Κεφάλαιο 2 Πιθανότητες. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς



Σχετικά έγγραφα
ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }.

ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ Ανδρεσάκης Δ. ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΙΘΑΝΟΤΗΤΕΣ

3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }.

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ

Τμήμα Λογιστικής και Χρηματοοικονομικής. Θεωρία Πιθανοτήτων. Δρ. Αγγελίδης Π. Βασίλειος

Στατιστική Ι. Ενότητα 3: Πιθανότητες. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Θεωρία Πιθανοτήτων & Στατιστική

Στατιστική Επιχειρήσεων Ι

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

Πιθανότητες. Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους

1 ο Κεφάλαιο : Πιθανότητες. 1. Δειγματικοί χώροι 2. Διαγράμματα Venn. Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. 3. Κλασικός ορισμός. 4.

Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΠΙΘΑΝΟΤΗΤΕΣ. Ερωτήσεις του τύπου «Σωστό - Λάθος»

ΧΑΡΑΛΑΜΠΟΣ.ΣΠ. ΛΥΚΟΥΔΗΣ - ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ

1. Πείραμα τύχης. 2. Δειγματικός Χώρος ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ

Θεωρία Πιθανοτήτων & Στατιστική

1.1 Πείραμα Τύχης - δειγματικός χώρος

Υπολογιστικά & Διακριτά Μαθηματικά

Κεφάλαιο 3 Κατανομές. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

Βασικά στοιχεία της θεωρίας πιθανοτήτων

1. Βασικές Έννοιες - Προτάσεις Θεωρίας Πιθανοτήτων

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ

1.2 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

Βιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017

Στοχαστικές Στρατηγικές

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

Πιθανότητες και βακτηριουρία πυελονεφρίτιδα Πιθανότητες και ο καρκίνος της μήτρας Ιατρική διάγνωση με υπολογιστές

Βιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2016

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες

P (A 1 A 2... A n ) = P (A 1 )P (A 2 A 1 )P (A 3 A 1 A 2 ) P (A n A 1 A 2 A n 1 ).

ΓΕΛ ΝΕΑΣ ΠΕΡΑΜΟΥ ΠΙΘΑΝΟΤΗΤΕΣ ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ-ΛΟΓΙΣΜΟΣ. Στατιστική ομαλότητα ή Νόμος των μεγάλων αριθμών

Α ΕΝΟΤΗΤΑ. Πιθανότητες. Α.1 (1.1 παρ/φος σχολικού βιβλίου) Α.2 (1.2 παρ/φος σχολικού βιβλίου) Δειγματικός χώρος - Ενδεχόμενα. Η έννοια της πιθανότητας

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

Γιατί πιθανότητες; Γιατί πιθανότητες; Θεωρία πιθανοτήτων. Θεωρία Πιθανοτήτων. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017.

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ

Στατιστική Ι-Πιθανότητες Ι

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ (ημιτελές Version )

ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 2 : Πληροφορία και Εντροπία Διάλεξη: Κώστας Μαλιάτσος Χρήστος Ξενάκης, Κώστας Μαλιάτσος

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης;

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ( Version ) 2001

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

P (A) = 1/2, P (B) = 1/2, P (C) = 1/9

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ. Έννοια Ορισμοί Τρόπος υπολογισμού Kατανομή πιθανότητας Ασκήσεις

Συνδυαστική Απαρίθμηση

ΙΙΙ εσµευµένη Πιθανότητα

Βασικά στοιχεία της θεωρίας πιθανοτήτων

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα.

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΤΑΞΙΝΟΜΗΜΕΝΑ Ε ΟΜΕΝΑ

1 ΠΙΘΑΝΟΤΗΤΕΣ Εισαγωγή

Βιομαθηματικά BIO-156

Πιθανότητες. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015

Ορισμός της Πιθανότητας (Ι)

#(A B) = (#A)(#B). = 2 6 = 1/3,

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη

Τυχαία μεταβλητή (τ.μ.)

2. Η πιθανότητα της αριθμήσιμης ένωσης ξένων μεταξύ τους ενδεχομένων είναι το άθροισμα των πιθανοτήτων των ενδεχομένων.

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

Α) Να γράψετε με τη βοήθεια των πράξεων των συνόλων το ενδεχόμενο που παριστάνει το σκιασμένο εμβαδόν σε καθένα από τα παρακάτω διαγράμματα Venn.

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ

10/10/2016. Στατιστική Ι. 2 η Διάλεξη

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C

2. Η πιθανότητα της αριθμήσιμης ένωσης ξένων μεταξύ τους ενδεχομένων είναι το άθροισμα των πιθανοτήτων των ενδεχομένων.

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΗΣ Τ.Θ.Δ.Δ. ΘΕΜΑ Β. B. Το αντίστοιχο διάγραμμα Venn είναι το παρακάτω:

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

Λύσεις 1ης Ομάδας Ασκήσεων

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΙΘΑΝΟΤΗΤΕΣ. Μαθηματικά Γενικής Παιδείας. Γ.Λυκείου

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

Τυχαία Μεταβλητή (Random variable-variable aléatoire)

Πιθανότητες. Κεφάλαιο Δειγματικός χώρος - Ενδεχόμενα Κατανόηση εννοιών - Θεωρία

P (B) P (B A) = P (AB) = P (B). P (A)

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

Εισαγωγή στο μάθημα Πιθανότητες - Στατιστική. Τμήμα Πολιτικών Μηχανικών Πανεπιστήμιο Θεσσαλίας

ΘΕΜΑ 3 Το ύψος κύματος (σε μέτρα) σε μία συγκεκριμένη θαλάσσια περιοχή είναι τυχαία μεταβλητή X με συνάρτηση πυκνότητας πιθανότητας

Η Έννοια της Πιθανότητας. 1 Βρείτε την πιθανότητα του καθ ενός απ τα παρακάτω ενδεχόμενα:

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

Υπολογιστικά & Διακριτά Μαθηματικά

Θεωρία Πιθανοτήτων και Στατιστική

3.2. Ασκήσεις σχ. βιβλίου σελίδας Α ΟΜΑ ΑΣ

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες

B A B A A 1 A 2 A N = A i, i=1. i=1

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης

ΚΕΦΑΛΑΙΟ 1: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Transcript:

Κεφάλαιο 2 Πιθανότητες Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

2-2 2 Πιθανότητες Χρησιμοποιώντας την Στατιστική Βασικοί ορισμοί: Ενδεχόμενα, Δειγματικός χώρος και Πιθανότητες Βασικοί κανόνες πιθανοτήτων Υπό συνθήκη πιθανότητα Ανεξαρτησία Ενδεχομένων Το θεώρημα Ολικής Πιθανότητας

2-3 2 ΜΑθΗΣΙΑΚΟΙ ΣΤΟΧΟΙ Όταν θα έχετε ολοκληρώσει τη μελέτη του κεφαλαίου θα πρέπει να είστε σε θέση να: Ορίσετε την πιθανότητα, το δειγματικό χώρο και τα ενδεχόμενα. Διακρίνετε μεταξύ της υποκειμενικής και αντικειμενικής πιθανότητας. Περιγράφετε το συμπληρωματικό ενός ενδεχομένου, την τομή και την ένωση δυο ενδεχομένων. Υπολογίζετε τις πιθανότητες διαφόρων ενδεχομένων. Εξηγήσετε την έννοια της υπό συνθήκη πιθανότητας και τον τρόπο υπολογισμού της.

2-4 2-1 Η πιθανότητα : είναι ένα ποσοτικό μέτρο της αβεβαιότητας είναι ένα μέτρο της δύναμης της πίστης μας για την εμφάνιση ενός όχι βέβαιου ενδεχομένου είναι ένα μέτρο της πιθανότητας εμφάνισης ενός όχι βέβαιου ενδεχομένου παίρνει τιμές μεταξύ του 0 και του 1 (ή μεταξύ του 0% και 100%

2-5 Είδη πιθανοτήτων Αντικειμενική ή Κλασική πιθανότητα Βασίζεται σε ενδεχόμενα με ίδια πιθανότητα εμφάνισης Βασίζεται σε μακροπρόθεσμη σχετική συχνότητα ενδεχομένων δεν βασίζεται σε προσωπικές απόψεις είναι η ίδια για όλους τους παρατηρητές (αντικειμενική παραδείγματα: στρίψιμο ενός νομίσματος, ρίψη ενός ζαριού, επιλογή μιας κάρτας από μια τράπουλα

2-6 Είδη πιθανοτήτων (Συνέχεια Υποκειμενική πιθανότητα Βασίζεται σε προσωπικές απόψεις, εμπειρίες, προκαταλήψεις, διαίσθηση προσωπική κρίση Είναι διαφορετική για όλους τους παρατηρητές (υποκειμενική Παραδείγματα: εκλογές, εισαγωγή στην αγορά ενός νέου προϊόντος, αν θα χιονίσει την επόμενη ημέρα

2-7 2-2 Βασικοί Ορισμοί Σύνολο μια συλλογή στοιχείων ή αντικειμένων Κενό σύνολο (συμβολίζεται με Ένα σύνολο που δεν περιλαμβάνει στοιχεία Γενικό σύνολο (συμβολίζεται με S Ένα σύνολο που περιλαμβάνει όλα τα δυνατά στοιχεία A Ένα σύνολο που περιλαμβάνει όλα τα στοιχεία του S που δεν είναι μέλη του συνόλου A Συμπληρωματικό Το συμπληρωματικό ενός συνόλου A είναι

2-8 Συμπληρωματικό ενός ενδεχομένου A A S Διάγραμμα Venn που παρουσιάζει το το συμπληρωματικό ενός ενδεχομένου

2-9 Βασικοί ορισμοί (συνεχίζεται Τομή (και Ένα σύνολο που περιλαμβάνει τα κοινά στοιχεία του A και του Ένωση (ή A Ένα σύνολο που περιλαμβάνει όλα τα στοιχεία του A ή του ή και των δυο. A

2-10 Σύνολα: η τομή του A με το S A A

2-11 Σύνολα : A ένωση S A A

2-12 Βασικοί ορισμοί (συνεχίζεται Αμοιβαία αποκλειόμενα ή ξένα σύνολα Σύνολα που δεν έχουν κοινά στοιχεία, που δεν έχουν τομή, που η τομή τους είναι το κενό σύνολο Διαμέριση Μια συλλογή αμοιβαία αποκλειόμενων συνόλων που από κοινού περιλαμβάνουν όλα τα πιθανά στοιχεία, ενώ η ένωση τους είναι το σύνολο που περιλαμβάνει όλα τα δυνατά αποτελέσματα.

Αμοιβαία αποκλειόμενα ή ξένα σύνολα 2-13 Τα σύνολα δεν έχουν κανένα κοινό στοιχείο S A

2-14 Σύνολα: διαμέριση A1 A3 S A2 A4 A5

2-15 Πείραμα Είναι μια διαδικασία που οδηγεί σε ένα από τα πολλά πιθανά αποτελέσματα *, π.χ.: Στρίψιμο νομίσματος Κεφάλι, Γράμματα Ρίψη ζαριού 1, 2, 3, 4, 5, 6 Κάθε δοκιμή ενός πειράματος έχει ένα μόνο αποτέλεσμα. Το ακριβές αποτέλεσμα ενός τυχαίου πειράματος είναι άγνωστο πριν από μια δοκιμή. * Ονομάζεται επίσης βασικό αποτέλεσμα ή στοιχειώδες ενδεχόμενο * Ονομάζεται επίσης βασικό αποτέλεσμα ή στοιχειώδες ενδεχόμενο

2-16 Ενδεχόμενο: Ορισμός Δειγματικός χώρος ή σύνολο ενδεχομένων Σύνολο όλων των δυνατών αποτελεσμάτων για ένα συγκεκριμένο πείραμα π.χ.: Ρίψη ενός συνήθους ζαριού Ενδεχόμενο S = {1,2,3,4,5,6} Σύλλογή αποτελεσμάτων που έχουν ένα κοινό χαρακτηριστικό π.χ.: το αποτέλεσμα της ρίψης ενός συνήθους ζαριού έχει αποτέλεσμα ζυγό αριθμό A = {2,4,6} Το ενδεχόμενο A πραγματοποιείται αν το αποτέλεσμα ανήκει στο σύνολο A Πιθανότητα ενός ενδεχομένου Άθροισμα των πιθανοτήτων των αποτελεσμάτων από τα οποία αποτελείται (A = (2 + (4 + (6

Ισοπίθανα ενδεχόμενα (Υποθετικά ή Ιδανικά Πειράματα 2-17 Για παράδειγμα: Ρίψη ενός ζαριού Έξι πιθανά αποτελέσματα {1,2,3,4,5,6} Αν έχουν ίδια πιθανότητα εμφάνισης, η πιθανότητα για καθένα είναι 1/6 = 0.1667 = 16.67% ( e 1 n( S Η πιθανότητα για κάθε ισοπίθανο ενδεχόμενο είναι 1 προς τον αριθμό των πιθανών ενδεχομένων Ενδεχόμενο A (ζυγός αριθμός (A = (2 + (4 + (6 = 1/6 + 1/6 + 1/6 = 1/2 ( A ( e για όλα τα e που ανήκουν στο A n( A 3 1 n( S 6 2

Επιλογή μιας κάρτας από μια τράπουλα: Δειγματικός χώρος 2-18 Κούπα Καρό Σπαθί Μπαστούνι 16 52 Ένωση των Κούπα και Άσσος (Κούπα Άσσος n(κούπα Άσσος n( S 4 13 A A A A K K K K Q Q Q Q J J J J 10 10 10 10 9 9 9 9 8 8 8 8 7 7 7 7 6 6 6 6 5 5 5 5 4 4 4 4 3 3 3 3 2 2 2 2 Ενδεχόμενο Άσσος ( Ά n ( Ά 4 1 n ( S 52 13 Ενδεχόμενο Κόύπα n ( ύ 13 ( ύ n ( S 52 1 4 Η τομή των ενδεχομένων Κούπα και Άσσος είναι το μοναδικό φύλο που κυκλώνεται δυο φορές: Άσσος κούπα n(κούπα Άσσος ( Κούπα Άσσος n( S 1 52

2-19 2-3 Βασικοί Κανόνες Πιθανοτήτων Εύρος τιμών για για το το (A: 0( A 1 Συμπληρωματικό -- Πιθανότητα να να μην μην πραγματοποιηθεί το το A ( A 1 ( A Τομή -- Πιθανότητα να να πραγματοποιηθούν τα τα A και και ( A n( A n( S Αμοιβαία αποκλειόμενα ενδεχόμενα (A (A και και C C :: ( AC 0

Βασικοί Κανόνες Πιθανοτήτων (Συνεχίζεται 2-20 Ένωση Ένωση -- Πιθανότητα να να πραγματοποιηθεί το το A ή το το ή και και τα τα δυο δυο (κανόνας της της ένωσης ένωσης ( A n( A ( A ( ( A n( S Αμοιβαία Αμοιβαία αποκλειόμενα αποκλειόμενα ενδεχόμενα: ενδεχόμενα: Αν Αν τα τα A και και είναι είναι αμοιβαία αμοιβαία αποκλειόμενα αποκλειόμενα ενδεχόμενα, ενδεχόμενα, τότε τότε ( A 0. ( A ( A (

2-21 Σύνολα: (A ένωση S A ( A

2-4 Υπό συνθήκη πιθανότητα 2-22 Υπό Υπό συνθήκη πιθανότητα Πιθανότητα του του A δοθέντος Ανεξάρτητα Ανεξάρτητα ενδεχόμενα: ενδεχόμενα: ( A ( A,όπου ( 0 ( ( A ( A ( A (

Υπό συνθήκη πιθανότητα (συνεχίζεται 2-23 Κανόνες υπό συνθήκη πιθανοτήτων: Κανόνες υπό συνθήκη πιθανοτήτων: ( A ( A έτσι ( A ( A ( ( ( A ( A Αν τα ενδεχόμενα A και D είναι στατιστικά ανεξάρτητα: ( A D ( A ( D A ( D έτσι ( AD ( A ( D

2-24 Πίνακας Διπλής εισόδου - Παράδειγμα 2-2 Μετρήσεις AT& T IM Σύνολο Τηλεπικοινωνίες 40 10 50 Computers 20 30 50 Σύνολο 60 40 100 Πιθανότητες AT& T IM Σύνολο Τηλεπικοινωνίες 0.40 0.10 0.50 Computers 0.20 0.30 0.50 Πιθανότητα ότι η IM αναλαμβάνει ένα έργο δοθέντος ότι είναι έργο τηλεπικοινωνιακό: ( IM T ( IM T ( T 0.10 0.50 0.2 Σύνολο 0.60 0.40 1.00

2-25 2-5 Ανεξαρτησία Ενδεχομένων Συνθήκες για την στατιστική ανεξαρτησία των ενδεχομένων A και : (Άσσος Κούπα (Άσσος Κούπα (Κούπα 1 1 52 (Άσσος 13 13 52 ( A ( A ( A ( και ( A ( A ( (Κούπα Άσσος (Κούπα Άσσος (Άσσος 1 52 4 52 1 (Κούπα 4 4 13 1 ( Άσσος Κούπα * (Άσσος (Κούπα 52 52 52

0.0976 0.0024 0.06 0.04 ( ( ( ( 0.0024 0.04*0.06 ( ( ( T T T b T T a 0.0976 0.0024 0.06 0.04 ( ( ( ( 0.0024 0.04*0.06 ( ( ( T T T b T T a Τα ενδεχόμενα Television (T και illboard ( υποθέτουμε ότι είναι ανεξάρτητα. Ανεξαρτησία Ενδεχομένων Παράδειγμα 2-5 2-26

2-27 2-7 Ο νόμος της Ολικής Πιθανότητας Ο νόμος της ολικής πιθανότητας: ( A ( A ( A Χρησιμοποιώντας υπό συνθήκη πιθανότητες έχουμε: ( A ( A ( A ( A ( ( A ( Γενικά, (αν τα i είναι μια διαμέριση: ( A ( A i ( A ( i i

Ο νόμος της ολικής πιθανότητας- Παράδειγμα 2-9 2-28 Ενδεχόμενο U: Η χρηματαγορά θα ανέβει τον επόμενο χρόνο Ενδεχόμενο W: Η οικονομία θα πάει καλά τον επόμενο χρόνο ( U W. 75 ( U W 30 ( W. 80 ( W 1. 8. 2 ( U ( U W ( U W ( U W ( W ( U W ( W (. 75(. 80 (. 30(. 20. 60. 06. 66