Κλασική και στατιστική Θερμοδυναμική

Σχετικά έγγραφα
Γενικευμένος Ορισμός Εντροπίας

Εφαρμοσμένη Στατιστική

Μικροβιολογία & Υγιεινή Τροφίμων

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνδυαστική Ανάλυση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

Κλασική και στατιστική Θερμοδυναμική

Εφαρμοσμένη Στατιστική

Ηλεκτρισμός & Μαγνητισμός

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Οικονομετρία. Πολλαπλή Παλινδρόμηση. Στατιστικός έλεγχος γραμμικού συνδυασμού συντελεστών. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης

Κλασική και στατιστική Θερμοδυναμική

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

Ηλεκτρονικοί Υπολογιστές I

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

Μικροκανονική- Kανονική κατανομή (Boltzmann)

Υπολογιστές Ι. Άδειες Χρήσης. Δομή του προγράμματος. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

Μικροκανονική- Kανονική κατανομή (Boltzmann)

Εφαρμοσμένη Στατιστική

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συναρτήσεις πολλών μεταβλητών Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΑΝΟΙΚΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΜΑΘΗΜΑΤΑ Γενικά Μαθηματικά Ι Ενότητα 11 : Ακολουθίες και Σειρές Λουκάς Βλάχος Τμήμα Φυσικής

Εφαρμοσμένη Στατιστική

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Εφαρμοσμένη Στατιστική

Μικροκανονική- Kανονική κατανομή (Boltzmann)

Ιστορία της μετάφρασης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Συστήματα Πολλών Σωματίων Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Εκκλησιαστικό Δίκαιο

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Εισαγωγή Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνάρτηση κατανομής πιθανότητας Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Εφαρμοσμένη Στατιστική

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Στατιστική Φυσική Διδάσκων : Επίκ. Καθ. Μ. Μπενής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνεχείς τυχαίες μεταβλητές Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

Εκκλησιαστικό Δίκαιο

ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι

Ηλεκτρισμός & Μαγνητισμός

Οικονομετρία. Απλή Παλινδρόμηση. Πληθυσμός και δείγμα. H μέθοδος Ελαχίστων Τετραγώνων. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κβαντομηχανική σε τρεις διαστάσεις Διδάσκων : Επίκ. Καθ. Μ.

Εισαγωγή στους Αλγορίθμους

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙ

Ηλεκτρισμός & Μαγνητισμός

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Γενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Οικονομετρία. Εξειδίκευση του υποδείγματος. Μορφή της συνάρτησης: Πολυωνυμική, αντίστροφη και αλληλεπίδραση μεταβλητών

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Βασικές Αρχές Φαρμακοκινητικής

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Ηλεκτρισμός & Μαγνητισμός

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Γενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim

Ηλεκτρισμός & Μαγνητισμός

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Ιστορία της μετάφρασης

Μαγνητικά Υλικά Υπεραγωγοί

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

Οικονομετρία. Αυτοσυσχέτιση Συνέπειες και ανίχνευση. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης. Διδάσκων: Λαζαρίδης Παναγιώτης

Εφαρμοσμένη Στατιστική

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαγνητικά Υλικά Υπεραγωγοί

Κβαντική Επεξεργασία Πληροφορίας

Γενικά Μαθηματικά Ι. Ενότητα 8: Εφαρμογές Σειρών Taylor. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Εκκλησιαστικό Δίκαιο

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 6: Εντροπία. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Θεωρία Λήψης Αποφάσεων

Εισαγωγή στους Αλγορίθμους Ενότητα 10η Άσκηση Αλγόριθμος Dijkstra

Μάθηση σε νέα τεχνολογικά περιβάλλοντα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 1: Βασικά χαρακτηριστικά της Θερμοδυναμικής. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης

Γενικά Μαθηματικά Ι. Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή (2 ο Μέρος) Λουκάς Βλάχος Τμήμα Φυσικής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική. Μη Αντιστρεπτότητα και ο 2ος Θ.ν. Διδάσκων : Καθηγητής Γ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Ατομική Δομή ΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής

Αξιολόγηση μεταφράσεων ιταλικής ελληνικής γλώσσας

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

Παράκτια Τεχνικά Έργα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Πρόσθεση Στροφορμών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

Οικονομετρία. Απλή Παλινδρόμηση Βασικές έννοιες και τυχαίο σφάλμα. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης. Διδάσκων: Λαζαρίδης Παναγιώτης

Ηλεκτρονικοί Υπολογιστές I

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Οικονομία των ΜΜΕ. Ενότητα 7: Μορφές αγοράς και συγκέντρωση των ΜΜΕ

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 1: Εισαγωγή. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Γεωργική Εκπαίδευση Ενότητα 9

Βέλτιστος Έλεγχος Συστημάτων

Διπλωματική Ιστορία Ενότητα 2η:

Transcript:

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική και στατιστική Θερμοδυναμική Κανονική Κατανομή oltzma- Μεγαλοκανονική Κατανομή Διδάσκων: Καθηγητής Ιωάννης Παναγιωτόπουλος

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Catv Commos. Για εκπαιδευτικό υλικό όπως εικόνες που υπόκειται σε άλλου τύπου άδειας χρήσης η άδεια χρήσης αναφέρεται ρητώς.

Γενικευμένος Ορισμός Εντροπίας Σε μονωμένα συστήματα θεωρήσαμε ότι «όλες οι μικροκαταστάσεις που είναι συμβιβαστές με την δεδομένη Μακροκατάσταση έχουν ίσες πιθανότητες». Συμβολίσαμε με Ω τον αριθμό των μικροκαταστάσεων που απαρτίζουν μια Μακροκατάσταση. Αυτό σημαίνει ότι η κάθε μια έχει πιθανότητα: Ω και ορίσαμε την εντροπία ως: S llω Με βάση τις δύο παραπάνω σχέσεις μπορούμε να γράψουμε S ll Θέλουμε να επεκτείνουμε τον ορισμό σε μη απομονωμένα συστήματα όπου οι μικροκαταστάσεις δεν είναι ισοπίθανες. Μια προφανής επιλογή είναι να πάρουμε την μέση τιμή των πιθανοτήτων στην προηγούμενη σχέση: S ll ll το τελευταίο βήμα είναι απλώς εφαρμογή του ορισμού u u

Γενικευμένος Ορισμός Εντροπίας Άλλος ένας τρόπος να δείξουμε την προηγούμενη σχέση είναι να θεωρήσουμε ότι έχουμε ένα πολύ μεγάλο αριθμό Μ από αντίγραφα του συστήματος μας. Αν το καθένα από αυτά θα βρίσκεται σε κάθε μια από τις Ν μικροκαταστάσεις 23. με πιθανότητες αντίστοιχα 2 3. : 2 2 Ο αριθμός των συνδυασμών είναι: Ω Μ! Μ! Μ 2! Μ Ν! Και η εντροπία Επομένως η εντροπία ανά «αντίγραφο» του συστήματος μας είναι: S Ω S 2

Σύστημα σε θερμοκρασία Τ: Ο παράγοντας oltzma Έχουμε σύστημα σε σταθερή απόλυτη θερμοκρασία Τ. Δηλαδή που δεν είναι απομονωμένο αλλά σε θερμική επαφή με ένα πολύ μεγαλύτερο σύστημα «δεξαμενή θερμότητας» σε θερμοκρασία Τ με την οποία μπορεί να ανταλλάσει ποσά ενέργειας. Χρησιμοποιόντας το θεμελιώδες στατιστικό αίτημα: Το στατιστικό βάρος Μακροκατάστασης είναι ο αριθμός Ω των μικροκαταστάσεων που την απαρτίζουν δηλαδή η πιθανότητα της θα είναι ανάλογη του: S / Ω Θα δείξουμε ότι η πιθανότητα να βρεθεί το συστημά μας σε μια συγκεκριμένη μικροκατάσταση με ενέργεια Ε είναι ανάλογη του παράγοντα: / 3

Σύστημα Ν σωματιδίων σε θερμοκρασία Τ: Ο Παράγοντας oltzma Ε *- Εφόσον η συνολική ενέργεια Ε* διατηρείται για να βρεθεί το σύστημα μας σε μια μικροκατάσταση με ενέργεια Ε θα πρέπει η δεξαμενή θερμότητας να έχει ενέργεια ίση με ΕΕ*- Ε. Όμως ο αριθμός των μικροκαταστάσεων της δεξαμενής θερμότητας είναι ισχυρή συνάρτηση του Ε. Επομένως: Ω Αναπτύσοντας σε σειρά aylo: * S / * S * ds d S * 4

Παράγοντας oltzma και συνάρτηση επιμερισμού Ζ Επομένως ότι η πιθανότητα να βρεθεί το συστημά μας σε μια συγκεκριμένη μικροκατάσταση με ενέργεια Ε είναι : C / Όπου C είναι μια σταθερά η οποία μπορεί να προσδιορισθεί από την απαίτηση: / / 5

Παράγοντας oltzma: Για να είναι η πιθανότητα να βρεθεί το συστημά μας σε μια συγκεκριμένη μικροκατάσταση με ενέργεια Ε σημαντική πρέπει το Ε να είναι μικρότερο η συγκρίσιμο με την «θερμική ενέργεια» κτ. Είναι χρήσιμο να θυμόμαστε ότι 604K m 20 00 80 60 40 20 0 300 Κ 0.005 0.0 0.024 0.053 0.5 0.249 0.54 6

Κανονική Κατανομή και Συνάρτηση επιμερισμού Ζ Το Ζ δεν είναι ένας απλός παράγοντας κανονικοποίησης είναι στην γενικότερη περίπτωση μια συνάρτηση Ζ με βάση την οποία μπορούμε να παράγουμε όλες τις μακροσκοπικές θεμορυναμικές ποσότητες εφόσον έχουμε αθροίσει στις μικροκαταστάσεις. Δείξετε ότι: β β β β β β β 7

Κανονική Κατανομή και Συνάρτηση επιμερισμού Ζ Δείξετε ότι: F S F S + + + Ξεκινάμε από τον γενικευμένο ορισμό της εντροπίας: 8

Συνάρτηση επιμερισμού Ζ σε συστήματα με εκφυλισμό ΠΡΟΣΟΧΗ: ΣΤΟΥΣ ΠΡΟΗΓΟΥΜΕΝΟΥΣ ΟΡΙΣΜΟΥΣ Η ΑΘΡΟΙΣΗ ΑΝΑΦΕΡΕΤΑΙ ΣΕ ΚΑΤΑΣΤΑΣΕΙΣ ΚΑΙ ΕΝΕΡΓΕΙΕΣ! Συνήθως σε μια ενέργεια αντιστοιχούν περισότερες από μια καταστάσεις. Αν λοιπόν θέλουμε να αθροίσουμε σε ενέργειες πρέπει να πολλαπλασιάσουμε τον κάθε παράγοντα oltzma με το αριθμό που καταστάσεων που αντιστοιχούν σε κάθε ενέργεια g βαθμό εκφυλισμού : Με λίγη προσοχή μπορούμε επίσης να καταλάβουμε ότι η άθροιση που αντιστοιχεί στον γενικευμένο ορισμό της εντροπίας γίνεται: g g / / g S g g g S 9

Κανονική κατανομή και ος ΘΝ Καταρχήν ας παρατηρήσουμε ότι: 0 Με χρήση αυτής μπορούμε να δείξουμε ότι ξεκινώντας από τον ορισμό: S ds d + d d + d d d + βd d + d ds d Επομένως με σύγκριση με τον ο ΘΝ: ΣΥΜΠΕΡΑΙΝΟΥΜΕ: d d ds + dw d ΕΡΓΟ d + d ΘΕΡΜΟΤΗΤΑ 0

Μεθοδολογία χρήσης της κανονικής κατανομής oltzma F F S F P S F µ β β β

Μεγαλοκανονική κατανομή: Σύστημα σε θερμοκρασία Τ και χημικό δυναμικό μ. Έχουμε σύστημα σε σταθερή απόλυτη θερμοκρασία Τ σε θερμική επαφή με ένα πολύ μεγαλύτερο σύστημα με την οποίο μπορεί να ανταλλάσει ποσά ενέργειας και σωματίδια. Μπορούμε να δείξουμε ότι η πιθανότητα να βρίσκεται σε μικροκατάσταση με ενέργεια Ε και Ν αριθμό σωματιδίων είναι ανάλογη του παράγοντα: σταθερ ά β µ Η σταθερά μπορεί να προσδιορισθεί από την απαίτηση: Ξ β µ β µ Ξ 0 2

Μεθοδολογία χρήσης της μεγαλοκανονικής κατανομής Gbbs S P S Ξ Ω Ω Ω Ξ Ω Ξ Ξ µ β βµ µ β β µ β 3

Τέλος Ενότητας

Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Ιωαννίνων» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση Ευρωπαϊκό Κοινωνικό Ταμείο και από εθνικούς πόρους.

Σημειώματα

Σημείωμα Ιστορικού Εκδόσεων Έργου Το παρόν έργο αποτελεί την έκδοση.0. Έχουν προηγηθεί οι κάτωθι εκδόσεις: Έκδοση.0 διαθέσιμη εδώ. htt://cous.uo.g/cous/vw.h?d079.

Σημείωμα Αναφοράς Coyght Πανεπιστήμιο Ιωαννίνων Διδάσκων: Καθηγητής Ιωάννης Παναγιωτόπουλος. «Κλασική και στατιστική Θερμοδυναμική. Κανονική Κατανομή oltzma- Μεγαλοκανονική Κατανομή». Έκδοση:.0. Ιωάννινα 204. Διαθέσιμο από τη δικτυακή διεύθυνση: htt://cous.uo.g/cous/vw.h?d079.

Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Catv Commos Αναφορά Δημιουργού - Παρόμοια Διανομή Διεθνής Έκδοση 4.0 [] ή μεταγενέστερη. [] htts://catvcommos.og/lcss/by-sa/4.0/.