ÐÏËÕÙÍÕÌÉÊÇ ÐÁÑÅÌÂÏËÇ

Σχετικά έγγραφα
ÐÑÏÓÅÃÃÉÓÇ ÅËÁ ÉÓÔÙÍ ÔÅÔÑÁÃÙÍÙÍ

SPLINES. ÌÜèçìá ÓõíÜñôçóç spline Ïñéóìïß êáé ó åôéêü èåùñþìáôá

ÓÕÍÅ ÅÉÁ ÓÕÍÁÑÔÇÓÇÓ. 8.1 ÃåíéêÝò Ýííïéåò êáé ïñéóìïß

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 15: Προσέγγιση συνήθων διαφορικών εξισώσεων Μέρος Ι. Αθανάσιος Μπράτσος

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 16: Προσέγγιση συνήθων διαφορικών εξισώσεων Μέρος ΙΙ. Αθανάσιος Μπράτσος

ÐÑÏÓÅÃÃÉÓÇ ÐÁÑÁÃÙÃÙÍ

ÁÑÉÈÌÇÔÉÊÇ ËÕÓÇ ÓÕÍÇÈÙÍ ÄÉÁÖÏÑÉÊÙÍ ÅÎÉÓÙÓÅÙÍ

ÁÏÑÉÓÔÏ ÏËÏÊËÇÑÙÌÁ. ÌÜèçìá ÅéóáãùãéêÝò Ýííïéåò ÐáñÜãïõóá óõíüñôçóç

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 7: Οριακή Τιμή Συνάρτησης. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

ÁÑÉÈÌÇÔÉÊÇ ÏËÏÊËÇÑÙÓÇ

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 8: Συνέχεια Συνάρτησης. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

ÏÑÉÁÊÇ ÔÉÌÇ ÓÕÍÁÑÔÇÓÇÓ

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 12: Αόριστο Ολοκλήρωμα. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

ÌÉÃÁÄÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 15: Ορισμένο Ολοκλήρωμα Μέρος ΙΙΙ - Εφαρμογές. Αθανάσιος Μπράτσος

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 5: Μιγαδικές Συναρτήσεις. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

ÄÉÁÍÕÓÌÁÔÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ

Εφαρμοσμένα Μαθηματικά

Εφαρμοσμένα Μαθηματικά

3.1 Íá âñåèåß ôï ðåäßï ïñéóìïý ôçò óõíüñôçóçò f: 4 x. (iv) f(x, y, z) = sin x 2 + y 2 + 3z Íá âñåèïýí ôá üñéá (áí õðüñ ïõí): lim

ÐÑÏÓÅÃÃÉÓÇ ÐÁÑÁÃÙÃÙÍ

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 11: Διανυσματική Συνάρτηση. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

ÊåöÜëáéï 4 ÄÉÁÍÕÓÌÁÔÁ. 4.1 ÅéóáãùãÞ (ÃåùìåôñéêÞ)

Εφαρμοσμένα Μαθηματικά

ÓÕÍÄÕÁÓÔÉÊÇ É, ÓÅÐÔÅÌÂÑÉÏÓ ÏÌÁÄÁ ÈÅÌÁÔÙÍ B

ÓÕÍÄÕÁÓÔÉÊÇ É, ÓÅÐÔÅÌÂÑÉÏÓ ÏÌÁÄÁ ÈÅÌÁÔÙÍ Á

ÄÉÁÍÕÓÌÁÔÉÊÏÓ ÄÉÁÖÏÑÉÊÏÓ ËÏÃÉÓÌÏÓ

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 10: Παράγωγος Συνάρτησης Μέρος ΙI. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

( ) ξî τέτοιο, + Ý åé ìßá ôïõëü éóôïí ñßæá óôï äéüóôçìá ( ) h x =,να δείξετε ότι υπάρχει ( α,β) x ΕΦΑΡΜΟΓΕΣ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ

ÓÅÉÑÁ FOURIER. ÌÜèçìá ÅéóáãùãéêÝò Ýííïéåò

ÁÑÉÈÌÇÔÉÊÇ ËÕÓÇ ÅÎÉÓÙÓÅÙÍ

Áóõìðôùôéêïß Óõìâïëéóìïß êáé Éåñáñ ßá ÓõíáñôÞóåùí

ÐÏËËÁÐËÁ ÏËÏÊËÇÑÙÌÁÔÁ

16. ÌåëÝôç ôùí óõíáñôþóåùí y=çìx, y=óõíx êáé ôùí ìåôáó çìáôéóìþí ôïõò.

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 6: Γραμμική Άλγεβρα. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

ÊåöÜëáéï 3 ÏÑÉÆÏÕÓÅÓ. 3.1 ÅéóáãùãÞ

ÓÅÉÑÅÓ. ÌÜèçìá Áêïëïõèßåò áñéèìþí Ïñéóìüò áêïëïõèßáò

ÊåöÜëáéï 5 ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ. 5.1 ÅéóáãùãÞ. 56 ÊåöÜëáéï 5. ÄÉÁÍÕÓÌÁÔÉÊÏÉ ÙÑÏÉ

Εφαρμοσμένα Μαθηματικά

Ó ÅÄÉÁÓÌÏÓ - ÊÁÔÁÓÊÅÕÇ ÓÔÏÌÉÙÍ & ÅÉÄÉÊÙÍ ÅÎÁÑÔÇÌÁÔÙÍ ÊËÉÌÁÔÉÓÌÏÕ V X

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 3: Πραγματικές Συναρτήσεις. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

ÓÕÍÈÇÊÇ ÁÌÅÔÁÈÅÔÏÔÇÔÁÓ ÓÕÓÔÇÌÁÔÏÓ ÔÏÉ ÙÌÁÔÙÍ ÐÁÑÁÑÔÇÌÁ Â

ÐÑÁÃÌÁÔÉÊÅÓ ÓÕÍÁÑÔÇÓÅÉÓ

ÓÕÍÁÑÔÇÓÅÉÓ ÐÏËËÙÍ ÌÅÔÁÂËÇÔÙÍ

ÄéáêñéôÝò êáé óõíå åßò ôõ áßåò ìåôáâëçôýò ÁóêÞóåéò

ÌÁÈÇÌÁÔÉÊÇ ËÏÃÉÊÇ Ë1 5ï ðáêýôï áóêþóåùí

2.4 ñçóéìïðïéþíôáò ôïí êáíüíá áëõóßäáò íá âñåèåß ç dr

Ìáèáßíïõìå ôéò áðïäåßîåéò

3.1 H Ýííïéá ôçò óõíüñôçóçò ÐÁÑÁÄÅÉÃÌÁÔÁ - ÅÖÁÑÌÏÃÅÓ

Estimation Theory Exercises*

ÄÉÁÍÕÓÌÁÔÁ. ÌÜèçìá ÅéóáãùãéêÝò Ýííïéåò Âáóéêïß ïñéóìïß

Ðñïêýðôïõí ôá ðáñáêüôù äéáãñüììáôá.

1. i) ÊÜèå üñïò ðñïêýðôåé áðü ôçí ðñüóèåóç ôïõ óôáèåñïý áñéèìïý 3 óôïí ðñïçãïýìåíï, ïðüôå Ý ïõìå áñéèìçôéêþ ðñüïäï á í ìå ðñþôï üñï

ÅÑÃÁÓÉÁ ÃÉÁ ÔÏ ÌÁÈÇÌÁ: ÅÉÓÁÃÙÃÇ ÓÔÇÍÁÑÉÈÌÇÔÉÊÇ ÁÍÁËÕÓÇ. ÅðéìïñöùôÞò: Â. Á. ÄÏÕÃÁËÇÓ

ÁñéèìçôéêÞ ÁíÜëõóç É - ÓÅÌÖÅ Åñãáóßá 2 ìåóåò êáé åðáíáëçðôéêýò ìýèïäïé

[ ] ÐáñÜñôçìá É : Éóüôñïðåò ôáíõóôéêýò óõíáñôþóåéò 1. Ïñéóìüò: Ï óõììåôñéêüò ôáíõóôþò B êáëåßôáé éóüôñïðç óõíüñôçóç ôïõ óõììåôñéêïý ôáíõóôþ A (Á.

1. Íá ëõèåß ç äéáöïñéêþ åîßóùóç (15 ìïí.) 2. Íá âñåèåß ç ãåíéêþ ëýóç ôçò äéáöïñéêþò åîßóùóçò (15 ìïí.)

å) Íá âñåßôå ôï äéüóôçìá ðïõ äéáíýåé ôï êéíçôü êáôü ôï ñïíéêü äéüóôçìá áðü ôï ðñþôï Ýùò ôï Ýâäïìï äåõôåñüëåðôï ôçò êßíçóþò ôïõ.

1.1 ÊáñôåóéáíÝò óõíôåôáãìýíåò óôï 3-äéÜóôáôï þñï

Óõíå Þ êëüóìáôá & Áöáéñåôéêüò Åõêëåßäåéïò áëãüñéèìïò

ΕΛΕΝΗ ΓΕΡΟΥΛΑΝΟΥ. Εικονογράφηση ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ ΓΙΑ ΠΑΙΔΙΑ ΝΗΠΙΑΓΩΓΕΙΟΥ ΛΗΔΑ ΒΑΡΒΑΡΟΥΣΗ ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

Chi-Square Goodness-of-Fit Test*

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Μαθηματική Λογική. Αναδρομικές Συναρτήσεις.

ÓÅÉÑÅÓ TAYLOR ÊÁÉ LAURENT

ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ. 27 Μαΐου (Εαρινό εξάμηνο 2002) ΚΑΝΟΝΕΣ ΔΙΕΞΑΓΩΓΗΣ ΤΗΣ ΕΞΕΤΑΣΕΩΣ

ÌÜèçìá 3ï: ÁíáäñïìéêÝò Åîéóþóåéò

3524 ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ (ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ)

Íá èõìçèïýìå ôç èåùñßá...

ÐÉÍÁÊÅÓ ÔÉÌÙÍ ÁÍÔÉÊÅÉÌÅÍÉÊÙÍ ÁÎÉÙÍ

Union of Pure and Applied Chemistry).

Συντακτική ανάλυση. Μεταγλωττιστές. (μέρος 3ον) Νίκος Παπασπύου, Κωστής Σαγώνας

Èåùñßá ÃñáöçìÜôùí: Óýíïëá Áíåîáñôçóßáò, Óýíïëá ÊÜëõøçò, êáé ñùìáôéêüò Áñéèìüò

ιαδικασία åãêáôüóôáóçò MS SQL Server, SingularLogic Accountant, SingularLogic Accountant Ìéóèïäïóßá

1.1 Ïé öõóéêïß áñéèìïß - ÄéÜôáîç öõóéêþí, Óôñïããõëïðïßçóç

ÌÅÑÏÓ 3 ΥΠΗΡΕΣΙΕΣ ΥΠΟΣΤΗΡΙΞΗΣ ΤΗΣ ΚΛΙΝΙΚΗΣ ΠΡΑΞΗΣ ÁÐÁÉÔÇÓÅÙÍ ÕÐÇÑÅÓÉÙÍ. Υπηρεσίες Ιατρικής Πληροφορικής και Τηλεϊατρικής 9 ÂÁÓÉÊÅÓ ÊÁÔÅÕÈÕÍÓÅÉÓ

Ανώτερα Μαθηματικά Ι. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 13: Ορισμένο Ολοκλήρωμα Μέρος Ι. Αθανάσιος Μπράτσος. Τμήμα Ναυπηγών Μηχανικών ΤΕ

B i o f l o n. Ãéá åöáñìïãýò ìåôáöïñüò çìéêþí

ÅÍÏÔÇÔÁ 6ç ÑÏÍÏÓ-ÄÉÁÄÏ Ç

ÓõíáñôÞóåéò ðïëëþí ìåôáâëçôþí

Áíáìüñöùóç ôïõ ÐñïãñÜììáôïò Ðñïðôõ éáêþí Óðïõäþí ôïõ ÔìÞìáôïò Ìáèçìáôéêþí ôïõ

Cel animation. ÅöáñìïãÝò ðïëõìýóùí

ÁÓÊÇÓÅÉÓ ÓÔÏÕÓ ÌÉÃÁÄÉÊÏÕÓ ÁÑÉÈÌÏÕÓ.

4.5 ÁóêÞóåéò çìéêþò éóïññïðßáò ìå åðßäñáóç óôç èýóç éóïññïðßáò

Èåùñßá ÃñáöçìÜôùí: ÔáéñéÜóìáôá

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Χημεία Θετικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Μαθηματική Λογική. Αποδεικτικό Σύστημα.

Üóêçóç 15. ÕëéêÜ - åîáñôþìáôá äéêôýïõ ðåðéåóìýíïõ áýñá êáé ðíåõìáôéêýò óõóêåõýò

Åîéóþóåéò 1ïõ âáèìïý

ÌÜèçìá 10ï: ÁËÃÏÑÉÈÌÏÉ ÄÅÍÄÑÙÍ

245/Á/1977). 2469/1997 (ÖÅÊ 36/Á/1997). 1484/Â/ ).

ÅñùôÞóåéò ÓõìðëÞñùóçò êåíïý

ΕΝΔΟΣΚΟΠΙΚΕΣ ΚΑΙ ΧΕΙΡΟΥΡΓΙΚΕΣ ΤΕΧΝΙΚΕΣ ΘΕΡΑΠΕΙΑΣ ΚΙΝΗΤΙΚΩΝ ΔΙΑΤΑΡΑΧΩΝ ΓΑΣΤΡΟΟΙΣΟΦΑΓΙΚΗΣ ΣΥΜΒΟΛΗΣ Εκπαιδευτικό Σεμινάριο.

ÌÜèçìá 2ï: Èåùñçôéêü Õðüâáèñï

ΘΕΜΑ: Τροποποίηση κατηγοριών στα εγκεκριµένα ενιαία τιµολόγια εργασιών για έργα οδοποιϊας.

ΜΑΘΗΜΑ 1. Βαρυτικές και Μαγνητικές Μέθοδοι Γεωφυσικής Διασκόπησης ΝΟΜΟΣ ΒΑΡΥΤΗΤΑΣ NEWTON ΓΗΙΝΟ ΠΕΔΙΟ ΒΑΡΥΤΗΤΑΣ ΜΕΤΡΟΥΜΕΝΑ ΜΕΓΕΘΗ -

Ç íýá Ýííïéá ôïõ ýðíïõ!

ÐáíåðéóôÞìéï Áèçíþí, ÔìÞìá Ìáèçìáôéêþí ÌÜèçìá: Óôï áóôéêýò Áíåëßîåéò Ðåñßïäïò: ÉáíïõÜñéïò, 2009

ÅðåéäÞ ïé äõíüìåéò F 1 êáé F 2 åßíáé ïìüññïðåò (ó Þìá) èá éó ýåé: F ïë = F 1 + F 2. ÔåëéêÜ: F ïë = 1.500Í.

ÖÅÊ 816 ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ (ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ) ÏÄÇÃÉÅÓ ÐÁ ÔÇ ÓÕÌÐËÇÑÙÓÇ ÔÇÓ ÁÉÔÇÓÇÓ ÅÃÊÅÊÑÉÌÅÍÏÕ ÁÐÏÈÇÊÅÕÔÇ Ï ÇÌÁÔÙÍ 1. ÇÌÅÑÏÌÇÍÉÁ: ÁíáãñÜöåô

6936 ÅÖÇÌÅÑÉÓ ÔÇÓ ÊÕÂÅÑÍÇÓÅÙÓ (ÔÅÕ ÏÓ ÄÅÕÔÅÑÏ)

Transcript:

ÌÜèçìá 3 ÐÏËÕÙÍÕÌÉÊÇ ÐÁÑÅÌÂÏËÇ 3.1 ÅéóáãùãÞ Åßíáé ãíùóôü üôé óôá äéüöïñá ðñïâëþìáôá ôùí åöáñìïãþí ôéò ðåñéóóüôåñåò öïñýò ðáñïõóéüæïíôáé óõíáñôþóåéò ðïõ ðåñéãñüöïíôáé áðü ðïëýðëïêïõò ôýðïõò, äçëáäþ ôýðïõò óôïõò ïðïßïõò õðåéóýñ ïíôáé ôñéãùíïìåôñéêýò, åêèåôéêýò, áíôßóôñïöåò ôñéãùíïìåôñéêýò, ëïãáñéèìéêýò, ê.ëð. óõíáñôþóåéò. Ôüôå ç ëýóç ôïõ ðñïâëþìáôïò åßíáé äýóêïëç êáé ôéò ðåñéóóüôåñåò öïñýò áäýíáôç. ÅðïìÝíùò äçìéïõñãåßôáé Üìåóá ç áíüãêç ôçò áíôéêáôüóôáóçò áõôþí ôùí óõíáñôþóåùí ìå Üëëåò áðëïýóôåñåò, Ýôóé þóôå íá ãßíåé äõíáôþ ç ëýóç ôùí ðáñáðüíù ðñïâëçìüôùí. Óôçí êáôçãïñßá áõôþ ðñïóôßèåíôáé êáé ïé ðåñéðôþóåéò ïé ïðïßåò êáôü ôï ðëåßóôïí åìöáíßæïíôáé óôéò åöáñìïãýò, üðïõ ï ôýðïò ôçò óõíüñôçóçò, Ýóôù f(x), åßíáé Üãíùóôïò êáé ïé ìüíåò ðëçñïöïñßåò ðïõ õðüñ ïõí ãéá ôçí f åßíáé Ýíá óýíïëï ôéìþí ôçò óôá óçìåßá (x i ; f (x i )) ; i = 1; 2; : : : ; n. Óôï ìüèçìá áõôü, ïé óõíáñôþóåéò ðïõ èá ñçóéìïðïéçèïýí ãéá ôéò ðñïóåããßóåéò áõôýò, èá åßíáé ïé ðïëõùíõìéêýò. Ôá ðëåïíåêôþìáôá ôçò ðñïóýããéóçò ìéáò óõíüñôçóçò ìå Ýíá ðïëõþíõìï åßíáé ðïëëü êáé åíäåéêôéêü áíáöýñåôáé üôé 133

134 ÐïëõùíõìéêÞ ÐáñåìâïëÞ Êáè. Á. ÌðñÜôóïò ç ðáñüãùãïò, ôï ïëïêëþñùìá ê.ëð., õðïëïãßæïíôáé åõêïëüôåñá ìå ôç ñþóç ôïõ ðïëõùíýìïõ áíôß ôçò óõíüñôçóçò, åíþ ôá áðïôåëýóìáôü ôïõò åßíáé åðßóçò ðïëõþíõìá. ÅðïìÝíùò ãßíåôáé Üìåóá áíôéëçðôþ ç áíüãêç áíáæþôçóçò áõôïý ôïõ åßäïõò ôçò ðñïóýããéóçò ðïõ ðñüêåéôáé íá åîåôáóôåß óôç óõíý åéá. 3.1.1 Ó åôéêïß ïñéóìïß êáé èåùñþìáôá Åßíáé ãíùóôü óôá ÌáèçìáôéêÜ üôé ç ðñïóýããéóç ìéáò óõíå ïýò óõíüñôçóçò ìå Ýíá ðïëõþíõìï, Ýóôù P, âáèìïý n ôçò ìïñöþò: P n (x) = a n x n + a n 1 x n 1 + : : : + a 0 ; üôáí a i R ; i = 0; 1; : : : ; n åßíáé ðüíôïôå äõíáôþ êáé ìå üóç áêñßâåéá áðáéôåßôáé êüèå öïñü. ÓõãêåêñéìÝíá éó ýåé: Èåþñçìá 3.1.1-1 (Weierstrass). Áí f åßíáé ìßá óõíüñôçóç ïñéóìýíç êáé óõíå Þò óôï [a; b], ôüôå ãéá êüèå " > 0 õðüñ åé Ýíá ðïëõþíõìï P, Ýôóé þóôå f(x) P (x) < "; ãéá êüèå x [a; b]: (3.1.1-1) Ôï Èåþñçìá 3.1.1-1 áíáöýñåôáé óôçí ýðáñîç ôïõ ðïëõùíýìïõ P, äåí äßíåé üìùò ôïí ôýðï ôïõ êáé åðïìýíùò Ý åé ìáèçìáôéêü ìüíïí åíäéáöýñïí. 1Ìéá ðñþôç áðüíôçóç óôïí ðñïóäéïñéóìü ôïõ ôýðïõ ôïõ ðïëõùíýìïõ P äßíåôáé áðü ôï ðïëõþíõìï ôïõ Taylor, áíôßóôïé á ôïõ Maclaurin, ðïõ üðùò åßíáé Þäç ãíùóôü óôïí áíáãíþóôç, äßíåôáé áðü ôïí ôýðï f(x) P n (x) = f() + f () 1! + : : : + f (n) () n! (x ) + f () 2! (x ) 2 (x ) n ; (3.1.1-2) üôáí ôï óçìåßï áíþêåé óôï ðåäßï ïñéóìïý ôçò f êáé ïñßæåé ôï êýíôñï ôïõ ðáñáðüíù áíáðôýãìáôïò, áíôßóôïé á f(x) P n (x) = f(0) + f (0) 1! x + f (0) x 2 2! + : : : + f (n) (0) x n ; (3.1.1-3) n! 1 ÂëÝðå ÌáèÞìáôá Áíþôåñùí Ìáèçìáôéêþí - ÐáñÜãùãïò óõíüñôçóçò.

Ó åôéêïß ïñéóìïß êáé èåùñþìáôá 135 üôáí ôï êýíôñï óôçí ðåñßðôùóç áõôþ åßíáé ôï 0. Ìå ôá ðáñáðüíù ðïëõþíõìá õðïëïãßæåôáé ôüôå ìßá ðïëõùíõìéêþ ðñïóýããéóç ôçò óõíüñôçóçò f óå Ýíá óõãêåêñéìýíï óçìåßï, áíôßóôïé á ôï 0. ÐáñáôçñÞóåéò 3.1.1-1 åé áðïäåé èåß ðåéñáìáôéêü üôé ôï ðïëõþíõìï ôïõ Taylor, áíôßóôïé á ôïõ Maclaurin: äåí ðáñïõóéüæåé áêñßâåéá ðïõ íá áõîüíåôáé ðüíôïôå áíüëïãá ìå ôïí âáèìü n ôïõ ðïëõùíýìïõ, áðáéôåß ôç ãíþóç ôïõ êýíôñïõ, ç ðñïóýããéóç åßíáé áêñéâþò ìüíïí ãéá ôéìýò ôïõ x ðëçóßïí ôïõ, áíôßóôïé á ôï 0. ÐáñÜäåéãìá 3.1.1-1 óôù ç óõíüñôçóç f(x) = sin x: Ôï ðïëõþíõìï ôïõ Maclaurin P 3 (x) âáèìïý 3, áíôßóôïé á P 5 (x) âáèìïý 5 åßíáé P 3 (x) = x x3 3! ; áíôßóôïé á P 5(x) = x x3 3! + x5 5! : Áðü ôï Ó. 3.1.1-1a åßíáé ðñïöáíýò üôé, áí x 0, ôá äéáãñüììáôá ôùí f; P 3 êáé P 5 óõìðßðôïõí, åíþ áðïêëßíïõí, üôáí ôï x áðïìáêñýíåôáé áðü ôï 0. ÁíÜëïãç ðáñáôþñçóç éó ýåé ãéá ôç óõíüñôçóç (Ó. 3.1.1-1b) g(x) = e x2 ; üôáí ðñïóåããßæåôáé áðü ôá ðáñáêüôù ðïëõþíõìá ôïõ Maclaurin P 2 (x) = 1 x 2 ; áíôßóôïé á P 6 (x) = 1 x 2 + x4 2 x6 6 :

136 ÐïëõùíõìéêÞ ÐáñåìâïëÞ Êáè. Á. ÌðñÜôóïò fx 4 2 6 4 2 2 4 6 2 x gx 1.0 0.5 1.5 1.0 0.5 0.5 1.0 1.5 x 0.5 4 (a) 1.0 (b) Ó Þìá 3.1.1-1: (a) ÓõíÜñôçóç f(x) ìðëå, P 3 êüêêéíç êáé P 5 ðñüóéíç êáìðýëç. (b) ¼ìïéá g(x) ìðëå, P 2 êüêêéíç êáé P 6 ðñüóéíç êáìðýëç. ÐáñÜäåéãìá 3.1.1-2 óôù ç óõíüñôçóç f(x) = ln(x 1): Ôï ðïëõþíõìï ôïõ Taylor ìå êýíôñï = 2 âáèìïý 2, áíôßóôïé á 4 åßíáé P 2 (x) = x 2 (x 2)2 2 ; áíôßóôïé á P 4 (x) = x 2 (x 2)2 2 + (x 2)3 3 (x 2)4 4 : Áðü ôï Ó. 3.1.1-2 ðñïêýðôåé üôé, áí x 2, ôá äéáãñüììáôá ôùí f; P 2 êáé P 4 óõìðßðôïõí, åíþ áðïêëßíïõí, üôáí ôï x áðïìáêñýíåôáé áðü ôï 2. Áðáéôåßôáé ï õðïëïãéóìüò ôùí ðáñáãþãùí ôçò f, ðïõ üìùò ôéò ðåñéóóüôåñåò öïñýò åßíáé äýóêïëïò Þ êáé áäýíáôïò, êáé ï ôýðïò (3:1:1 2), áíôßóôïé á (3:1:1 3) äåí åöáñìüæåôáé, üôáí ç f åßíáé ãíùóôþ ìüíï óå Ýíáí áñéèìü óçìåßùí ôïõ ðåäßïõ ïñéóìïý ôçò, äçëáäþ, üðùò óõìâáßíåé óôéò ðåñéóóüôåñåò åöáñìïãýò, üôáí äåí åßíáé ãíùóôüò ï áíáëõôéêüò ôçò ôýðïò.

Èåþñçìá ôïõ Lagrange 137 0.5 fx 0.5 0.5 1.0 1.5 2.0 2.5 3.0 x 1.0 1.5 2.0 2.5 3.0 Ó Þìá 3.1.1-2: ÓõíÜñôçóç f(x) ìðëå, P 2 êüêêéíç êáé P 4 ðñüóéíç êáìðýëç. 3.2 ÐïëõùíõìéêÞ ðáñåìâïëþ 3.2.1 Èåþñçìá ôïõ Lagrange Ìéá ãåíéêüôåñç áíôéìåôþðéóç ôïõ ðáñáðüíù ðñïâëþìáôïò ðñïóýããéóçò ìéáò óõíüñôçóçò, ðïõ îåðåñíü ôéò äõóêïëßåò ôçò ðñïçãïýìåíçò ðáñáãñüöïõ, äßíåôáé óôç óõíý åéá. 2Áñ éêü ïñßæåôáé ç Ýííïéá ôçò ðáñåìâïëþò ùò åîþò: Ïñéóìüò 3.2.1-1 (ðïëõùíõìéêþò ðáñåìâïëþò). óôù üôé x 0, x 1, : : :, x n åßíáé n + 1 äéáöïñåôéêü ìåôáîý ôïõò óçìåßá åíüò äéáóôþìáôïò [a; b] êáé f(x) ìßá ðñáãìáôéêþ óõíüñôçóç ìå ðåäßï ïñéóìïý åðßóçò ôï [a; b] ôçò ïðïßáò åßíáé ãíùóôýò ïé ôéìýò f (x i ) ãéá êüèå i = 0; 1; : : : ; n. Ôüôå ç ðïëõùíõìéêþ ðáñåìâïëþ (polynomial interpolation) ïñßæåôáé áðü Ýíá ðïëõþíõìï, Ýóôù P n âáèìïý n, ðïõ äéýñ åôáé áðü ôá óçìåßá (x i ; f (x i )), äçëáäþ P n (x i ) = f (x i ) ãéá êüèå i = 0; 1; : : : ; n (Ó. 3.2.1-1). Ï ðáñáðüíù ïñéóìüò ãåíéêåýåôáé ãéá êüèå óýíïëï óçìåßùí (x i ; y i ); i = 0; 1; : : : ; n, üôáí ôá x i åßíáé äéáöïñåôéêü ìåôáîý ôïõò. 2 Ï áíáãíþóôçò, ãéá ðåñáéôýñù ìåëýôç, ðáñáðýìðåôáé óôç âéâëéïãñáößá [1, 2, 3] êáé: https : ==en:wikipedia:org=wiki=p olynomial interpolation

138 ÐïëõùíõìéêÞ ÐáñåìâïëÞ Êáè. Á. ÌðñÜôóïò 2.0 1.5 1.0 0.5 1 2 3 4 5 0.5 1.0 Ó Þìá 3.2.1-1: Óçìåßá (0; 1); (1; 0); (3; 2); (5; 1) ìå ðïëõþíõìï ðáñåìâïëþò P 3 (x) = 1 2:441667x + 1:7x 2 0:2583333x 3. Ó åôéêü ìå ôçí ýðáñîç êáé ôï ìïíïóþìáíôï ôïõ ðïëõùíýìïõ ðáñåìâïëþò P n (x) éó ýåé ôï ðáñáêüôù èåþñçìá: Èåþñçìá 3.2.1-1 (ðáñåìâïëþò ôïõ Lagrange). óôù üôé x 0, x 1, : : :, x n åßíáé n + 1 äéáöïñåôéêü ìåôáîý ôïõò óçìåßá åíüò äéáóôþìáôïò [a; b] êáé f(x) ìßá ðñáãìáôéêþ óõíüñôçóç ôçò ïðïßáò åßíáé ãíùóôýò ïé ôéìýò f (x i ) ãéá êüèå i = 0; 1; : : : ; n. Ôüôå õðüñ åé áêñéâþò Ýíá ðïëõþíõìï P n (x) âáèìïý n, ðïõ äßíåôáé áðü ôïí ôýðï P n (x) = l 0 (x)f (x 0 ) + l 1 (x)f (x 1 ) + : : : + l n (x)f (x n ) = n l i (x)f (x i ) ; (3.2.1-1) i=0 üðïõ l i (x) = (x x 0 ) (x x 1 ) (x x i 1 ) (x x i+1 ) (x x n ) (x i x 0 ) (x i x 1 ) (x i x i 1 ) (x i x i+1 ) (x i x n ) = 0 j n; j i x x j x i x j : (3.2.1-2)

Èåþñçìá ôïõ Lagrange 139 êáé ôï ïðïßï ðáñåìâüëëåôáé Þ óõìðßðôåé (ôáõôßæåôáé) ìå ôçí f(x) óôá óçìåßá x i ãéá êüèå i = 0; 1; : : : ; n. Ï ôýðïò (3:2:1 1) åßíáé ãíùóôüò ùò ôýðïò ðáñåìâïëþò ôïõ Lagrange, åíþ ôá ðïëõþíõìá l i (x); i = 0; 1; : : : ; n, ðïõ ïñßæïíôáé ìå ôïí ôýðï (3:2:1 2), ëýãïíôáé ðïëõþíõìá ðáñåìâïëþò ôïõ Lagrange ãéá ôá óçìåßá Þ êüìâïõò (nodes) x 0, x 1, : : :, x n. ÐáñáôçñÞóåéò 3.2.1-1 Áðü ôïí ôýðï (3:2:1 2) ðñïêýðôïõí ôá åîþò: i) óôïí áñéèìçôþ êáèýíá áðü ôá ðïëõþíõìá l i (x) Ý åé üëïõò ôïõò ðáñüãïíôåò åêôüò áðü ôïí ðáñüãïíôá x x i (äéáöïñåôéêü, áí åß å üëïõò, èá ðñïýêõðôå ðïëõþíõìï n + 1 âáèìïý), ii) ï ðáñïíïìáóôþò ðñïêýðôåé áðü ôïí áñéèìçôþ áíôéêáèéóôþíôáò ôï x ìå ôï x i. ñá ï ðáñïíïìáóôþò åßíáé óôáèåñü. Ðüñéóìá 3.2.1-1. Ôá ðïëõþíõìá l i (x); i = 0; 1; : : : ; n åßíáé âáèìïý n êáé åðéðëýïí 1 áí i = j l i (x j ) = ä ij = (3.2.1-3) 0 áí i j: Áðüäåéîç. ïíôáò õðüøç ôçí ÐáñáôÞñçóç 3.2.1-1(i) êáèýíá áðü ôá ðïëõþíõìá l i (x) óôïí áñéèìçôþ Ý åé üëïõò ôïõò ðáñüãïíôåò åêôüò áðü ôïí x x i. ñá, åðåéäþ ç áñßèìçóç ôùí ðáñáãüíôùí óôïí áñéèìçôþ áñ ßæåé áðü ôï 0 êáé õðüñ ïõí n äéáöïñåôéêïß ðáñüãïíôåò, ï êáèýíáò áðü ôïõò ïðïßïõò åßíáé 1ïõ âáèìïý, ðñïêýðôåé ôåëéêü üôé ï âáèìüò ôïõ áñéèìçôþ éóïýôáé ìå n (ï ðáñïíïìáóôþò åßíáé óôáèåñü). Åðßóçò, üôáí i = j, ôüôå l i (x i ) = (x i x 0 ) (x i x 1 ) (x i x i 1 ) (x i x i+1 ) (x i x n ) (x i x 0 ) (x i x 1 ) (x i x i 1 ) (x i x i+1 ) (x i x n ) = 1; åíþ, üôáí

140 ÐïëõùíõìéêÞ ÐáñåìâïëÞ Êáè. Á. ÌðñÜôóïò j = 0 êáé i = 1, ôüôå (x x 0 ) (x x 2 ) (x x n ) l 1 (x 0 ) = (x 1 x 0 ) (x 1 x 2 ) (x 1 x n ) x=x0 = 0 {}}{ (x 0 x 0 ) (x 0 x 2 ) (x 0 x n ) (x 1 x 0 ) (x 1 x 2 ) (x 1 x n ) = 0: ¼ìïéá ãéá ôïõò ãåíéêïýò äåßêôåò i; j ìå i j. ÐáñÜäåéãìá 3.2.1-1 (ãñáììéêþ ðáñåìâïëþ) Íá õðïëïãéóôåß ôï ðïëõþíõìï ðáñåìâïëþò ôçò óõíüñôçóçò f(x) óôá óçìåßá (x 0 ; f (x 0 )) êáé (x 1 ; f (x 1 )). Ëýóç. ÅðåéäÞ ï áñéèìüò ôùí óçìåßùí ðáñåìâïëþò åßíáé 2, ðñýðåé ôï æçôïýìåíï ðïëõþíõìï íá åßíáé 1ïõ âáèìïý, äçëáäþ óýìöùíá ìå ôïí ôýðï (3:2:1 2) ôçò ìïñöþò P (x) = P 1 (x) = l 0 (x) (x 0 ) + l 1 (x) (x 1 ) : Ôüôå ôá ðïëõþíõìá ðáñåìâïëþò l 0 (x), l 1 (x) óýìöùíá ìå ôéò ÐáñáôçñÞóåéò 3.2.1-1 õðïëïãßæïíôáé áðü ôïí ôýðï (3:2:1 1) ùò åîþò: ñá äçëáäþ l 0 (x) = x x 1 x 0 x 1 êáé l 1 (x) = x x 0 x 1 x 0 : P 1 (x) = x x 1 x 0 x 1 f (x 0 ) + x x 0 x 1 x 0 f (x 1 ) ; P 1 (x) = f (x 1) f (x 0 ) x 1 x 0 (x x 0 ) + f (x 0 ) (3.2.1-4) ðïõ åßíáé ãíùóôüò êáé ùò ï ôýðïò ôçò ãñáììéêþò ðáñåìâïëþò (Ó. 3.2.1-2).

Èåþñçìá ôïõ Lagrange 141 2 1 1.5 2.0 2.5 3.0 3.5 4.0 1 Ó Þìá 3.2.1-2: Óçìåßá (1; 2:5); (4; 1:5) ìå ðïëõþíõìï ðáñåìâïëþò P 1 (x) = 3:83 1:33x. ÐáñÜäåéãìá 3.2.1-2 ¼ìïéá íá õðïëïãéóôåß ôï ðïëõþíõìï ðáñåìâïëþò ãéá ôá óçìåßá (x 0 ; f (x 0 )) = ( 0:5; 1:5); (x 1 ; f (x 1 )) = (0:8; 2:0) êáé (x 2 ; f (x 2 )) = (1:2; 1:5): Ëýóç. ÅðåéäÞ óôçí ðåñßðôùóç áõôþ ï áñéèìüò ôùí óçìåßùí ðáñåìâïëþò åßíáé 3, ðñýðåé ôï æçôïýìåíï ðïëõþíõìï íá åßíáé 2ïõ âáèìïý, äçëáäþ ôçò ìïñöþò P (x) = P 2 (x) = l 0 (x) (x 0 ) + l 1 (x)f (x 1 ) + l 2 (x)f (x 2 ) : Óýìöùíá ìå ôéò ÐáñáôçñÞóåéò 3.2.1-1 üìïéá ôá ðïëõþíõìá ðáñåìâïëþòl 0 (x),

142 ÐïëõùíõìéêÞ ÐáñåìâïëÞ Êáè. Á. ÌðñÜôóïò l 1 (x) êáé l 2 (x) õðïëïãßæïíôáé áðü ôïí ôýðï (3:2:1 1) ùò åîþò: l 0 (x) = x x 1 x 0 x 1 x x 2 x 0 x 2 = x 0:8 0:5 0:8 x 1:2 0:5 1:2 = 0:434 389 0:904 977 x + 0:452 489 x 2 ; l 1 (x) = x x 0 x 1 x 0 x x 2 x 1 x 2 = x ( 0:5) 0:8 ( 0:5) x 1:2 0:8 1:2 = 1:153 846 + 1:346 154 x 1:923 077 x 2 ; êáé l 2 (x) = x x 0 x x 1 = x ( 0:5) x 2 x 0 x 2 x 1 1:2 ( 0:5) x 0:8 1:2 0:8 = 0:588 235 0:441 177 x + 1:470; 588 x 2 : ñá áíôéêáèéóôþíôáò ôåëéêü (Ó. 3.2.1-3) P 2 (x) = l 0 (x) 1:5 + l 1 (x) 2:0 + l 2 (x)( 1:5) = 3:841 629 + 1:996 606x 5:373 303x 2 : ÐáñÜäåéãìá 3.2.1-3 Íá õðïëïãéóôåß ôï ïëïêëþñùìá üôáí ôá óçìåßá ðáñåìâïëþò åßíáé: 3 i) x 0 = 0; x 1 = 0:5; x 2 = 1:0, êáé ii) x 0 = 0; x 1 = 0:3; x 2 = 0:6; x 3 = 1:0. 1 É = e x2 dx; (3.2.1-5) 0 Óôç óõíý åéá íá ãßíåé óýãêñéóç ôùí áðïôåëåóìüôùí ìå ôç èåùñçôéêþ ôéìþ É = 0:746 824. Ëýóç. ÁíÜëïãá ìå ôï ÐáñÜäåéãìá 3.2.1-2 Ý ïõìå: 3 Åßíáé ðñïöáíýò üôé óôéò ðåñéðôþóåéò áõôýò üëá ôá óçìåßá ðáñåìâïëþò ðñýðåé íá áíþêïõí óôï äéüóôçìá ïëïêëþñùóçò.

Èåþñçìá ôïõ Lagrange 143 4 3 2 1 0.5 0.5 1.0 1 Ó Þìá 3.2.1-3: Óçìåßá ( 0:5; 1:5); (0:8; 2:0); (1:2; 1:5) ìå ðïëõþíõìï ðáñåìâïëþò P 2 (x) = 3:842 + 1:997x 5:373x 2. Óçìåßá ðáñåìâïëþò x 0 = 0; x 1 = 0:5; x 2 = 1:0 ÅðåéäÞ ôá óçìåßá åßíáé 3, ôï ðïëõþíõìï ðáñåìâïëþò èá åßíáé ôçò ìïñöþò: P 2 (x) = l 0 (x) (x 0 ) + l 1 (x)f (x 1 ) + l 2 (x)f (x 2 ) ; (3.2.1-6) üôáí l 0 (x) = x x 1 x 0 x 1 x x 2 x 0 x 2 = x 0:5 0 0:5 = 1 3 x + 2 x 2 ; l 1 (x) = x x 0 x 1 x 0 x x 2 x 1 x 2 = x 0 0:5 0 = 4 x 4 x 2 ; l 2 (x) = x x 0 x 2 x 0 x x 1 x 2 x 1 = x 0 1:0 0 = x + 2 x 2 : x 1:0 0 1:0 x 1:0 0:5 1:0 x 0:5 1:0 0:5

144 ÐïëõùíõìéêÞ ÐáñåìâïëÞ Êáè. Á. ÌðñÜôóïò ñá áíôéêáèéóôþíôáò óôçí (3:2:1 6) ôåëéêü ðñïêýðôåé üôé P 2 (x) = l 0 (x) e 0 + l 1 (x) e 0:52 + l 2 (x) e 12 = 1 0:252 676 x 0:379 444 x 2 : (3.2.1-7) ÅðïìÝíùò É 1 = 1 0 P 2 (x) dx 0:747 180 ìå óöüëìá e 1 = 0:747 180 0:746 824 = 0:000 356: Óçìåßá ðáñåìâïëþò x 0 = 0; x 1 = 0:3; x 2 = 0:6; x 3 = 1:0 Óôçí ðåñßðôùóç áõôþ ôá óçìåßá åßíáé 4, ïðüôå ôï ðïëõþíõìï ðáñåìâïëþò åßíáé ôçò ìïñöþò: üôáí P 3 (x) = l 0 (x) (x 0 ) + l 1 (x)f (x 1 ) + l 2 (x)f (x 2 ) + l 3 (x)f (x 3 ) ; (3.2.1-8) l 0 (x) = x x 1 x 0 x 1 x x 2 x 0 x 2 x x 3 x 0 x 3 = x 0:3 0 0:3 x 0:6 0 0:6 x 1:0 0 1:0 = 1 6 x + 10:555 56 x 2 5:555 556 x 3 ; l 1 (x) = x x 0 x 1 x 0 x x 2 x 1 x 2 x x 3 x 1 x 3 = x 0 0:3 0 x 0:6 0:3 0:6 x 1:0 0:3 1:0 = 9:523 81 x 25:396 83 x 2 + 15:873 02 x 3 ; l 2 (x) = x x 0 x 2 x 0 x x 1 x 2 x 1 x x 3 x 2 x 3 = x 0 0:6 0 x 0:3 0:6 0:3 x 1:0 0:6 1:0 = 4:166 667 x + 18:055 56 x 2 13:888 89 x 3 ;

ÄéáéñåìÝíåò äéáöïñýò. Ôýðïò ôïõ Newton 145 êáé l 3 (x) = x x 0 x 3 x 0 x x 1 x 3 x 1 x x 2 x 3 x 2 = x 0 1:0 0 x 0:3 1:0 0:3 x 0:6 1:0 0:6 = 0:642 857 x 3:214 286 x 2 + 3:571 429 x 3 ; ïðüôå áíôéêáèéóôþíôáò óôçí (3:2:1 8) ôåëéêü ñá P 3 (x) = l 0 (x) e 0 + l 1 (x) e 0:32 + l 2 (x) e 0:62 + l 3 (x) e 12 = 1 + 0:033 616 x 1:24 093 x 2 + 0:575 195 x 3 : É 2 = 1 0 P 3 (x) dx 0:746 963 ìå óöüëìá e 2 = 0:746 963 0:746 824 = 0:000 139: Ôüôå ðñïöáíþò e 2 < e 1, ðïõ åðáëçèåýåé êáé ôï èåùñçôéêü áíáìåíüìåíï áðïôýëåóìá, äçëáäþ üôé ç áýîçóç ôùí óçìåßùí ðáñåìâïëþò áõîüíåé êáé ôçí áêñßâåéá ôçò ðñïóýããéóçò. Óôï Ó. 3.2.1-4a äßíåôáé ç ãñáöéêþ ðáñüóôáóç ôùí ðïëõùíýìùí P 2 êáé P 3 ìå ôá áíôßóôïé á óçìåßá ðáñåìâïëþò, åíþ óôï Ó. 3.2.1-4b ç ãñáöéêþ ðáñüóôáóç ôçò e x2 ìå üëá ôá ñçóéìïðïéçèýíôá óçìåßá. 3.3 ÄéáéñåìÝíåò äéáöïñýò. Ôýðïò ôïõ Newton 3.3.1 ÅéóáãùãéêÝò Ýííïéåò Ôï ðïëõþíõìï ðáñåìâïëþò P n (x) ôïõ Lagrange, ðïõ ïñßæåôáé áðü ôïí ôýðï (3:2:1 2), áðáéôåß ãéá ôïí õðïëïãéóìü ôïõ Ýíáí ìåãüëï áñéèìü ðñüîåùí. ÓõãêåêñéìÝíá, üôáí ï õðïëïãéóìüò ôïõ ãßíåôáé ìå çëåêôñïíéêü õðïëïãéóôþ, áñ éêü õðïëïãßæåôáé ç ðáñüóôáóç (x x 0 ) (x x 1 ) (x x n )

146 ÐïëõùíõìéêÞ ÐáñåìâïëÞ Êáè. Á. ÌðñÜôóïò Px 1.0 0.8 0.6 fx 1.0 0.8 0.6 0.4 0.4 0.2 0.2 0.2 0.4 0.6 0.8 1.0 x (a) 0.2 0.4 0.6 0.8 1.0 x (b) Ó Þìá 3.2.1-4: x [0; 1] (a) Ðïëõþíõìï P 2 êüêêéíç (óçìåßá ìðëå), P 3 ðñüóéíç êáìðýëç (óçìåßá êüêêéíá) êáé (b) óõíüñôçóç e x2. êáé óôç óõíý åéá ôá ðïëõþíõìá l i (x); i = 0; 1; : : : ; n ìå êáôüëëçëåò äéáéñýóåéò ôçò ðáñüóôáóçò áõôþò. ¼ðùò Ý åé Þäç ðñïêýøåé êáé áðü ôï ÐáñÜäåéãìá 3.2.1-3, ãéá íá áõîçèåß ç áêñßâåéá ôçò ðñïóýããéóçò, ðñýðåé íá ñçóéìïðïéçèåß êüèå öïñü êáé ìåãáëýôåñïò áñéèìüò óçìåßùí ðáñåìâïëþò x i. Áõôü üìùò ôüôå Ý åé ùò áðïôýëåóìá ìßá áíôßóôïé ç áýîçóç ôïõ âáèìïý ôùí áíôßóôïé ùí ðïëõùíýìùí ðáñåìâïëþò P i (x), åíþ, üðùò ðñïêýðôåé áðü ôïí ôýðï (3:2:1 2), óôïí õðïëïãéóìü ôùí ðïëõùíýìùí P i (x) äåí ëáìâüíåôáé õðüøç ç ìý ñé ôüôå ãíþóç ôùí ðïëõùíýìùí P 0, P 1, : : :, P i 1. Ùò óõíýðåéá áõôþí åßíáé íá õðüñ åé êüèå öïñü Ýíáò ìåãüëïò áñéèìüò åðáíáëáìâáíüìåíùí ðñüîåùí. ÓõíïëéêÜ, üëåò áõôýò ïé ðáñáðüíù ðñüîåéò áöåíüò ìåí êáèéóôïýí ôïí õðïëïãéóìü ôïõ ðïëõùíýìïõ P i (x) äõó åñþ êáé áöåôýñïõ äçìéïõñãïýí ðïëëü ëüèç óôñïããõëïðïßçóçò. ÅðïìÝíùò, óå Ýíá ðñüâëçìá ìå ìåãüëï áñéèìü äåäïìýíùí ôï ðïëõþíõìï ðïõ èá ðñïêýøåé, äåí èá äéýñ åôáé áðü ôá óçìåßá ðáñåìâïëþò, äçëáäþ èá õðüñ åé óöüëìá, ìå üôé áõôü óõíåðüãåôáé óôçí ðåñáéôýñù ëýóç ôïõ ðñïâëþìáôïò. Ãéá ôïí ðåñéïñéóìü ôïõ ðáñáðüíù áñéèìïý ôùí ðñüîåùí ôï ðïëõþíõìï ðáñåìâïëþò P n (x) óôá óçìåßá x i ; i = 0; 1; : : : ; n, ôï P n (x) ãñüöåôáé ùò åîþò: P n (x) = A 0 + A 1 (x x 0 ) + A 2 (x x 0 ) (x x 1 ) + : : : + A n (x x 0 ) (x x n 1 ) ; (3.3.1-1) üôáí ôá Á i ; i = 0; 1; : : : ; n åßíáé óôçí ðåñßðôùóç áõôþ ïé ðñïóäéïñéóôýïé óõíôåëåóôýò ôïõ. Ôüôå, óå áíôßèåóç ìå ôïí ãíùóôü ôýðï ôùí äõíüìåùí

ÄéáéñåìÝíåò äéáöïñýò. Ôýðïò ôïõ Newton 147 (power form) P n (x) = a n x n + a n 1 x n 1 + : : : + a 1 x + a 0 ; üôáí a i ; i = 0; 1; : : : ; n óõíôåëåóôýò ìå a n 0 êáé n = 0; 1; : : :, ï ôýðïò 3:3:1 1) ëáìâüíåé õðüøç ôá óçìåßá ðáñåìâïëþò x 0, x 1, : : :, x n 1 êáé üðùò èá ðñïêýøåé óôç óõíý åéá åëá éóôïðïéåß ôéò áðáéôïýìåíåò ðñüîåéò õðïëïãéóìïý ôïõ. 3.3.2 ÄéáéñåìÝíåò äéáöïñýò 4 Óôçí (3:3:1 1) ï õðïëïãéóìüò ôùí óõíôåëåóôþí A i; i = 0; 1; : : : ; n ãßíåôáé åýêïëá ìå ôçí åéóáãùãþ ôçò Ýííïéáò ôçò äéáéñåìýíçò äéáöïñüò, ðïõ ïñßæåôáé óôç óõíý åéá ùò åîþò: áí x 0, x 1, : : :, x n åßíáé n + 1 äéáöïñåôéêü ìåôáîý ôïõò óçìåßá åíüò äéáóôþìáôïò [a; b] êáé f(x) ìßá ðñáãìáôéêþ óõíüñôçóç ìå ðåäßï ïñéóìïý åðßóçò ôï [a; b] êáé ôçò ïðïßáò åßíáé ãíùóôýò ïé ôéìýò f (x i ) ãéá êüèå i = 0; 1; : : : ; n 1, ôüôå: Ïñéóìüò 3.3.2-1. Ç äéáéñåìýíç äéáöïñü ìçäåíéêþò ôüîçò óôï óçìåßï x i óõìâïëßæåôáé ìå f [x i ] êáé éóïýôáé ìå ãéá êüèå i = 0; 1; : : : ; n. f [x i ] = f (x i ) ; (3.3.2-1) Ïñéóìüò 3.3.2-2. Ç äéáéñåìýíç äéáöïñü 1çò ôüîçò óôá óçìåßá x i ; x i+1 óõìâïëßæåôáé ìå f [x i ; x i+1 ] êáé éóïýôáé ìå ãéá êüèå i = 0; 1; : : : ; n 1. f [x i ; x i+1 ] = f (x i+1) f (x i ) x i+1 x i ; (3.3.2-2) Ïñéóìüò 3.3.2-3. Ç äéáéñåìýíç äéáöïñü 2çò ôüîçò óôá óçìåßá x i ; x i+1 ; x i+2 óõìâïëßæåôáé ìå f [x i ; x i+1 ; x i+2 ] êáé éóïýôáé ìå f [x i ; x i+1 ; x i+2 ] = f [x i+1; x i+2 ] f [x i ; x i+1 ] x i+2 x i ; (3.3.2-3) ãéá êüèå i = 0; 1; : : : ; n 2. 4 ÂëÝðå âéâëéïãñáößá [1, 2, 3] êáé: https : ==en:wikipedia:org=wiki=divided differences?searchdepth = 1

148 ÐïëõùíõìéêÞ ÐáñåìâïëÞ Êáè. Á. ÌðñÜôóïò ÃåíéêÜ ïñßæåôáé üôé: Ïñéóìüò 3.3.2-4. Ç äéáéñåìýíç äéáöïñü k-ôüîçò óôá óçìåßá x i ; x i+1 ; : : :, x i+k óõìâïëßæåôáé ìå f [x i ; x i+1 ; : : : ; x i+k ] êáé éóïýôáé ìå f [x i ; x i+1 ; : : : ; x i+k ] = f [x i+1; x i+2 ; : : : ; x i+k ] f [x i ; x i+1 ; : : : ; x i+k 1 ] x i+k x i ; (3.3.2-4) ãéá êüèå i = 0; 1; : : : ; n k. Áðïäåéêíýåôáé üôé éó ýåé ôï ðáñáêüôù èåþñçìá: Èåþñçìá 3.3.2-1 (õðïëïãéóìïý äéáéñåìýíùí äéáöïñþí). óôù üôé x i ; i = 0; 1; : : : ; n åßíáé n + 1 äéáöïñåôéêü óçìåßá åíüò äéáóôþìáôïò [a; b]. Ôüôå éó ýåé: f [x 0 ; x 1 ; : : : ; x n ] = f [x 1; x 2 ; : : : ; x n ] f [x 0 ; x 1 ; : : : ; x n 1 ] x n x 0 : (3.3.2-5) Óçìåßùóç 3.3.2-1 Ïé ðáñáðüíù ïñéóèåßóåò äéáöïñýò óôç âéâëéïãñáößá åßíáé ãíùóôýò ùò ïé ðñïò ôá åìðñüò äéáéñåìýíåò äéáöïñýò. Óôï ìüèçìá áõôü èá äéáôçñçèåß ãéá åõêïëßá áðëü ï üñïò äéáéñåìýíç äéáöïñü (âëýðå åðßóçò óêçóç 3). ÐáñÜäåéãìá 3.3.2-1 Íá õðïëïãéóôïýí ïé äéáéñåìýíåò äéáöïñýò óôá óçìåßá Ëýóç. óôù (0:3; 1:5) êáé (0:8; 2:5): x 0 = 0:3; f (x 0 ) = 1; 5 êáé x 1 = 0:8; f (x 1 ) = 2; 5: Ôüôå äéáäï éêü Ý ïõìå f [x 0 ] = f (0:3) = 1:5 êáé f [x 1 ] = f (0:8) = 2:5 f [x 0 ; x 1 ] = f (x 1) f (x 0 ) 2:5 1:5 = x 1 x 0 0:8 0:3 = 2: Ôá ðáñáðüíù áðïôåëýóìáôá õðïëïãßæïíôáé åðßóçò ìå ôç äéáäéêáóßá ôïõ Ðßíáêá 3.3.2-1.

ÄéáéñåìÝíåò äéáöïñýò. Ôýðïò ôïõ Newton 149 Ðßíáêáò 3.3.2-1: ÐáñÜäåéãìá 3.3.2-1: õðïëïãéóìüò äéáéñåìýíçò äéáöïñüò 1-ôÜîçò. x i f [x i ] f[; ] x 0 = 0:3 f [x 0 ] = 1:5 x 1 = 0:8 f [x 1 ] = 2:5 f [x 0 ; x 1 ] = 2:5 1:5 0:8 0:3 = 2 ÐáñÜäåéãìá 3.3.2-2 Íá õðïëïãéóôïýí ïé äéáéñåìýíåò äéáöïñýò óôá óçìåßá (1:0; 2:0); (1:5; 2:8) êáé (1:7; 3:5): Ëýóç. Áêïëïõèþíôáò áíüëïãç äéáäéêáóßá ìå åêåßíç ôïõ Ðáñáäåßãìáôïò 3.3.2-1 Ý ïõìå ôá áðïôåëýóìáôá ôïõ Ðßíáêá 3.3.2-2. Óôïí Ðßíáêá 3.3.2-3, áíôßóôïé á 3.3.2-4 äßíïíôáé ó çìáôéêü ïé õðïëïãéóìïß ôùí äéáéñåìýíùí äéáöïñþí 3çò, áíôßóôïé á 4çò-ôÜîçò, åíþ óôïí Áëãüñéèìï 3.3.2-1 ï ôñüðïò õðïëïãéóìïý ôùí ãåíéêü. 3.3.3 Ôýðïò ðáñåìâïëþò ôïõ Newton 5Áðïäåéêíýåôáé üôé ìå ôç âïþèåéá ôùí äéáéñåìýíùí äéáöïñþí, ôï ðïëõþíõìï (3:3:1 1) ãñüöåôáé P n (x) = f [x 0 ] + f [x 1 ; x 0 ] (x x 0 ) +f [x 0 ; x 1 ; x 2 ] (x x 0 ) (x x 1 ) + : : : (3.3.3-1) +f [x 0 ; x 1 ; : : : ; x k ] (x x 0 ) (x x n 1 ) : 5 ÂëÝðå âéâëéïãñáößá [1, 2, 3] êáé: https : ==en:wikipedia:org=w=index:php?title = Newton polynomial&searchdepth = 2

150 ÐïëõùíõìéêÞ ÐáñåìâïëÞ Êáè. Á. ÌðñÜôóïò Ðßíáêáò 3.3.2-2: ÐáñÜäåéãìá 3.3.2-2: õðïëïãéóìüò äéáéñåìýíçò äéáöïñüò 2-ôÜîçò. x i f [x i ] f[; ] f[; ; ] x 0 = 1:0 f [x 0 ] = 2:0 x 1 = 1:5 f [x 1 ] = 2:8 x 2 = 1:7 f [x 2 ] = 3:5 f [x 0 ; x 1 ] 2:8 2:0 = 1:5 1:0 = 1:6 f [x 1 ; x 2 ] = 3:5 2:8 1:7 1:5 = 3:5 f [x 0 ; x 1 ; x 2 ] = f [x 1; x 2 ] f [x 0 ; x 1 ] x 2 x 1 3:5 1:6 = 1:7 1:0 = 2:714 286

ÄéáéñåìÝíåò äéáöïñýò. Ôýðïò ôïõ Newton 151 Ðßíáêáò 3.3.2-3: õðïëïãéóìüò äéáéñåìýíçò äéáöïñüò 3çò-ôÜîçò. x i f [x i ] f[; ] f[; ; ] f[; ; ; ] x 0 f [x 0 ] f [x 0 ; x 1 ] = f(x 1) f(x 0 ) x 1 x 0 x 1 f [x 1 ] f [x 1 ; x 2 ] f [x 0 ; x 1 ; x 2 ] = f[x 1;x 2 ] f[x 0 ;x 1 ] x 2 x 0 f [x 0 ; x 1 ; x 2 ; x 3 ] x 2 f [x 2 ] = f(x 2) f(x 1 ) x 2 x 1 f [x 2 ; x 3 ] f [x 1 ; x 2 ; x 3 ] = f[x 2;x 3 ] f[x 1 ;x 2 ] x 3 x 1 = f[x 1;x 2 ;x 3 ] f[x 0 ;x 1 ;x 2 ] x 3 x 0 = f(x 3) f(x 2 ) x 3 x 2 x 3 f [x 3 ]

152 ÐïëõùíõìéêÞ ÐáñåìâïëÞ Êáè. Á. ÌðñÜôóïò Ðßíáêáò 3.3.2-4: õðïëïãéóìüò äéáéñåìýíçò äéáöïñüò 4çò-ôÜîçò. x i f [x i ] f[; ] f[; ; ] f[; ; ; ] f[; ; ; ; ] x 0 f [x 0 ] f [x 0 ; x 1 ] x 1 f [x 1 ] f [x 0 ; x 1 ; x 2 ] f [x 1 ; x 2 ] f [x 0 ; x 1 ; x 2 ; x 3 ] x 2 f [x 2 ] f [x 1 ; x 2 ; x 3 ] f [x 0 ; x 1 ; x 2 ; x 3 ; x 4 ] [x 2 ; x 3 ] f [x 1 ; x 2 ; x 3 ; x 4 ] x 3 f [x 3 ] f [x 2 ; x 3 ; x 4 ] f [x 3 ; x 4 ] x 4 f [x 4 ] Áëãüñéèìïò 3.3.2-1 (õðïëïãéóìïý ôïõ ðßíáêá ôùí äéáéñåìýíùí äéáöïñþí) ÄéÜâáóå x i; i = 0; 1; : : : ; n Õðïëüãéóå f (x i) = f [x i] ; i = 0; 1; : : : ; n Ãéá k = 1; 2; : : : ; n Ãéá i = 0; 1; : : : ; n k f [x i; x i+1; : : : ; x i+k ] = f [xi+1; : : : ; x i+k] f [x i; : : : ; x i+k 1 ] x i+k x i ôýëïò i ôýëïò k

ÄéáéñåìÝíåò äéáöïñýò. Ôýðïò ôïõ Newton 153 Ï ôýðïò (3:3:3 1) åßíáé ãíùóôüò êáé ùò ôýðïò ðáñåìâïëþò ôïõ Newton (Newton interpolation formula). Ôüôå áðü ôïí ôýðï (3:3:3 1) ðñïêýðôïõí ãéá x = x 0 P n (x 0 ) = f [x 0 ] + 0 = f (x 0 ) ; ãéá x = x 1 P n (x 1 ) = f [x 0 ] + f [x 1 ; x 0 ] (x x 0 ) + 0 = f (x 0 ) + f (x 1) f (x 0 ) x 1 x 0 (x x 0 ) = f (x 1 ) ê.ëð.; äçëáäþ åðáëçèåýåôáé üôé ôï ðïëõþíõìï P n (x) óôç ìïñöþ áõôþ äéýñ åôáé áðü ôá óçìåßá x i ; i = 0; 1; : : : ; n. Ìå äéáäï éêþ åöáñìïãþ ôïõ ôýðïõ (3:3:3 1) Ý ïõìå: ãéá n = 1 P 1 (x) = f [x 0 ] + f [x 1 ; x 0 ] (x x 0 ) (3.3.3-2) ðïõ éóïýôáé ìå ôïí ôýðï (3:2:1 4) ôçò ãñáììéêþò ðáñåìâïëþò ôïõ Ðáñáäåßãìáôïò 3.2.1-1, ãéá n = 2 ãéá n = 3 ¼ìïéá üôáí n > 3. P 2 (x) = f [x 0 ] + f [x 1 ; x 0 ] (x x 0 ) +f [x 0 ; x 1 ; x 2 ] (x x 0 ) (x x 1 ) ; (3.3.3-3) P 3 (x) = f [x 0 ] + f [x 1 ; x 0 ] (x x 0 ) (3.3.3-4) ÐáñÜäåéãìá 3.3.3-1 +f [x 0 ; x 1 ; x 2 ] (x x 0 ) (x x 1 ) ; +f [x 0 ; x 1 ; x 2 ; x 3 ] (x x 0 ) (x x 1 ) (x x 2 ) : Æçôåßôáé íá õðïëïãéóôåß ôï ðïëõþíõìï ðáñåìâïëþò 2ïõ âáèìïý ðïõ ðñïóåããßæåé ôçí ïëïêëçñùôýá óõíüñôçóç f(x) = e x2 ôïõ Ðáñáäåßãìáôïò 3.2.1-3, üôáí

154 ÐïëõùíõìéêÞ ÐáñåìâïëÞ Êáè. Á. ÌðñÜôóïò Ðßíáêáò 3.3.3-1: ÐáñÜäåéãìá 3.3.3-1. x i f [x i ] f [; ] f [; ; ] x 0 = 1:0 1.0 f [x 0 ; x 1 ] = 0:778 801 1:0 0:5 0 = 0:442 398 x 1 = 1:5 0.778 801 f [x 0 ; x 1 ; x 2 ] = 0:821 843 ( 0:442 398) 1:0 0 = 0:379 444 f [x 1 ; x 2 ] x 2 = 1:8 0.367 879 = 0:367 879 0:778 801 1:0 0:5 = 0:821 843 ôá óçìåßá åßíáé x 0 = 0; x 1 = 0:5, êáé x 2 = 1:0. Ëýóç. ÅðåéäÞ ôá óçìåßá åßíáé 3 ôï æçôïýìåíï ðïëõþíõìï åßíáé 2ïõ âáèìïý êáé äßíåôáé áðü ôïí ôýðï (3:3:3 3). Ãéá ôïí õðïëïãéóìü ôïõ áðáéôåßôáé ç äçìéïõñãßá ôïõ Ðßíáêá 3.3.3-1. ñá P ( x) = 1:0 0:442 398 x 0:379 444 x(x 0:5) äçëáäþ ôï áðïôýëåóìá (3:2:1 7). ÐáñÜäåéãìá 3.3.3-2 = 1 0:252 676 x 0:379 444 x 2 ; Æçôåßôáé íá õðïëïãéóôåß ôï ðïëõþíõìï ðáñåìâïëþò 3ïõ âáèìïý ôçò óõíüñôçóçò f(x), üôáí ôá óçìåßá x i êáé ïé ôéìýò f (x i ) äßíïíôáé óôïí Ðßíáêá 3.3.3-2.

ÄéáéñåìÝíåò äéáöïñýò. Ôýðïò ôïõ Newton 155 Ðßíáêáò 3.3.3-2: ÐáñÜäåéãìá 3.3.3-2. x i f [x i ] f [; ] f [; ; ] f [; ; ; ] x 0 = 1:0 0.585 f [x 0 ; x 1 ] = 0:540 0:585 1:5 1:0 = 0:270 x 1 = 1:5 0.450 f [x 0 ; x 1 ; x 2 ] = 2:650 ( 0:270) 1:8 1:0 = 3:650 f [x 1 ; x 2 ] = 1:245 0:450 1:8 1:5 = 2:650 f [x 0 ; x 1 ; x 2 ; x 3 ] = 8:327 3:650 2:5 1:0 = 7:985 x 2 = 1:8 1.245 f [x 1 ; x 2 ; x 3 ] = 3:179 2:650 2:5 1:8 = 8:327 f [x 1 ; x 2 ] x 3 = 2:5-0.980 = 0:980 1:245 2:5 1:8 = 3:179

156 ÐïëõùíõìéêÞ ÐáñåìâïëÞ Êáè. Á. ÌðñÜôóïò Ëýóç. Åöáñìüæïíôáò ôïí ôýðï (3:3:4 7) Ý ïõìå P 3 (x) = 0:585 0:270(x 1:0) + 3:650(x 1:0)(x 1:5) 7:985(x 1:0)(x 1:5)(x 1:8) = 23:391 47:309 x + 30:829 x 2 6:319 x 3 : Ï õðïëïãéóìüò ôïõ ðïëõùíýìïõ P 3 (x) ìå ôï MATHEMATICA ãßíåôáé óôï Ðñüãñáììá 3.3.3-1. Ðñüãñáììá 3.3.3-1 (õðïëïãéóìïý ôïõ ðïëõùíýìïõ ðáñåìâïëþò) data = {{1.0, 0.585}, {1.5, 0.450}, {1.8, 1.245}, {2.5, -0.980}}; InterpolatingPolynomial[data,x] 3.3.4 Ó Ýóç ðáñåìâïëþò êáé ðáñáãþãïõ Áí i = 0, áðü ôïí ôýðï (3:3:2 2) ðñïêýðôåé f [x 0 ; x 1 ] = f (x 1) f (x 0 ) x 1 x 0 : (3.3.4-5) Ôüôå, åöüóïí ç õðüñ åé ç ðáñüãùãïò f, áðü ôï Èåþñçìá ôçò ÌÝóçò ÔéìÞò Ý ïõìå f [x 0 ; x 1 ] = f (); (3.3.4-6) üôáí (x 0 ; x 1 ). Ôï ðáñáêüôù èåþñçìá, ðïõ åßíáé ãíùóôü ùò ôï Èåþñçìá ôçò ÌÝóçò ÔéìÞò ãéá äéáéñåìýíåò äéáöïñýò, ãåíéêåýåé ôï áðïôýëåóìá áõôü: Èåþñçìá 3.3.4-1. óôù f(x) ìßá ðñáãìáôéêþ óõíüñôçóç ìå ðåäßï ïñéóìïý [a; b] êáé ôçò ïðïßáò õðüñ åé ç n-ôüîçò ðáñüãùãïò ãéá êüèå x (a; b). Ôüôå, áí x 0, x 1, : : :, x n, åßíáé n + 1 äéáöïñåôéêü óçìåßá ôïõ [a; b], õðüñ åé óçìåßï ìå (a; b), Ýôóé þóôå f [x 0 ; x 1 ; : : : ; x n ] = f (n) () n! : (3.3.4-7)

ÄéáéñåìÝíåò äéáöïñýò. Ôýðïò ôïõ Newton 157 ÁóêÞóåéò 1. Ìå ôïí ôýðï ðáñåìâïëþò ôïõ Newton íá õðïëïãéóôåß ôï ðïëõþíõìï ðïõ ðñïóåããßæåé ôçí ïëïêëçñùôýá óõíüñôçóç f(x) = e x2 ôïõ Ðáñáäåßãìáôïò 3.2.1-3, üôáí ôá óçìåßá åßíáé x 0 = 0; x 1 = 0:3; x 2 = 0:6, êáé x 3 = 1:0. 2. óôù üôé ôá óçìåßá x 0 ; x 1 ; x 2 êáé x 3 éóáðý ïõí, äçëáäþ h = x i+1 x i ãéá êüèå i = 0; 1; 2; 3. Äåßîôå üôé 6 2! f [x 0 ; x 1 ; x 2 ] = f (x 0) 2f (x 1 ) + f (x 2 ) h 2 ; (3.3.4-8) 3! f [x 0 ; x 1 ; x 2 ; x 3 ] = 1 h 3 [ f (x 0) + 3f (x 1 ) 3f (x 2 ) + f (x 3 )] : (3.3.4-9) 3. óôù üôé ôá óçìåßá x 0, x 1, : : :, x n éóáðý ïõí, äçëáäþ h = x i+1 x i ãéá êüèå i = 0; 1; : : : ; n 1. Ôüôå, áí x = x 0 + sh, ç äéáöïñü x x i ãñüöåôáé x x i = (s 1)h, ïðüôå áðü ôïí ôýðï (3:3:3 1) ðñïêýðôåé P n (x) = P n (x 0 + sh) = f [x 0 ] + shf [x 1 ; x 0 ] + s(s 1)h 2 f [x 0 ; x 1 ; x 2 ] + : : : + s(s 1) (s n + 1)h n f [x 0 ; x 1 ; : : : ; x n ] = n s(s 1) (s n + 1) h k f [x 0 ; x 1 ; : : : ; x k ] : k=0 Áí ( ) s = k s(s 1) (s k + 1) k! äåßîôå üôé ôï ðïëõþíõìï P n (x) ôåëéêü ãñüöåôáé P n (x) = P n (x 0 + sh) = ; n ( ) s k! h k f [x 0 ; x 1 ; : : : ; x k ] : (3.3.4-10) k k=0 ÅéóÜãïíôáò ôïí óõìâïëéóìü Ä ãéá ôéò ðñïò ôá åìðñüò äéáéñåìýíåò äéáöïñýò 6 Ïé ôýðïé áõôïß åßíáé ìéá ðñïóýããéóç ôçò áíôßóôïé çò ðáñáãþãïõ óôï Èåþñçìá 3.3.4-1. ÁíáëõôéêÞ ìåëýôç èá ãßíåé óôï ÌÜèçìá ÐñïóÝããéóç Ðáñáãþãùí.

158 ÐïëõùíõìéêÞ ÐáñåìâïëÞ Êáè. Á. ÌðñÜôóïò ùò åîþò: 7 f [x 0 ; x 1 ] = f (x 1) f (x 0 ) x 1 x 0 = 1 h Äf (x 0) f [x 0 ; x 1 ; x 2 ] = 1 [ ] Äf (x1 ) Äf (x 0 ) 2h h f [x 0 ; x 1 ; : : : ; x k ] =. 1 k! h k Äk f (x 0 ) ; äåßîôå åðßóçò üôé ï ôýðïò (3:3:4 10) ãñüöåôáé P n (x) = = 1 2h 2 Ä2 f (x 0 ) n ( ) s Ä k f (x 0 ) : (3.3.4-11) k k=0 7 ÂëÝðå Óçìåßùóç 3.3.2-1.

3.4 Âéâëéïãñáößá [1] Aêñßâçò, Ã. & ÄïõãáëÞò, Â. (1995). ÅéóáãùãÞ óôçí ÁñéèìçôéêÞ ÁíÜëõóç. ÐáíåðéóôçìéáêÝò Åêäüóåéò ÊñÞôçò. ISBN 978{960{524{022{6. [2] ÌðñÜôóïò, Á. (2011). ÅöáñìïóìÝíá ÌáèçìáôéêÜ. Åêäüóåéò Á. Óôáìïýëç. ISBN 978{960{351{874{7. [3] Burden, R. L. & Faires, D. J. (2010). Numerical Analysis. Brooks/Cole (7th ed.). ISBN 978{0{534{38216{2. Âéâëéïãñáößá ãéá ðåñáéôýñù ìåëýôç ÓôåöáíÜêïò,. (2009). Ðñïãñáììáôéóìüò Ç/Õ ìå MATLAB. Ãêéïýñäáò ÅêäïôéêÞ. ISBN 978{960{387{856{8. Atkinson, K. E. (1989). An Introduction to Numerical Analysis. John Wiley & Sons (2nd ed.). ISBN 0{471{50023{2. Conte, S. D. & de Boor, C. (1980). Elementary Numerical Analysis: An Algorithmic Approach. McGraw{Hill Inc (3rd ed.). ISBN 978{0{ 07{012447{9. Don, E. (2006). Schaum's Outlines { Mathematica. Åêäüóåéò ÊëåéäÜñéèìïò. ISBN 978{960{209{961{2. Leader, L. J. (2004). Numerical Analysis and Scientic Computation. Addison{Wesley. ISBN 978{0{201{73499{7. 159

160 ÐïëõùíõìéêÞ ÐáñåìâïëÞ Êáè. Á. ÌðñÜôóïò Schatzman, M. (2002). Numerical Analysis: A Mathematical Introduction. Oxford: Clarendon Press. ISBN 978{0{19{850279{1. Stoer, J. & Bulirsch, R. (2002). Introduction to Numerical Analysis. Springer (3rd ed.). ISBN 978{0{387{95452{3. Sli, E. & Mayers, D. (2003). An Introduction to Numerical Analysis. Cambridge University Press. ISBN 978{0{521{00794{8. ÌáèçìáôéêÝò âüóåéò äåäïìýíùí http://en.wikipedia.org/wiki/main Page http://eqworld.ipmnet.ru/index.htm http://mathworld.wolfram.com/ http://eom.springer.de/