Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Σχετικά έγγραφα
Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μαθηματική Ανάλυση Ι

Μικροβιολογία & Υγιεινή Τροφίμων

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Ηλεκτρισμός & Μαγνητισμός

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνδυαστική Ανάλυση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

Γενικά Μαθηματικά Ι. Ενότητα 13: Ακτίνα Σύγκλισης, Αριθμητική Ολοκλήρωση, Ολοκλήρωση Κατά Παράγοντες. Λουκάς Βλάχος Τμήμα Φυσικής

Ηλεκτρισμός & Μαγνητισμός

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 13: Τύπος του Taylor. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

Εφαρμοσμένη Στατιστική

Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής

Λογισμός 4 Ενότητα 10

7. ΑΝΩΜΑΛΑ ΣΗΜΕΙΑ, ΠΟΛΟΙ ΚΑΙ ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ ΟΛΟΚΛΗΡΩΤΙΚΩΝ ΥΠΟΛΟΙΠΩΝ. και σε κάθε γειτονιά του z

Λογισμός 3. Ενότητα 17: Απόδειξη Θεωρήματος Αντιστροφής. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΑΝΟΙΚΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΜΑΘΗΜΑΤΑ Γενικά Μαθηματικά Ι Ενότητα 11 : Ακολουθίες και Σειρές Λουκάς Βλάχος Τμήμα Φυσικής

Λογισμός 3. Ενότητα 1: Τοπολογία των Ευκλείδειων χώρων. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συναρτήσεις πολλών μεταβλητών Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

Συστήματα Αυτόματου Ελέγχου

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 6: Εφαρμογές του Fubini. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 4 Ενότητα 12

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Ηλεκτρισμός & Μαγνητισμός

Ηλεκτρονικοί Υπολογιστές I

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform)

Γενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής

Ηλεκτρισμός & Μαγνητισμός

Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης

ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Λογισμός ΙΙ. Χρήστος Θ. Αναστασίου Τμήμα Μηχανικών Πληροφορικής ΤΕ

Λογισμός 3. Ενότητα 5:Θεώρημα ακραίων τιμών και θεώρημα ενδιάμεσων τιμών- Ομοιόμορφη συνέχεια. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 5: Το Θεώρημα του Fubini. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1)

Οικονομετρία. Εξειδίκευση του υποδείγματος. Μορφή της συνάρτησης: Πολυωνυμική, αντίστροφη και αλληλεπίδραση μεταβλητών

Λογισμός 4 Ενότητα 19

Ηλεκτρισμός & Μαγνητισμός

Ιστορία της μετάφρασης

~ 1 ~ ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ & ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2013 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Λογισμός 4 Ενότητα 18

Γενικά Μαθηματικά Ι. Ενότητα 7: Σειρές Taylor, Maclaurin. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1

Εκκλησιαστικό Δίκαιο

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Λογισμός 3. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνάρτηση κατανομής πιθανότητας Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Κλασσική Θεωρία Ελέγχου

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Εκκλησιαστικό Δίκαιο

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 1: Εισαγωγή. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Λογιστική Κόστους Ενότητα 10: Ασκήσεις Προτύπου Κόστους Αποκλίσεων.

Οικονομία των ΜΜΕ. Ενότητα 7: Μορφές αγοράς και συγκέντρωση των ΜΜΕ

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Μαθηματικά και Φυσική με Υπολογιστές

Γενικά Μαθηματικά Ι. Ενότητα 8: Εφαρμογές Σειρών Taylor. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Εισαγωγή στους Αλγορίθμους

Κβαντική Επεξεργασία Πληροφορίας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Ιστορία των Μαθηματικών

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους

Υπόγεια Υδραυλική και Υδρολογία

Γενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής

ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 6

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Γενικά Μαθηματικά Ι. Ενότητα 6: Ακρότατα Συνάρτησης. Λουκάς Βλάχος Τμήμα Φυσικής

Εφαρμοσμένη Στατιστική

Λογισμός 3. Ενότητα 10: Παραγώγιση Διανυσματικών Συναρτήσεων. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Κλασική Ηλεκτροδυναμική Ι

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 2: Ορισμός του ολοκληρώματος. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Οικονομετρία. Πολλαπλή Παλινδρόμηση. Στατιστικός έλεγχος γραμμικού συνδυασμού συντελεστών. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Εφαρμοσμένη Στατιστική

Εισαγωγή στους Αλγορίθμους

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Γενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Παράκτια Τεχνικά Έργα

Μαθηματική Ανάλυση Ι

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνεχείς τυχαίες μεταβλητές Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Υπολογιστές Ι. Άδειες Χρήσης. Δομή του προγράμματος. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

Φ 619 Προβλήματα Βιοηθικής

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 14: Τοπικά ακρότατα. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Ιστορία της μετάφρασης

Transcript:

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΑΝΑΠΤΥΓΜΑ ΑΝΑΛΥΤΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΣΕ ΣΕΙΡΕΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.

[16] Σχήμα 5.1 Με την βοήθεια του θεωρήματος Cauchy-Goursat και της αρχής παραμόρφωσης των βρόχων εύκολα αποδεικνύεται ο ακόλουθος τύπος που φέρει την ονομασία ολοκληρωτικός τύπος του Cauchy. Ολοκληρωτικός τύπος του Cauchy: Αν η συνάρτηση f( z ) είναι αναλυτική πάνω και στο εσωτερικό του απλού και θετικά προσανατολισμένου βρόχου C και z είναι ένα τυχόν σημείο στο εσωτερικό του C, τότε θα ισχύει ο τύπος f( z) = 1 f ( ς ) dς πi. ς z 2 C Ο τύπος αυτός γενικεύεται και για τις παραγώγους της συνάρτησης f( z ) ως εξής: Ολοκληρωτικός τύπος του Cauchy για τις παραγώγους: Αν η συνάρτηση f( z ) είναι αναλυτική πάνω και στο εσωτερικό του απλού και θετικά προσανατολισμένου βρόχου C και z είναι ένα τυχόν σημείο στο εσωτερικό του C, τότε στο z η f( z ) έχει παραγώγους κάθε τάξης που δίνονται από τον τύπο! f( ς ) ( ) =, =,1, 2, ( ) f z dς + 1 2 πi C ( ς z) Παρατηρούμε ότι στον τύπο αυτό θέτοντας = λαμβάνουμε τον ολοκληρωτικό τύπο του Cauchy. 6. ΑΝΑΠΤΥΓΜΑ ΑΝΑΛΥΤΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΣΕ ΣΕΙΡΕΣ Δυναμοσειρές: Μια σειρά με την μορφή 2 a ( z z) = a + a1( z z) + a2( z z) +... (6.1) = Χ. Κολάσης. Χειμερινό εξάμηνο ακαδημαϊκού έτους 213-214

[17] λέγεται δυναμοσειρά. Οι μιγαδικοί αριθμοί a είναι οι συντελεστές της σειράς και το z το κέντρο της και δεν εξαρτώνται από την μεταβλητή z. Η σειρά αυτή συγκλίνει πάντα στο a όταν z = z και επομένως το πεδίο σύγκλισής της πάντα περιέχει το κέντρο της. Το πεδίο σύγκλισης μιας δυναμοσειράς είναι το σύνολο των σημείων στο μιγαδικό επίπεδο στα οποία η δυναμοσειρά συγκλίνει και αυτό το πεδίο σύγκλισης είναι πάντα ένας κυκλικός δίσκος του οποίου το κέντρο είναι το κέντρο της δυναμοσειράς. Ποιο συγκεκριμένα αποδεικνύεται το εξής θεώρημα: Θεώρημα 6.1 Έστω η δυναμοσειρά a ( ) z z η οποία συγκλίνει σε κάποιο = σημείο z1 z χωρίς όμως να συγκλίνει σε όλα τα σημεία του μιγαδικού επιπέδου. Τότε υπάρχει ένας θετικός αριθμός R τέτοιος ώστε η δυναμοσειρά να συγκλίνει απόλυτα σε όλα τα σημεία z του ανοικτού κυκλικού δίσκου z z < R και να αποκλίνει σε όλα τα σημεία με z z > R. Επί πλέον, αν < r < R, η δυναμοσειρά θα συγκλίνει και ομοιόμορφα σε όλα τα σημεία του κλειστού κυκλικού δίσκου z z r. Ο αριθμός R λέγεται ακτίνα σύγκλισης της δυναμοσειράς και ο κύκλος z z = R στο εσωτερικό του οποίου η δυναμοσειρά συγκλίνει λέγεται κύκλος σύγκλισης της δυναμοσειράς. Μια ιδιαίτερα χρήσιμη δυναμοσειρά είναι η 2 z = 1 + z+ z +... = της οποίας οι όροι αποτελούν γεωμετρική πρόοδο με λόγο z. Το πεδίο σύγκλισης της δυναμοσειράς αυτής είναι το χωρίο z < 1. Όταν z > 1 ή z = 1 η δυναμοσειρά αποκλίνει. Εύκολα αποδεικνύεται ότι 1 z = όταν z < 1. (6.2) = 1 z Μια δυναμοσειρά στο πεδίο σύγκλισής της συγκλίνει πάντα σε μία αναλυτική συνάρτηση. Ειδικότερα, ισχύει το εξής θεώρημα: Θεώρημα 6.2 Κάθε δυναμοσειρά a ( ) z z ορίζει μέσα στο πεδίο σύγκλισής της = μια αναλυτική συνάρτηση f( z ). Οι παράγωγοι της f( z ) λαμβάνονται με παραγώγιση της δυναμοσειράς όρο προς όρο και οι αντίστοιχες παραγωγισμένες δυναμοσειρές έχουν το ίδιο πεδίο σύγκλισης με την αρχική δυναμοσειρά. Τέλος, το ολοκλήρωμα της f( z ) κατά μήκος ενός οποιουδήποτε δρόμου μέσα στο πεδίο σύγκλισης λαμβάνεται με ολοκλήρωση όρο προς όρο της δυναμοσειράς κατά μήκος αυτού του δρόμου. Ισχύει όμως και το αντίστροφο του θεωρήματος αυτού. Κάθε συνάρτηση που είναι αναλυτική σε ένα κυκλικό δίσκο αναλύεται σε δυναμοσειρά σε κάθε σημείο αυτού του δίσκου. Το σχετικό θεώρημα φέρει την ονομασία θεώρημα του Taylor και η διατύπωσή του έχει ως εξής: Χ. Κολάσης. Χειμερινό εξάμηνο ακαδημαϊκού έτους 213-214

[18] Θεώρημα του Taylor Αν μια συνάρτηση f( z ) είναι αναλυτική στον ανοικτό κυκλικό δίσκο z z < R τότε σε κάθε σημείο z του δίσκου η f( z ) μπορεί να αναλυθεί σε δυναμοσειρά ως εξής: a (6.3) = f( z) = a ( z z ) f ( z )! ( ) = = (6.4) για,1, 2,... Η δυναμοσειρά (6.3) με τους συντελεστές όπως εκφράζονται μέσω της f( z) από την (6.4) έχει καθιερωθεί να λέγεται σειρά Taylor. Κάθε δυναμοσειρά που συγκλίνει σε μια συνάρτηση f( z ) είναι η σειρά Taylor της f( z ). Ισχύει το εξής θεώρημα: Θεώρημα 6.3 Αν η σειρά a ( ) z z συγκλίνει προς την συνάρτηση f( z ) στο = εσωτερικό κάποιου κύκλου z z = R τότε αυτή είναι η σειρά Taylor της f( z ) γύρω από το z. Κάθε συνάρτηση f( z ) που είναι αναλυτική σε ένα σημείο z αναπτύσσεται σε σειρά Taylor (6.3) σε ένα χωρίο που είναι ένας κυκλικός δίσκος με κέντρο το z δηλαδή σε ένα χωρίο της μορφής z z < R. Το R, η ακτίνα σύγκλισης της σειράς Taylor, είναι η απόσταση του z από το κοντινότερό του ανώμαλο σημείο της f( z ). Αν η συνάρτηση f( z ) δεν είναι αναλυτική στο z τότε πάλι μπορεί να αναπτυχθεί σε σειρά δυνάμεων του z z μόνο που τώρα στο ανάπτυγμα θα υπάρχουν και αρνητικές δυνάμεις του z z. Γενικότερα, ισχύει το ακόλουθο θεώρημα: Θεώρημα του Lauret. Έστω μια συνάρτηση f( z ) που είναι αναλυτική στο δακτυλιοειδές χωρίο R1 < z z < R2 όπου R1 και C ένας απλός βρόχος γύρω από το z που κείται εξ ολοκλήρου μέσα σε αυτό το χωρίο. Τότε σε κάθε σημείο z του χωρίου η f( z ) αναλύεται σε σειρά δυνάμεων του z z ως εξής: όπου και f( z) = a ( z z ) + b ( ) = = 1 z z (6.5) 1 f( z) a = dz = 2 πi ( z z ),,1,2,... (6.6) C + 1 1 b = f z z z dz = 2πi 1 ( )( ), 1,2,... (6.7) C Χ. Κολάσης. Χειμερινό εξάμηνο ακαδημαϊκού έτους 213-214

Τέλος Ενότητας

Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Ιωαννίνων» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

Σημειώματα

Σημείωμα Ιστορικού Εκδόσεων Έργου Το παρόν έργο αποτελεί την έκδοση 1.. Έχουν προηγηθεί οι κάτωθι εκδόσεις: Έκδοση 1. διαθέσιμη εδώ. http://ecourse.uoi.gr/course/view.php? id=1348.

Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Ιωαννίνων, Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος. «Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί. ΑΝΑΠΤΥΓΜΑ ΑΝΑΛΥΤΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΣΕ ΣΕΙΡΕΣ». Έκδοση: 1.. Ιωάννινα 214. Διαθέσιμο από τη δικτυακή διεύθυνση: http://ecourse.uoi.gr/course/view.php?i d=1348.

Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commos Αναφορά Δημιουργού - Παρόμοια Διανομή, Διεθνής Έκδοση 4. [1] ή μεταγενέστερη. [1] https://creativecommos.org/liceses/ by-sa/4./.