Γραφική επίλυση γραμμικού συστήματος με δύο αγνώστους.

Σχετικά έγγραφα
ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι

y x y x+2y=

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

Η έννοια της γραμμικής εξίσωσης

4. 1 Η ΣΥΝΑΡΤΗΣΗ Y=AX 2 ME A 0

3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

5. Σε ορθογώνιο σύστημα αξόνων να σχεδιαστούν οι ευθείες που έχουν εξισώσεις τις: β. y = 4 δ. x = y

y είναι πάντα σταθερός και ίσος µε α, δηλα- y x 0.O λόγος αυτός λέγεται κλίση της ευθείας y = αx. x ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ

ΠΑΡΑΓΡΑΦΟΣ Α.3.2 ΚΑΡΤΕΣΙΑΝΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ Α. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ. Μας δίνουν ένα σημείο Μ στο επίπεδο.για να προσδιορίσουμε την θέση του κάνουμε τα εξής :

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0.

3.1 Η ΕΝΝΟΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ

ΦΡΟΝΤΙΣΤΗΡΙΑ «ΠΡΟΟΔΟΣ» ΚΥΡΙΑΚΗ 22 ΝΟΕΜΒΡΙΟΥ 2015 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» Γ ΛΥΚΕΙΟΥ

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κεφ. 1 - Συστήματα 1

ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

1. Η ευθεία y = 5 είναι κάθετη στον άξονα y y. Σ Λ. 2. Η ευθεία x = - 2 είναι παράλληλη προς τον άξονα x x. Σ Λ

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΣΥΣΤΗΜΑΤΑ. Λέξεις-Κλειδιά: Γραμμικά συστήματα, εξισώσεις, ορίζουσα, άγνωστοι, επίλυση, διερεύνηση

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ

Ε ΝΟΤΗΤΑ 6 ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ

ΣΥΣΤΗΜΑΤΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. x-1 x+3. ή D 0 τότε x= =1 και y= 2. 2x 3y ή D=D D 0 άρα το σύστημα είναι αόριστο ή

Σημεία τομής της ευθείας αx+βy=γ με τους άξονες

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

Φίλη μαθήτρια, φίλε μαθητή,

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

Φύλλο εργασίας Νο1. Ορθοκανονικό Σύστημα Ημιαξόνων, Συντεταγμένες Σημείου. Το ορθοκανονικό σύστημα αποτελείται από δύο ημιευθείεςοχ και Οy ώστε:

τα βιβλία των επιτυχιών

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης

ΑΛΓΕΒΡΑ Β Λυκείου ( ) ΑΣΚΗΣΕΙΣ. 1. Να λύσετε τις παρακάτω εξισώσεις : 2 4y. x x 1. στ) 1 3y. = 0, είναι κάθετη στην ευθεία ε 2 : y =

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή

Να επιλύουμε και να διερευνούμε την εξίσωση αx + β = 0, βάση τη γραφική παράσταση της ευθείας y = ax + β.

ΑΛΓΕΒΡΙΚΗ ΕΠΙΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ

1. Η γραφική παράσταση της συνάρτησης y = 2x + β διέρχεται από το σημείο Α( 1, 2). Να βρείτε τον αριθμό β.

Επομένως η εξίσωση αυτή παριστάνει ευθεία που έχει συντελεστή διεύθυνσης λ = -

ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

lim είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο x 0. β) Να εξετάσετε τη συνέχεια της συνάρτησης f (x) =

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο

1ο τεταρτημόριο x>0,y>0 Ν Β

Τάξη Β (ομάδα A) ΘΕ ΑΤΑ

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

6.2 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο «ΑΛΓΕΒΡΑ»

ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0.

ΘΕΩΡΙΑ ( ΚΑΡΤΕΣΙΑΝΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ )

ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΑΣΚΗΣΕΙΣ ΠΡΟΕΤΟΙΜΑΣΙΑΣ ΓΙΑ ΤΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

Συναρτήσεις. Αν λοιπόν έχουμε μια συνάρτηση f από ένα σύνολο Α σε ένα σύνολο Β γράφουμε f Α Β και χ f (χ)

Παραδείγµατα : Έστω ότι θέλουµε να παραστήσουµε γραφικά την εξίσωση 6χ-ψ=3. Λύση 6χ-ψ=3 ψ=6χ-3. Άρα η εξίσωση παριστάνει ευθεία. Για να τη χαράξουµε

ΕΦΑΠΤΟΜΕΝΗ ΤΗΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΜΙΑΣ ΣΥΝΑΡΤΗΣΗΣ

Ερωτήσεις κατανόησης σελίδας Κεφ. 1

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ

Γιώργος Μπαρακλιανός τηλ ( ) Κώστας Τζάλλας τηλ ( ) Παραγγελίες : τηλ.

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο

1 ΘΕΩΡΙΑΣ...με απάντηση

Κάθε φορά, που νιώθουμε τρελή λαχτάρα να μιλήσουμε για ευθείες, φανταζόμαστε εξισώσεις της παρακάτω μορφής : y = αx + β

ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Α

Ζ ΕΝΟΤΗΤΑ. Μελέτη βασικών συναρτήσεων. Ζ.1 (7.1 παρ/φος σχολικού βιβλίου) Ζ.2 (7.2 παρ/φος σχολικού βιβλίου) Ζ.3 (7.3 παρ/φος σχολικού βιβλίου) 2

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

3.3 ΑΛΓΕΒΡΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

Τ ρ α π ε ζ α Θ ε μ α τ ω ν

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

6.1 ΠΑΡΑΣΤΑΣΗ ΣΗΜΕΙΩΝ ΣΤΟ ΕΠΙΠΕ Ο

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης

3 Ο ΚΕΦΑΛΑΙΟ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΑΣΚΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΓΡΑΜΜΙΚΗ ΕΞΙΣΩΣΗ ΜΕ ΥΟ ΑΓΝΩΣΤΟΥΣ

δίου ορισμού, μέσου του τύπου εξαρτημένης μεταβλητής του πεδίου τιμών που λέγεται εικόνα της f για x α f α.

2.2. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. e = 2. e, x ο. e f ( ln 2 ) = όταν : 4

. Πρόκειται για ένα σημαντικό βήμα, καθώς η παράμετρος χρόνος υποχρεωτικά μεταβάλλεται σε κάθε είδους κίνηση. Η επιλογή της χρονικής στιγμής t o

ΘΕΜΑ 2 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο.

με παραμέτρους α, β, γ R α) Να επιλέξετε τιμές για τις παραμέτρους α, β, γ, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1,-4).

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος:

3. Να δειχτει οτι α α. Ποτε ισχυει το ισον; αx + βy = γ

4. Να βρείτε την εξίσωση της ευθείας που διέρχεται από την αρχή των αξόνων και το σημείο Α(,.

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

5. 1 ΣΥΝΟΛΑ. Η έννοια του συνόλου

1 x και y = - λx είναι κάθετες

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΚΕΦΑΛΑΙΟ 1ο: ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 6 Β' Λυκείου. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων- Τριγωνομετρία

Β Λυκείου - Ασκήσεις Συστήματα. x = 38 3y x = 38 3y x = x = = 11

ΤΕΣΤ ❶ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ. υ = σταθερη (1) - Με διάγραμμα :

ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΕΥΘΕΙΑ Β ΛΥΚΕΙΟΥ. i) Μία ευθεία με συντελεστή διεύθυνσης ίσο με το μηδέν, θα είναι παράλληλη στον άξονα των y.

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο 2.1: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. Λυμένες Ασκήσεις

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση

Transcript:

ΜΕΡΟΣ Α 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ 71 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ Αν έχουμε δύο γραμμικές εξισώσεις με δύο αγνώστους,, π.χ. α + β = γ και α +β = γ και αναζητούμε το ζεύγος των αριθμών (, ) που είναι ταυτόχρονα λύση και των δύο εξισώσεων, τότε λέμε ότι έχουμε να επιλύσουμε ένα γραμμικό σύστημα δύο εξισώσεων με δύο αγνώστους και. Λύση γραμμικού συστήματος δύο εξισώσεων με δύο αγνώστους και ονομάζεται κάθε ζεύγος (, ) που επαληθεύει τις εξισώσεις του. Ένα γραμμικό σύστημα δύο εξισώσεων με δύο αγνώστους, επιλύεται γραφικά αλλά και αλγεβρικά. Γραφική επίλυση γραμμικού συστήματος με δύο αγνώστους. Σύστημα με μοναδική λύση Αν σχεδιάσουμε τις γραφικές παραστάσεις στο ίδιο α+β=γ α +β =γ σύστημα αξόνων των δύο γραμμικών εξισώσεων ενός A(,) συστήματος και αυτές οι ευθείες τέμνονται σε ένα σημείο, τότε λέμε ότι οι Ο(0,0) - συντεταγμένες του σημείου - αυτού είναι και η μοναδική λύση του συστήματος των δύο εξισώσεων. Αδύνατο σύστημα Αν σχεδιάσουμε τις γραφικές παραστάσεις στο ίδιο σύστημα αξόνων των δύο γραμμικών εξισώσεων ενός συστήματος και αυτές οι ευθείες είναι παράλληλες, τότε λέμε ότι δεν έχουν κοινό σημείο, οπότε το σύστημα δεν έχει λύση επομένως είναι αδύνατο. α+β=γ - - - - α +β =γ Ο(0,0) -10

7 ΜΕΡΟΣ Α 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ Αόριστο σύστημα Αν σχεδιάσουμε τις γραφικές παραστάσεις στο ίδιο σύστημα αξόνων των δύο γραμμικών εξισώσεων ενός συστήματος και αυτές οι ευθείες συμπίπτουν, τότε λέμε ότι έχουν όλα τα σημεία τους κοινά, οπότε το σύστημα έχει άπειρες λύσεις και επομένως είναι αόριστο. α+β=γ - - - Ο(0,0) α +β =γ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ 1. Να επιλέξετε τη σωστή απάντηση = 5 Το σύστημα + = 1 έχει ως λύση τις συντεταγμένες του σημείου α) Α ( 3, ) β) Β (1, 1) γ) Γ (1, ) δ) Δ (, 3). ΑΠΑΝΤΗΣΗ = 5 Το σύστημα + = 1 έχει ως λύση τις συντεταγμένες του σημείου Δ (, 3) γιατί αυτές επαληθεύουν και τις δύο εξισώσεις του συστήματος. Πράγματι -(-3)=+3=5 και.-3=-3=1, άρα σωστό το δ.. Αν οι εξισώσεις ενός γραμμικού συστήματος παριστάνονται με τις ευθείες (ε 1 ) και (ε ), να συμπληρώσετε τον παρακάτω πίνακα αντιστοιχίζοντας σε κάθε ζεύγος ευθειών της στήλης Α, το σωστό συμπέρασμα από τη στήλη Β. Στήλη Α α. Οι ευθείες ε 1, ε τέμνονται. β. Οι ευθείες ε 1, ε είναι παράλληλες γ. Οι ευθείες ε 1, ε συμπίπτουν. α β γ Στήλη Β 1. Το σύστημα είναι αόριστο.. Το σύστημα έχει μία λύση. 3. Το σύστημα είναι αδύνατο. ΑΠΑΝΤΗΣΗ α β γ 3 1

ΜΕΡΟΣ Α 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ 73 3. Με τη βοήθεια του σχήματος να βρείτε τη λύση σε καθένα από τα παρακάτω συστήματα. 3 = 0 3 = 0 α) β) + = + 3 = 1 = 0 = 0 γ) δ) + 3 = 1 3 = 0 ΑΠΑΝΤΗΣΗ 3 = 0 α) το σύστημα έχει λύση το ζευγάρι των αριθμών (-3,-) + = γιατί οι ευθείες -3=0 και -+= τέμνονται στο σημείο (-3,-). 3 = 0 β) το σύστημα έχει λύση το ζευγάρι των αριθμών (3,) γιατί οι ευθείες -3=0 και +3=1 τέμνονται στο σημείο (3,). + 3 = 1 = 0 γ) το σύστημα έχει λύση το ζευγάρι των αριθμών (,0) + 3 = 1 γιατί οι ευθείες =0 και +3=1 τέμνονται στο σημείο (,0). = 0 δ) το σύστημα έχει λύση το ζευγάρι των αριθμών (0,0) γιατί 3 = 0 οι ευθείες =0 και -3=0 τέμνονται στο σημείο (0,0).

7 ΜΕΡΟΣ Α 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ-ΠΡΟΒΛΗΜΑΤΑ ΑΣΚΗΣΗ 1 Να λύσετε γραφικά τα συστήματα = 3 = 3 + = 0 α) β) γ) + = 7 + = 1 = 0 3 = 3 + = 9 = 10 δ) ε) στ) = 0 + = = 1 ΛΥΣΗ Θα παραστήσουμε γραφικά τις εξισώσεις των συστημάτων α) Η =3 είναι μια ευθεία που περνά από το σημείο (3,0) και είναι παράλληλη προς τον άξονα. Για την ευθεία +=7 έχουμε: Για = 0 τότε 0 + = 7 ή = 3,5 Για =0 τότε +. 0 = 7 ή = 7 +=7 =3 A(3,) Παρατηρούμε ότι οι δύο ευθείες τέμνονται στο σημείο Α(3,) άρα η λύση του συστήματος είναι το ζεύγος - (,)=(3,) - β) Η =3 είναι μια ευθεία που περνά από το σημείο (0,3) και είναι παράλληλη προς τον άξονα. Για την ευθεία -+=1 έχουμε: Για = 0 τότε -.0 + = 1 ή = 1 Για =0 τότε -+ 0 = 1 ή = -0,5 0-0,5 1 0 -+=1 =3 Α(1,3) Παρατηρούμε ότι οι δύο ευθείες τέμνονται στο σημείο Α(1,3) άρα η λύση του συστή 0 7 3,5 0 - -

ΜΕΡΟΣ Α 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ 75 ματος είναι το ζεύγος (,)=(1,3) γ) Για την ευθεία +=0 έχουμε: Για = 0 τότε 0 + = 0 ή = 0 Για =1 τότε 1+ = 0 ή = -1 Για την ευθεία -=0 έχουμε: Για = 0 τότε 0 - = 0 ή = 0 Για =1 τότε 1- = 0 ή = 1 =- = -10 0 1 0-1 0 1 0 1 Παρατηρούμε ότι οι δύο ευθείες τέμνονται στο σημείο O(0,0) άρα η λύση του συστήματος είναι το ζεύγος (,)=(0,0) - δ) Για την ευθεία 3-= έχουμε: Για = 0 τότε 3.0 - = ή = - Για =1 τότε 3.1- = ή = 1 Για την ευθεία -=0 έχουμε: Για = 0 τότε 0 - = 0 ή = 0 Για =1 τότε 1- = 0 ή = 1 0 1-1 0 1 0 1 = Α(1,1) Παρατηρούμε ότι οι δύο ευθείες τέμνονται στο σημείο Α(1,1) άρα η λύση του συστήματος είναι το ζεύγος (,)=(1,1) - ε) Για την ευθεία 3+=9 έχουμε: Για = 1 τότε 3.1 + = 9 ή = 1 Για =3 τότε 3.3+ = 9 ή = 0 1 3 1 0

7 ΜΕΡΟΣ Α 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ Για την ευθεία += έχουμε: Για = 1 τότε.1 + = ή = 1 Για =0 τότε +.0 = ή = 3 3+=9 ή += 1 3 1 0 Παρατηρούμε οι δύο ευθείες ταυτίζονται οπότε Το σύστημα είναι αόριστο έχει δηλαδή άπειρες λύσεις - στ) Για την ευθεία -=10 έχουμε: Για = 0 τότε.0 - = 10 ή = -10 Για =0 τότε -0= 10 ή = 5 Για την ευθεία -=1 έχουμε: Για = 0 τότε.0 - = 1 ή = -0,5 Για =0 τότε -.0 = 1 ή = 1/ -=1 -=10 0 5-10 0 0 1/ -0,5 0 Παρατηρούμε οι δύο ευθείες είναι παράλληλες οπότε Το σύστημα είναι αδύνατο - ΑΣΚΗΣΗ Να προσδιορίσετε γραφικά το πλήθος των λύσεων σε καθένα από τα παρακάτω συστήματα + = 5 3 = + = α) β) γ) + = 1 = + 3 = ΛΥΣΗ

ΜΕΡΟΣ Α 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ 77 α) Για την ευθεία +=5 έχουμε: Για = 0 τότε.0 + = 5 ή =,5 Για =0 τότε +.0= 5 ή = 5 Για την ευθεία +=1 έχουμε: Για = 0 τότε 0 + = 1 ή = 0,5 Για =0 τότε +.0 = 1 ή = 1 0 5,5 0 0 1 0,5 0 +=5 +=1 - -10 Παρατηρούμε οι δύο ευθείες είναι παράλληλες οπότε Το σύστημα είναι αδύνατο β) Για την ευθεία -3= έχουμε: Για = -1 τότε -1-3 = ή = -1 Για =0 τότε -3.0= ή = - -1-1 0 Για την ευθεία -= έχουμε: Για = -1 τότε.(-1) - = ή = -1 Για =0 τότε -.0 = ή = -1-1 0-3= ή -= -10 Παρατηρούμε οι δύο ευθείες ταυτίζονται οπότε Το σύστημα είναι αόριστο έχει δηλαδή άπειρες λύσεις - -

7 ΜΕΡΟΣ Α 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ γ) Για την ευθεία += έχουμε: Για = 0 τότε 0 + = ή = Για =0 τότε +0= ή = 0 0 Για την ευθεία +3= έχουμε: Για = 0 τότε 0 +3 = ή = Για =0 τότε +3.0 = ή = 0 0 += +3= Α(0,) -10 - Ο(0,0) Παρατηρούμε ότι οι δύο ευθείες τέμνονται στο σημείο Α(0,) άρα η λύση του συστήματος είναι το ζεύγος (,)=(0,) ΑΣΚΗΣΗ 3 Στο διπλανό σχήμα φαίνεται το διάγραμμα ταχύτητας χρόνου δύο αυτοκινήτων Α και Β. Να βρείτε : α) Την αρχική ταχύτητα κάθε αυτοκινήτου. β) Σε πόσο χρόνο μετά την εκκίνησή τους τα δύο αυτοκίνητα θα έ- χουν την ίδια ταχύτητα και ποια θα είναι αυτή. ΛΥΣΗ α) Η αρχική ταχύτητα του αυτοκινήτου Α είναι 0 γιατί για t=0 είναι u=0, ενώ του αυτοκινήτου Β είναι 10 γιατί για t=0 είναι u=10 (Η πρώτη ευθεία ξεκινά από το σημείο (0,0) ενώ η δεύτερη από το (0,10) ) β) Από το σχήμα φαίνεται ότι την ίδια ταχύτητα (15 m/sec) τα δύο αυτοκίνητα θα την έχουν για t=10 sec γιατί οι δύο ευθείες τέμνονται στο σημείο (t,u)=(10,15).

ΜΕΡΟΣ Α 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ 79 ΑΣΚΗΣΗ Ένας φίλαθλος για να παρακολουθήσει τους αγώνες μιας ομάδας πρέπει να πληρώσει ένα ποσό και ο ίδιος έχει τις εξής δυνατότητες. - Να πληρώνει 0 ευρώ για κάθε αγώνα που παρακολουθεί. - Να πληρώσει 0 ευρώ ως αρχική συνδρομή και για κάθε αγώνα που παρακολουθεί να πληρώνει 10 ευρώ - Να πληρώσει 300 ευρώ και να παρακολουθήσει όσους αγώνες ε- πιθυμεί. Η σχέση που συνδέει το πλήθος των αγώνων που θα παρακολουθήσει ο φίλαθλος με το χρηματικό ποσό που θα πληρώσει σε κάθε περίπτωση παριστάνεται με μια από τις ευθείες ε 1, ε, ε 3. α) Να αντιστοιχίσετε κάθε περίπτωση σε μια από τις τρεις ευθείες. β ) Πόσους αγώνες πρέπει να παρακολουθήσει ένας φίλαθλος, ώστε τα χρήματα που θα πληρώσει να είναι τα ίδια στην δεύτερη και τρίτη περίπτωση ; γ) Aν ο φίλαθλος σκοπεύει να παρακολουθήσει 1 αγώνες, ποια περίπτωση είναι η πιο συμφέρουσα ; δ ) Αν κάποιος παρακολούθησε μόνο 15 αγώνες και δεν είχε επιλέξει την πιο συμφέρουσα περίπτωση, πόσα ευρώ ζημιώθηκε ; ε ) Πότε είναι πιο συμφέρουσα κάθε περίπτωση ; ΛΥΣΗ α) Εάν υποθέσουμε ότι είναι οι αγώνες και τα χρήματα που πρέπει να πληρώσει ο φίλαθλος τότε στην πρώτη περίπτωση αντιστοιχεί η ευθεία ε 1 γιατί τα χρήματα που απαιτούνται είναι =0 ή 0-=0. Στην δεύτερη περίπτωση αντιστοιχεί η ευθεία ε γιατί τα χρήματα που απαιτούνται είναι =10+0 ή 10-+0=0 και τέλος στην τρίτη περίπτωση αντιστοιχεί η ευθεία ε 3 γιατί τα χρήματα που απαιτούνται είναι =300. β) Για να είναι τα χρήματα που θα πληρώσει τα ίδια στην δεύτερη και τρίτη περίπτωση πρέπει η τιμή του να ικανοποιεί ταυτόχρονα και τις δύο εξισώσεις που αντιστοιχούν στις περιπτώσεις αυτές, δηλαδή την =300 και την =10+0. Λύνουμε το σύστημα των δύο αυτών εξισώσεων.

0 ΜΕΡΟΣ Α 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ = 300 = 300 ή = 10 + 0 10 + 0 = 300 Εφαρμόζουμε την μέθοδο της αντικατάστασης. Τοποθετούμε στην δεύτερη εξίσωση την τιμή = 300 = 300 του από την πρώτη εξίσωση και λύνουμε την ή εξίσωση πρώτου βαθμού που προκύπτει βρίσκοντας ότι απαιτούνται αγώνες για να είναι τα 10 = 300 0 10 = 0 χρήματα τα ίδια. = 300 = γ) Για =1 στην γραφική παράσταση υψώνουμε κάθετο στον άξονα και βλέπουμε ότι η ποιο συμφέρουσα περίπτωση είναι η δεύτερη γιατί η κάθετη αυτή τέμνει πρώτη την ευθεία που αντιστοιχεί σε αυτή την περίπτωση σε σημείο με τεταγμένη (δηλαδή το ποσό των χρημάτων) =10 ενώ μετά τέμνει την ευθεία που αντιστοιχεί στην πρώτη περίπτωση σε σημείο με τεταγμένη (δηλαδή το ποσό των χρημάτων) =0. Τέλος τέμνει τελευταία την ευθεία =300. Εδώ τον συμφέρει η δεύτερη περίπτωση, δηλαδή να πληρώσει 0 ευρώ συνδρομή και για κάθε αγώνα να δίνει 10 ευρώ. δ) Για =15 στην γραφική παράσταση υψώνουμε κάθετο στον άξονα και βλέπουμε ότι τέμνει την ευθεία 10-+0=0 σε σημείο με τεταγμένη =10 και τις ευθείες 0-=0 και =300 σε σημείο με τεταγμένη =300 οπότε η ζημιά είναι 1 =300-10=90 Ευρώ. Επομένως η πιο συμφέρουσα περίπτωση είναι η δεύτερη με 10 ευρώ. ε) Εάν δοκιμάσουμε και εμείς φέρνοντας καθέτους από το =0 και δεξιότερα στον άξονα θα διαπιστώσουμε ότι η πρώτη περίπτωση είναι συμφέρουσα μέχρι = αγώνες, η δεύτερη περίπτωση από = αγώνες μέχρι = αγώνες και τέλος η τρίτη περίπτωση είναι συμφέρουσα από = αγώνες και πάνω.