αποφασιστικά από τις εξελίξεις στη Φυσική κατά το δεύτερο μισό του 19ου αιώνα. Η χρήση της θεωρίας του Hamilton από τον ιδρυτή της ηλεκτρομαγνητικής θεωρίας J.C. Maxwell (1873) οδήγησε σε ορισμένες τροποποιήσεις, με βάση τις οποίες οι φυσικοί J.W. Gibbs και O. Heaviside δημιούργησαν στις αρχές της δεκαετίας του 1880 τη σύγχρονη θεωρία του Διανυσματικού Λογισμού (στοιχεία της οποίας παρουσιάζονται σ αυτό το κεφάλαιο). Τέλος το 1888, ο G. Peano, με βάση τη θεωρία του Grassmann θεμελίωσε αξιωματικά την έννοια του διανυσματικού χώρου.

11 1.1 Η ΕΝΝΟΙΑ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ Ορισμός του Διανύσματος Υπάρχουν μεγέθη, όπως είναι η μάζα, ο όγκος, η πυκνότητα, η θερμοκρασία κτλ., τα οποία προσδιορίζονται από το μέτρο τους και από την αντίστοιχη μονάδα μέτρησης. Τα μεγέθη αυτά λέγονται μονόμετρα ή βαθμωτά. Υπάρχουν όμως και μεγέθη, όπως είναι η δύναμη, η ταχύτητα, η επιτάχυνση, η μετατόπιση, η μαγνητική επαγωγή κτλ., που για να τα προσδιορίσουμε, εκτός από το μέτρο τους και τη μονάδα μέτρησης, χρειαζόμαστε τη διεύθυνση και τη φορά τους. Τέτοια μεγέθη λέγονται διανυσματικά μεγέθη ή απλώς διανύσματα. Στη Γεωμετρία το διάνυσμα ορίζεται ως ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ως ένα ευθύγραμμο τμήμα του οποίου τα άκρα θεωρούνται διατεταγμένα. Το πρώτο άκρο λέγεται αρχή ή σημείο εφαρμογής του διανύσματος, ενώ το δεύτερο λέγεται πέρας του διανύσματος. Το διάνυσμα με αρχή το Α και πέρας το Β συμβολίζεται με AB και παριστάνεται με ένα βέλος που ξεκινάει από το Α και καταλήγει στο Β. Αν η αρχή και το πέρας ενός διανύσματος συμπίπτουν, τότε το διάνυσμα λέγεται μηδενικό διάνυσμα. Έτσι, για παράδειγμα, το διάνυσμα AA είναι μηδενικό διάνυσμα. Για το συμβολισμό των διανυσμάτων χρησιμοποιούμε πολλές φορές τα μικρά γράμματα του ελληνικού ή του λατινικού αλφάβητου επιγραμμισμένα με βέλος. για παράδειγμα, αβ,,..., uv,,... Η απόσταση των άκρων ενός διανύσματος AB, δηλαδή το μήκος του ευθύγραμμου τμήματος ΑΒ, λέγεται μέτρο ή μήκος του διανύσματος AB και συμβο- λίζεται με AB. Αν το διάνυσμα AB έχει μέτρο 1, τότε λέγεται μοναδιαίο διάνυσμα. Η ευθεία πάνω στην οποία βρίσκεται ένα μη μηδενικό διάνυσμα AB λέγεται φορέας του AB.

12 Ως φορέα ενός μηδενικού διανύσματος AA μπορούμε να θεωρούμε οποιαδήποτε από τις ευθείες που διέρχονται από το Α. Αν ο φορέας ενός διανύσματος AB είναι παράλληλος ή συμπίπτει με μια ευθεία ζ, τότε λέμε ότι το AB είναι παράλληλο προς τη ζ και γράφουμε AB //ζ. Δύο μη μηδενικά διανύσματα AB και Γ, που έχουν τον ίδιο φορέα ή παράλληλους φορείς, λέγονται παράλληλα ή συγγραμμικά διανύσματα. Στην περίπτωση αυτή λέμε ότι τα AB και Γ έχουν ίδια διεύθυνση και γράφουμε AB //Γ. Τα συγγραμμικά διανύσματα διακρίνονται σε ομόρροπα και αντίρροπα. Συγκεκριμένα: Δύο μη μηδενικά διανύσματα AB και Γ λέγονται ομόρροπα: α) όταν έχουν παράλληλους φορείς και βρίσκονται στο ίδιο ημιεπίπεδο ως προς την ευθεία ΑΓ που ενώνει τις αρχές τους ή β) όταν έχουν τον ίδιο φορέα και μία από τις ημιευθείες ΑΒ και ΓΔ περιέχει την άλλη. Στις περιπτώσεις αυτές λέμε ότι τα AB και Γ έχουν την ίδια κατεύθυνση (ίδια διεύθυνση και ίδια φορά) και γράφουμε ΑΒ Γ.

13 Δύο μη μηδενικά διανύσματα AB και Γ λέγονται αντίρροπα, όταν είναι συγγραμμικά και δεν είναι ομόρροπα. Στην περίπτωση αυτή λέμε ότι τα διανύσματα AB και Γ έχουν αντίθετη κατεύθυνση (ίδια διεύθυνση και αντίθετη φορά) και γράφουμε ΑΒ Γ. Ίσα Διανύσματα Δύο μη μηδενικά διανύσματα λέγονται ίσα όταν έχουν την ίδια κατεύθυνση και ίσα μέτρα. Για να δηλώσουμε ότι δύο διανύσματα AB και Γ είναι ίσα, γράφουμε AB = Γ. Τα μηδενικά διανύσματα θεωρούνται ίσα μεταξύ τους και συμβολίζονται με 0. Εύκολα αποδεικνύεται ότι: Αν AB = Γ, τότε AΓ = Β, B = ΓΑ και BΑ = Γ. Αν Μ είναι το μέσον του ΑΒ, τότε AM = MB και αντιστρόφως. Αντίθετα Διανύσματα Δύο διανύσματα λέγονται αντίθετα, όταν έχουν αντίθετη κατεύθυνση και ίσα μέτρα. Για να δηλώσουμε ότι δύο διανύσματα AB και Γ είναι αντίθετα, γράφουμε

14 AB = Γ ή Γ = AB. Είναι φανερό ότι AB = Γ AB = Γ Ειδικότερα, έχουμε ΒΑ = ΑΒ. Γωνία δύο Διανυσμάτων Έστω δύο μη μηδενικά διανύσματα α και β. Με αρχή ένα σημείο Ο παίρνουμε τα διανύσματα OA = α και OB = β. Την κυρτή γωνία ΑΟΒ, ˆ που ορίζουν οι ημιευθείες ΟΑ και ΟΒ, την ονομάζουμε γωνία των διανυσμάτων α και β και τη συμβολίζουμε με ( αβ, ) ή ( βα, ) ή ακόμα, αν δεν προκαλείται σύγχυση, με ένα μικρό γράμμα, για παράδειγμα θ. Εύκολα αποδεικνύεται ότι η γωνία των α και β είναι ανεξάρτητη από την επι- o o λογή του σημείου Ο. Είναι φανερό επίσης ότι 0 θ 180 ή σε ακτίνια 0 θ π και ειδικότερα: θ = 0, αν α β. θ = π, αν α β.

15 π Αν θ =, τότε λέμε ότι τα διανύσματα α και β 2 είναι ορθογώνια ή κάθετα και γράφουμε α β. Αν ένα από τα διανύσματα α, β είναι το μηδενικό διάνυσμα, τότε ως γωνία των α και β μπορούμε να θεωρήσουμε οποιαδήποτε γωνία θ με 0 θ π. Έτσι, μπορούμε να θεωρήσουμε ότι το μηδενικό διάνυσμα, 0, είναι ομόρροπο ή αντίρροπο ή ακόμη και κάθετο σε κάθε άλλο διάνυσμα. ΕΦΑΡΜΟΓΗ Έστω Μ το μέσο της πλευράς ΑΓ ενός τριγώνου ΑΒΓ. Με αρχή το Μ γράφουμε τα διανύσματα Μ = ΓΒ και ΜΕ = ΒΑ. Να αποδειχτεί ότι το Α είναι το μέσο του ΔΕ. ΑΠΟΔΕΙΞΗ Αρκεί να δείξουμε ότι ΔA = AE. Πράγματι, επειδή Μ = ΓΒ, είναι ΜΓ = Β (1) Όμως το Μ είναι μέσο του ΑΓ. Άρα, ΜΓ = ΑΜ (2) Επομένως, λόγω των (1) και (2), έχουμε Β = ΑΜ, οπότε: Α = ΒΜ (3) Επειδή επιπλέον ΜΕ = ΒΑ, έχουμε ΑΕ = ΒΜ (4) Έτσι, από τις σχέσεις (3) και (4) έχουμε Α = ΑΕ.