EFFECTS OF SHEWANELLA ALGAE ON CORROSION OF Zn Al Cd ANODE

Σχετικά έγγραφα
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

p din,j = p tot,j p stat = ρ 2 v2 j,


Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

v w = v = pr w v = v cos(v,w) = v w


CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

S i L L I OUT. i IN =i S. i C. i D + V V OUT

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

Ανώτερα Μαθηματικά ΙI

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

2 SFI

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

v[m/s] U[mV] 2,2 3,8 6,2 8,1 9,7 12,0 13,8 14,2 14,6 14,9

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

arxiv: v1 [math.dg] 3 Sep 2007

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

Z

ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

EFFECTS OF Al Al 4 C 3 REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

Τεχνικές βασισμένες στα Δίκτυα Αναμονής Εισαγωγικά Επιχειρησιακοί νόμοι

N i. D i (x) = 1 N i. D(x, x ik ). (3, 1), (3, 0.9), (3, 0.8), (3, 0.8) (4, 0), (4, 0.1), (4, 0.2). k=1. j=1

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

27 7 Vol. 27 No CHINESE JOURNAL OF APPLIED CHEMISTRY July CV SEM EIS DTD. MCMB / 0. 01% DTD MCMB /Li. 300 ma h /g 350 ma h /g

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

tan(2α) = 2tanα 1 tan 2 α

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 11: SPLINES. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

Ανώτερα Μαθηματικά ΙI

Delta Inconel 718 δ» ¼

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ

Preparation of Hydroxyapatite Coatings on Enamel by Electrochemical Technique

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 4: Διανυσματικές Συναρτήσεις μιας Μεταβλητής. Αθανάσιος Μπράτσος

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

WAFER LEVEL ELECTRODEPOSION OF Fe Ni NOVEL UBM FILMS

ΟπτικόςΠρογραμματισ μός. ΙωάννηςΓºΤσ ούλος

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA HIGH STRENGTH LOW ALLOY STEEL

ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ

EXPERIMENTAL RESEARCH ON MELTING SURFACE BEHAVIOR IN MOLD UNDER COMPOUND MAGNETIC FIELD

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

Vol.30 No ß Journal of Chinese Society for Corrosion and Protection Oct /HCO 3 3 /HCO 3 É. 2.0 cm cm 2 SiC µ Ì 2000 Å

Εφαρμοσμένα Μαθηματικά

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 10: Μέθοδος Ελάχιστων Τετραγώνων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

INHIBITION PROPERTY AND ADSORPTION BEHAVIOR OF IMIDAZOLE AND 2 PHENYL 2 IMIDAZOLINE ON Cu IN H 2 SO 4 SOLUTION

Morganναδώσειμίαεναλλακτικήμέθοδο,αποδεικνύονταςπρώταότιηευθείαπουδιχοτομεί κάθεταμίαχορδήπεριέχειτοκέντροτουκύκλου. Παρ όλααυτά,καιαυτήημέθοδοςέχει

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

Blowup of regular solutions for radial relativistic Euler equations with damping

ƒ Š ˆ ˆ ˆˆ. ƒ. Ê ÖÏμ a,.. Š Ê,.. Šμ²μ ÊÉμ a, ƒ..œ ÍÒ a,. ƒ. Œμ²μ± μ a,.. ± a a Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Studies on the Interaction between Copper( ) Complex with Phenanthroline and L2Methionine Ligands and D NA

Electronic Supplementary Information

STRUCTURE AND MAGNETIC BEHAVIOR OF Zn 1 x Co x O CRYSTAL POWDERS PREPARED BY SOL GEL TECHNIQUE

Protective Effect of Surface Coatings on Concrete

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin


P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

EFFECTS OF TEMPERING TEMPERATURE ON THE IMPACT TOUGHNESS OF STEEL 42CrMo

High order interpolation function for surface contact problem

Rapid determination of soluble reactive silicate in seawater by flow injection analysis with spectrophotometric detection and its application

SYNTHESIS KINETICS OF (Y, Gd) 2 O 3 Eu 3+ NANO POWDERS DURING PROCESS OF PREPARATION

EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY

+ m ev 2 e 2. 4πε 0 r.

Supporting Information

P Œ ²μ, ƒ.. μ ±μ,. ˆ. ˆ μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. ³ É. ˆŒ ˆ Š ƒ Œ ˆ Ÿ ˆŸ 238 Uˆ 237 U, Œ ƒ Ÿ Š ˆˆ 238 U(γ,n) 237 U.

plants d perennials_flowers

ÅÊ NEAR (Near-Earth Asteroid Rendezvous) Hayabusa

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

þÿ ½ Á Å, ˆ»µ½± Neapolis University þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Quick algorithm f or computing core attribute

Transcript:

Ð 48 Ò Ð 12 Ñ Vol.48 No.12 2012 12 Ð 1495 1502 ACTA METALLURGICA SINICA Dec. 2012 pp.1495 1502 Ø Zn Al Cd ÊÒ ºÌ ÅÖ Æ 1) «1,2) 1,3) Å «1,4) Đ 1) 1) 1) Ö Þ ÝÖ Ö, ÞÑ 266071 2) Ý º, 201306 3) Ö Ý Ý, ÞÑ 266100 4) ÔÚ Á, ÔÚ 264005 Ù Ô Æ Õ, Ź³Ð Ï Â (Shewanella algae, SA) Õ. º Å Ô¹ Ù, ÕÙ¹ 3 Æ: ¹ Æ ÆÖ Æ. º Ð Ú Ï Ö ÏÝ SA Õ Zn Al Cd º¼» Ù Á. Å, SA Õ ÙÅ Ù Õ Å Ù, ÔÌĐ R ct Õ Ù R ct, SA ÕËÉ ÑÅ Ù». Õ Å ¹³Á,» ÊӻŠ٠É,, ÕÙ¹ ÆÑ Ø, Ñ» Ù ¹; Å SA ß, 5 d, Ô ¾ Ù¹³Á; ² ÕÙß, Å ³ Ù» Ð; Å SA ß 7 d, ¹ Ù¹³Á, Ó ß ³Ó ØÙ¾³, SA ÕÐ ¾³, 11 d Å Ù SA Õ ². ½ ÂÕ, º¼, Ð Ú, Ź³Ð,» Ü TG171 à A Ú 0412 1961(2012)12 1495 08 EFFECTS OF SHEWANELLA ALGAE ON CORROSION OF Zn Al Cd ANODE ZHANG Jie 1), SONG Xiuxia 1,2), LUAN Xin 1,3), SUN Caixia 1,4), DUAN Jizhou 1), HOU Baorong 1) 1) Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 2) College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306 3) College of Marine Life Sciences, Ocean University of China, Qingdao 266100 4) Chemistry and Chemical Engineering College, Yantai University, Yantai 264005 Correspondent: ZHANG Jie, associate professor, Tel: (0532)82898731, E-mail: zhangjie@qdio.ac.cn Supported by National Natural Science Foundation of China (No.41006054) and the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KZCX2 EW 205) Manuscript received 2012 05 28, in revised form 2012 09 29 ABSTRACT Shewanella is a typical iron reducing bacteria which can reduce insoluble ferric iron to soluble ferrous iron and consume oxygen, being considered as the reasons of corrosion inhibition. The main study on Shewanella algae(sa) is the degradation of environmentally harmful organic compounds and heavy metals, and there are very few reports on the interaction of metal corrosion and SA. In this paper, the bacteria isolated from yellow rust layer were identified as SA by using molecular biology techniques. The growth curve of SA was determined with spectrophotography. The results showed that the growth curve was divided into three phases: exponential growth phase, steady phase and decay phase. The effects of SA on corrosion of Zn Al Cd anode were investigated by using electrochemical impedance spectroscopy(eis), scanning electron microscopy(sem) and fluorescence microscopy(fm). The results showed that corrosion potential for samples exposed to the culture medium containing SA * «ßÐ ÍÃÅ 41006054 Ö ßÐ ÏÏÂ Ú ÅÃÅ KZCX2 EW 205 ÇÔÄ Ò : 2012 05 28, ÇÔ Ò : 2012 09 29 Ì½Ê : Ç Ã, È, 1976 ¹, ½, DOI: 10.3724/SP.J.1037.2012.00309

1496 Ì Ì Ð 48 Ò was higher than that for samples exposed to the sterile culture medium during the whole experiment. R ct value in the culture medium containing SA was much greater than that of anode in the sterile culture medium. The bacteria could inhibit the corrosion of the specimen. The reason was that a biofilm layer was formed on the sample surface and the oxygen was consumed through the metabolic activities of bacteria in the culture medium containing bacteria. The biofilm layer was formed on the 5th day in the culture medium containing bacteria. While in bacteria free system, obvious corrosion pits and white corrosion products were seen on the sample surface. The complete biofilm was formed on 7th day, and it detached from the sample on 11th day because of the exhaustion of nutrients and oxygen, showing that the biofilm formation had a great relationship with the presence of nutrients and oxygen. KEY WORDS Shewanella, sacrificial anode, electrochemical impedance spectroscopy, molecular biology, corrosion º ÎÎ ÌÚ Â ËÕ ÚÍ [1,2], Ø Ú º Ú Â, º Ú ¼ µâ, ß È Ú Ì Ê., Ø [3] Ì º Ú Ò¼ Ú º, º Õº ¼ ÌÚ Â Ð Ú, ³Ì«. ÆÃÖÎ 1985 Ú Î [4], Ú «Ö. Í ÆÃÖØ Ú MR 1, ± Ð «,, Í Õ º ÀÚ ÛØ [5 7], Í Õ¼ÎÎ ¼ Ú ÂÚØ. «, «Ö ¼ Ú Â, Ö³«, Õ ¼ Ö [8,9]. Í Õ Ò¼ ºÚ, «ÖÌ Ê ³ Ú ¹ ««Ú ¹ ÇÒ ĐÙ, Ò Ú¼ µ [10 12]. Ø [13,14], ÖÎ ß Cu Ú¼ µ, Ò Al Ú º. Ø Ú Æà (Shewanella algae, SA) Ö 1992 ¹ Ú Ù [15], ÍØ [16,17] Đ Õ Å ÛÎÎÚ Ç, Í SA Ö¼ ¼ Ú ÂÚ Ö² [3,14]. Zn Al Cd»½Ð ÆÛ É ÚÎ Ùλ½Ð, Рα Û» ÞÚ «Ø [18]. Ø [19 21] Đ Í Zn Ð ¼ Þ º Õº Ú Â, Í Þ º Õº Zn ÎÙÎÐ ¼ ÌÚ Â Ö; ÍÃØ ÍØ ÐÕ«Ö (SRB) Ú Zn Al Cd Ð Ú¼ Ä [22], Í SA Ö»½Ð ÂÚØ. à µ Ú SA Ö, µ «Ñ ÛÐ Þ, Ø SA Ö Zn Al Cd»½Ð ¼ Ú Â. Ö Zn Al Cd Ú¼ Ò, Ö Ò º ¼ Ú ÞÄÉ, ÎÌ Ò¼ Ú Öź,»½Ð «. 1 ÎÐ µ 1.1 SA ¼ ¹À ÆÓ ¹ÞÉ ¹ ÛÖÙ ßÒ ºÆ ÚÆ. Ú Postgate s C SA Ö. µ: 1 g Ä, 0.3 g ÐÇ, 1 g NH 4 Cl, 0.06 g CaCl 2 6H 2 O, 0.5 g KH 2 PO 4, 0.06 g MgSO 4 7H 2 O, 6 ml ÐÇ, 1000 ml. Ö 121 Ö 30 min, Đ, 5 g Æ 100 ml Ø, Ð 30 º É. 7 d Đ, ÖÅ 50 µl, ÙÅ Ë µ, Đ «Â б 30 Ý ØÐÐ. 4 d Đ, ØÚÆ Öº µ. «Đ Ç Öº, Đ Öº, Ç 5, 30 Ý Ø ÐÐ.» Promega Å Ú Wizard DNA Æ±Ú ÚÖÅØÞ Ö DNA. Þ Ú DNA À, PCR(polymerase chain reaction)  16S rrna Ú. Ú : 8F(5 AGAGTTTGATCCTGGCTCAG 3 ) 1492R(5 GGTTACCTTGTTACGA CTT 3 ). PCR ¾. 1.2 ÏÑ Á Û Zn Al Cd ÙÎÐ, Õ Ñ µ (Ô µ, %) Al 0.36, Cd 0.045, Pb 0.00092, Cu 0.0012, Fe 0.0021, Zn. Ñ¾Æ Û Û µ Û Î Ø ÆÁ Ó 10 mm 10 mm 6 mm; Û ÛØ ÆÁ 50 mm 20 mm 5 mm. À Û Đ, Ñ¾Æ «Cu Ó Đ, ««Ã, Õ ÅĐ PVC ÏØ; Û ÛÆ «, Ë ; µ Û Î Æµ Õ «Ä Ë «, Ì. Ø Æ¼Ê GB5776 86 Ë, ÛÛ, Æ Úà à ÃÕ 1200 Ó, Ã, Đ Ð, Ã, ÛÛ± à ÛØÑ Û 30 cm Ë, Ö 30 min. 1.3 ÏÑ Û Û ËÔ ßÒ,,

Ð 12 Ñ Æ ÂÜ : ¾ ÁÔ Zn Al Cd ¹»ß غ Ê À 1497 ÛıР15 d Đ. 200 ml ÖĐÚ Postgate s C, 10 ml Ú SA ÖÅÓ Ù, Ö ; 200 ml ÖĐÚ Postgate s C Ö. 1.4 Shewanella algae É È ± ³ ± Ö ÅÚ «¼ «(OD ), µ «²¾ «Ø SA ÖÚº [23]. É Ò 310 ml Postgate s C Å, Ó Ö Ö 30 min Đ,. ÖÚ 15 ml Ï«, µ 10 ml ÖÚ Postgate s C Å, ± 4 Ø«, ¼ Å. Đ 15 ml ÚÖÅ, Õ Ú 300 ml ÖÚ Postgate s C Ø, µ, Ó µ Õ 30 15 ml Ú ÏØ, 30 Ý, Ð Ú ¼ Ç«Ï, ± 4 Ø«, 10 d Đ µ «²«Ö ¾, о À Ú µ. «¾ SA Ö Ú Ý È 400 nm. ³ º ¼Ú SA ÖÚ Å 1 d Ø ¾, Ç 3 ml Ú Å 400 nm Ë «¾, «ÚÖÅ Ö Postgate s C ½ÀĐ¾, Õ OD 0.2 0.8 É, Đ ½ÀĐ¾ Ú OD ½À Å Ú OD. ÐÚ ¾ 3, OD Ú Ó. 1.5 ² ÏÑ Ñ Û» Solartron Å Ú SI 1287 Ý Æ SI 1260 µ Æ ¾Æ, ¾Æ. à Zn Al Cd Æ, Pt, ¼ Æ (SCE). Ø ÛÐ¾Æ Ä, ÝÓ 11 d. ÛÐÚ «Ó 10 mv Ó, µ 100 khz 10MHz.» Zplot Ú»,» ZSimpWin ѵ ÛÆ ÏÙµ. 1.6 Ĺ ÏÑ 2 121 Ó ÖË Ú 250 ml, à Ûص Ú Ö Postgate s C 200 ml, ÕØ«Ø 10 ml ÚÖÅ, µ ر 2 1.2 ÁØ Ë ÐÚÆ, Ä Ý ĐÐ Ä. 5 9 d Đ, µ Ä Ã ÛØÒ Ç Ö Ö ØÚÆ, ½Ë. ÖÆ µ 50% ( ± ÐÕ Ã Å, PBS) 15 min, 75% 15 min, 100% 15 min «Ë ; ÖÆ 5% ² Å ( ± PBS) 2 h Đ, Đ» ³ «Ú Å «. ÏĐ È ÁĐ,» KYKY 2800B Æ «(SEM) ¼ Î. 1.7 ±Õ ¾ ÝÓ SA Ö Ø ÇÆ º Î Û. ÛÛ, Ö Ã Æ 3, 5% ² (PBS ½À) Ë 30 min, Đ 0.1% Ú 4, 6 Diamidino 2 phenylindole(dapi) Æ 15 min. Đ Đ, Æ ÚÆ ± Ð, ±ÐÕ Zeiss Axioplan Î. 1.8 ËÝÏÑ Û ÛÆ «Ó, Ê 1.2 ÁØ Ë. Đ ««µ Ð Û ³±, ÛØ Û Ö 30 min Đ, ̵ Ö ÙÖÅ Ø. Û ÛÝÓ 11 d,» 3. ÛÝÓÆ Đ ÇÌ, ¾ È Ú, ¼Ê GB11112 89 ȼ. Ç Ã Đ± Ø Á. Đ, Ç, ± Á 24 h Đ Û. 2 ÎÐ Â 2.1 SA ± ³ É È Ú 16sDNA µ, MEGA4 È ( 1). Æ, Ö JF342358 ¼ Shewanella algae (U91548) ÚÝ Í, Ö ÆÃÖ. SA Ö Ø 1 º ÝÓÉÚº 2 Ø. ÙÇ, Ø SA ÖÚº OD 400 nm 1.8 1.6 1.4 1.2 1.0 0.8 1 SA ÕÙ Ï Fig.1 The phylogenetic tree of SA 0.6 0 2 4 6 8 10 Time, d 2 SA ÕÙ¹ Fig.2 Growth curve of SA

1498 Ì Ì Ð 48 Ò µ 3 À : 1 4 d º À, Ô Ú, Ö Ò Â, 4 d Õ ; 5 6 d À, ± Ø Ô ĐÙ ÚÇÒ, Ö µ, Ó Ö ¼ Ü, Ö ; 7 10 d À, À É, ± Ú Ô Ò, Ö ½, SA Ö. 2.2 ËÝÏÑ Û Û ÊÛ ¼ È,» ¼ÉÚ Ó¼ µ (mm/a) Æ Ú¼ µ, ²ÑÅ : ν = 8.76 w 0 w 1 ATρ (1) Ø: ν Æ Ú Ó¼ µ, mm/a; w 0 Æ ÚÖ Ô, g; w 1 ȼ ĐÚÆ Ô, g; A Æ, m 2 ; T Æ ÝÓ, h; ρ ÎÎ «, g/cm 3. ²Ñ, Æ SA Ö ØÚ Ó¼ µ 0.0184 mm/a, Ö Ø Ó¼ µ 0.0233 mm/a,, SA ÖÚ ««Ò ¼ Ú. 2.3»Í² ¾ Ú¼ Ô ¼ Ú 3 Ø. Ø ÙÇ Zn Al Cd»½Ð Æ ³ SA Ö ØÚ¼ «Ú Ó, Æ Ø ¼, 3 d Đ¼ Ø, ÕĐ 5 11 d, ¼. Æ SA Ö ØÚ¼ 1 3 d ¾, Î Ì Ö, ¼ º «Ú Ò, ¼ º ; 3 9 d Ó¼, Æ Ú¼ ³ ; 11 d, Æ Ú¼ ² ¾, Π̼¼ Æ Ú³ Í. Û Ø, Æ SA ØÚ¼ «³ SA Ö ØÚ¼, μ Mansfeld [24] Ø Ú ÆÃÖ MR 1 ²ÙÎÚ¼ ÂØ «. ŵŠ: SA Ö Æ Ú¼ µß Ö ØÆ Ú¼ µ [25]. 2.4 ² ß Ç¹ 4 5 µ Æ ³ SA Ö SA Ö ØÚ ÛÔ ¼Ú. À Û Ý ÛÐÚÆ, 1 d Æ» 6a ÚÞË ÛÐ ÏÙ, 3 11 d Æ» 6b ÚÞË. ÕØ, R s Å ; Q f ; R f ; Q dl È ; Q Ú Û Z CPE = Y 1 0 (jω) n, ÕØ, n, 0< n <1; R ct ÕÍ, ÎÎÚ¼ µ, Õ È Îμ µ [26] ; Z w Web Û, ÙÚÇ ± ¼ ( º Â) Ú Åؼ «Ú Ë. Æ ³ SA Ö SA Ö Ø µ 1 2 Ø. ± 1 Ø R ct Ú ÙÇ, 1 3 d, R ct 1560Ω cm 2 Ò Õ 246.0 Ω cm 2, Î Æ Ð, Ø, ØÚ «Þ¼ Ô E ocp, vs SCE, V -1.120-1.125-1.130-1.135 (a) (b) 1 d 3 d 5 d 7 d 9 d 11d Time, d 3 Å Ó» Fig.3 Time dependence of E ocp for the samples without -Z im, cm 2 (a) or with (b) Shewanella algae 400 200 1 d 3 d 5 d 7 d 9 d 11 d Fitting curve 0 0 200 400 600 800 Z re, cm 2 4 Å ² SA Õ Ú Fig.4 Nyquist plots for the samples in culture medium -Z im, cm 2 800 600 400 200 without SA 1 d 3 d 5 d 7 d 9 d 11 d Fitting curve 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Z re, cm 2 5 Å SA Õ Ú Fig.5 Nyquist plots for the samples in culture medium with SA

Ð 12 Ñ Æ ÂÜ : ¾ ÁÔ Zn Al Cd ¹»ß غ Ê À 1499 1 Å ² SA Õ Ù EIS ÝÊ ÎØ Table 1 EIS parameters in the equivalent circuit for Zn Al Cd anode in culture medium without Shewanella algae Time R s Q f n 1 R f Q dl n 2 R ct d Ω cm 2 F/cm 2 Ω cm 2 F/cm 2 Ω cm 2 1 0.7000 1.811 10 5 0.6554 141.5 3.713 10 3 0.5001 1560 3 0.006040 6.489 10 6 0.6765 180.1 1.379 10 2 0.5137 246.0 5 0.008457 3.721 10 8 1.000 65.66 7.075 10 6 0.8021 149.1 7 1.600 2.944 10 8 1.000 63.45 5.065 10 5 0.5744 244.9 9 1.450 5.832 10 8 1.000 72.49 4.630 10 5 0.6465 181.6 11 0.6330 2.7040 10 8 1.000 56.16 8.528 10 5 0.5206 252.3 2 Å SA Õ Ù EIS ÝÊ ÎØ Table 2 EIS parameters in the equivalent circuit for Zn Al Cd anode in culture medium with Shewanella algae Time R s Q f n 1 R f Q dl n 2 R ct d Ω cm 2 F/cm 2 Ω cm 2 F/cm 2 Ω cm 2 1 0.7802 1.003 10 3 0.4080 2.201 1.990 10 5 1.000 1612 3 2.311 5.234 10 5 0.9075 185.4 1.241 10 3 0.5500 1046 5 2.580 4.316 10 5 0.9106 328.6 7.521 10 4 0.5955 1100 7 2.651 3.014 10 5 0.9359 343.8 4.305 10 4 0.5100 1530 9 2.553 2.169 10 5 0.9595 266.0 3.720 10 4 0.5006 1280 11 2.561 1.634 10 5 0.9764 260.0 2.954 10 4 0.4769 1200 6 Å Ù ÚÝÊ Fig.6 Equivalent circuits of the impedance diagrams for anode samples in culture medium for 1 d (a) and 3 11 d (b) Æ, Æ Ú¼. Õ 5 d ¼ µ Õ, R ct Õ 149.1 Ω cm 2. 7 11 d Ó¼, Æ Ú R ct µø Â, ܳ ± ¼ Ú РÚ, Æ Ú¼ µ² [27]. ± 2 ÙÇ, SA Ö Ú 1 3 d, R ct, ¼ µâ. Î Æ Ð, Ø, º µú ¼. Ò SA ÖÚ Ø, ÛÅÓ ØÚ Ô, Ö, ÎÎ, Æ ¼ ÖÕ«ÚÙ, ÅÓÎÙÙ ¼ Ú «Æ µ¼, Æ 3 d ¼ µ«1 d ¼ µ. ¼³ SA ÖÚÆ, Ö 3 d Ú R ct (1046Ω cm 2 ) Ö R ct (246.0 Ω cm 2 ), Î Û SA ÖÚ Ì ««Ò Zn Al Cd ¼. 5 7 d, R ct µ «ÚÂ, Î Æ Ú º, Ú º Â, ÖÚ Í Æ, Æ ÖÕ«. ØÚ R ct Ù, Õ 7 d, Ú º Â Õ Ü, Æ Ú¼. À 2 Úº, SA Ö 4 d Õ, ¼ Ç 7 d, µ, SA Ö Æ Úº  «Ú ¼ [28], Ò 4 d Ø Ú Ö, Ú º ² ÅØ, ± Úº Â, Õ 7 d ¹º Ú º Â, ¹ Æ ÞÄ Ú«. ÎÙ«º

1500 Ì Ì Ð 48 Ò ÂÚ Å Ø Ú Ö, «ÚÕĐ. 9 11 d, R ct µ ÈÕ 1200 Ω cm 2, Ì ± Ô ÔÚÇÒ, Ö, º «º, Æ Ú Û ¼ ËÔØ, Æ Ú¼ µ Â. ÛÝÓ, Ö ØÆ Ú R ct Ö ØÆ Ú R ct ÈÛ, Ö ØÚÆ ¼ ËÔ Ê, ØÚ «Þ¼ ËÔ Zn Al Cd Ú¼, SA Ö Ø, Æ Ú Ö Í «º Â, Î ÂÚ È Æ ³Ì¼ ØÚ¼ «Cl Ê, ««Æ Ú¼ µ,, Ø ÖÚ ÇÒ ØÚĐÙ [3,11,14], ÕĐÙÇÒ µ ĐÙ µ. Ø º Â È Ú ÇĐ «ß, º ÂØ ĐÚ Å [8], ««Ò Æ Ú¼. 2.5 SEM Õ ¹ 7 Zn Al Cd»½Ð ³ SA Ö ÅØÌ 5 9 d Ú SEM Ê. 7a Ù Ç, 5 d Đ, Æ º Ú¼, Ú ¼. Æ Ø 9 d Đ ( 7b), Æ Ç «Ì¼. Î̼ Ú Ü³¼Æ Ú Al ¾ µ ³Ó Í. ÎÎÚ Al ¾ Ð, ¼ ÎÎÈ ¼ À, ÈÐ, Al µ ¼,, ÎÎ º Ç, Ç ¼ [29]. 8 Æ SA Ö Øµ 5 9 d Đ Ú SEM Ê. ± 8a ÙÇ, Ö Ø 5 d Đ, Æ Ú «± Ö Õ Í Úº Â, Î º  ¼ ËÔ Æ Ú¼, ß Æ Ú¼ µ, Î¼Û Ñ¾ÆØ ÚÆ «Ú. 9 d Đ ( 8b), ر Ô ÚÇÒ, SA Ö, Æ Úº  ثº, Ð ¼ Ú Ò ß, ÌÙÕ Ú SA Ö. SEM ÚÆ ¼Û ѾÆÆ «: Æ 9 d, ¼ µµø Â. 9 Æ SA Ö Øµ ³ ¼Ú Ê. ÙÇ, Æ 5 d( 9a) Đ, Ú Ö º, Ø º º Â, Î º  ¼ ËÔ Æ Ú¼. 7 d( 9b) Đ, Æ ÐÚº Â, Î º ÂÛÐ «Æ, ¼ ËÔ¼Æ Ú Ê, Æ Ú¼ µ È, Î Æ ¼Û Ú Ñ¾ÆØ ÚÆ SEM ÚÆ ÙÚ. 9 d( 9c) Đ, Úº Â, Ò Æ Ö, 9b, Ö. Î Æ ¼ SEM Ø ÚÆ «Ú. 11 d( 9d) Đ, ØÚ Ô Đ 7 Zn Al Cd Å ² SA Õ 5 d Ö 9 d Ù SEM Fig.7 SEM images of the Zn Al Cd samples immersed in culture medium without SA for 5 d (a) and 9 d (b) 8 Zn Al Cd Å SA Õ 5 d Ö 9 d Ù SEM Fig.8 SEM images of the Zn Al Cd samples immersed in culture medium with SA for 5 d (a) and 9 d (b)

Ð 12 Ñ Æ ÂÜ : ¾ ÁÔ Zn Al Cd ¹»ß غ Ê À 1501 9 Zn Al Cd Å SA Õ ²»Ù É Fig.9 FM images of Zn Al Cd exposed in culture medium with SA for 5 d (a), 7 d (b), 9 d (c) and 11 d (d) ÙÚ Ç, Ö, Æ Ú Ö½, Æ Ú¼ µ Â. 3  (1) ص ÕÚÆ Ö µ«º Ñ, Ö ÆÃÖ (SA); Õº ¾, Öº µ º À À À 3 À ; 4 d, ÖÚº Õ. (2) ¼³ Ö ØÆ ÚÆ, SA Ö ØÚÆ ÚØ º, R ct Ö Ú R ct, ÖÌÊ ÒÆ Ú¼. SA Ö Æ Ú º Â, ¼ ËÔ¼ÎÎ Ú Ê, Ü Ö º ØÇ Ò ØÚĐÙ, Ò¼ Ú º. (3) Æ SA Ö Ø 5 d, Õ Ú Ö ; ³ ÖÚ Ø, Æ Ú¼ Ú¼. (4) SA ÖÚÆ, Õ Ö, 7 d, º Úº Â; Ô Ô ĐÙÚ ÇÒ, 11 d º  «º, Ø ³. º ÂÚ ¼ Ô ĐÙÚ Û Í. [1] Wu J Y, Chai K, Xiao W L, Yang Y H, Han E H. Acta Metall Sin, 2010; 46: 755 (±Ï, Ý, É, ܹ,. ÍÍÐÆ, 2010; 46: 755) [2] Dumas C, Basseguy R, Bergel A. Electrochim Acta, 2008; 53: 5235 [3] Mansfeld F. Electrochim Acta, 2007; 52: 7670 [4] MacDonell M T, Colwell R R. Int J Syst Evol Microbiol, 1985; (6): 171 [5] Manohar A K, Bretschger O, Nealson K H, Mansfeld F. Bioelectrochem, 2008; 72: 149 [6] Manohar A K, Mansfeld F. Electrochim Acta, 2009; 54: 1664 [7] Mohan S V, Raghavulu S V, Sarma P N. Biosens Bioelectron, 2008; 24: 41 [8] Lee A K, Newman D K. Appl Microbiol Biotechnol, 2003; 63(1): 134 [9] Wang H B, Hu C, Hu X X, Yang M, Qu J H. Water Res, 2012; 46: 1070 [10] Dubiel M, Hsu C H, Chien C C, Mansfeld F, Newman D K. Appl Environ Microbiol, 2002; 68: 1440 [11] Herrera L K, Videla H A. Int Biodeterior Biodegrad, 2009; 63: 891 [12] Lee A K, Buehler M G, Newman D K. Corros Sci, 2006; 48: 165 [13] Kus E, Nealson K, Mansfeld F. Corros Sci, 2007; 49: 3421 [14] Nagiub A, Mansfeld F. Electrochim Acta, 2002; 47: 2319 [15] Nozue H, Hayashi T, Hashimoto Y, Ezaki T, Hamasaki K, Owada K. Int J Syst Bacteriol, 1992; 42: 628

1502 Ì Ì Ð 48 Ò [16] Guha H, Jayachandran K, Maurrasse F. Environ Pollut, 2001; 115: 209 [17] Shin H Y, Singhal N, Park J W. Chemosphere, 2007; 68: 1129 [18] Long P, Li Q F. Corros Sci Prot Technol, 2007; 19: 235 (, Å ³.» ßл Ï, 2007; 19: 235) [19] Rousseau C, Baraud F, Leleyter L, Gil O. J Hazard Mater, 2009; 167: 953 [20] Mottin E, Caplat C, Latire T, Mottier A, Mahaut M L, Costil K, Barillier D, Lebel J M, Serpentini A. Mar Pollut Bull, 2012; http://dx.doi.org/10.1016/j.marpolbul.2012.06.017 [21] Wagner P, Little B, Hart K, Ray R, Thomas D, Trzaskoma Paulette P, Lucas K. Int Biodeterior Biodegrad, 1996; 37: 151 [22] Zhang J, Liu F L, Li W H, Duan J Z, Hou B R. Acta Metall Sin, 2010; 46: 1250 (Ç Ã, ¹, Å, ƵÜ, ßÅ. ÍÍÐÆ, 2010; 46: 1250) [23] Liu J H, Liu F, Li S M. Corros Sci Prot Technol, 2001; 13: 85 (,, Å.» ßл Ï, 2001; 13: 85) [24] Mansfeld F. Electrochim Acta, 2007; 52: 7670 [25] Liu J H, Liang X, Li S M. J Chin Rare Earth Soc, 2006; 24: 81 (, Æ, Å. ¼ ÐÆ, 2006; 24: 81) [26] Wan Y, Zhang D, Liu H Q, Li Y J, Hou B R. Electrochim Acta, 2010; 55: 1528 [27] Liu G Z, Qian J H, Ma Y, Wu J H. J Electrochem, 2002; 8: 191 ( ß, Ú, ¼, ±. Ð, 2002; 8: 191) [28] Liu J,Yan YG, Chen G Z, Liu G Z, LiQF. J Electrochem, 2006; 12: 93 (, Ú, Å, Þ, Å ³. Ð, 2006; 12: 93) [29] Long P, Yang S W, Luo Z H. Appl Sci Technol, 2003; 30(7): 1 (, Ü, ¹ËÞ. ß, 2003; 30(7): 1) ( Ð : )